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Abstract: Thermal control coating is an important means of ensuring that a spacecraft remains
operational at high temperatures. Due to limitations regarding preparation technology and material
properties, the mechanical properties of the conventional thermal control coatings still need to be
improved. To solve this problem, nanostructured alumina coatings (NCs) and conventional alumina
coatings (CCs) were prepared using plasma-spraying technology. The microscopic morphology,
phase structure, hardness, and thermal control properties (solar absorptance (αs) and emissivity (ε))
of the nanostructured alumina coatings were investigated and compared with those of conventional
alumina coatings. The results show that the NC has a higher hardness value (1168.8 HV) and that its
reflectivity exceeds 75% in the wavelength range of 446–1586 nm, while a high degree of emissivity of
0.863–0.87 is still maintained at 300–393 K. Furthermore, the results show that these highly reflective
properties are related to the phase composition and internal micromorphology of the NC, whereby the
solar absorption of the coating is reduced due to the increase in the alpha phase content (21.4%), the
high porosity (5.21%) and the nanoparticles favoring the internal scattering. All these properties can
improve the performance of this CC coating with low solar absorptance (αs) and high emissivity (ε).

Keywords: plasma spraying; alumina; nanostructured; thermal control property

1. Introduction

High-strength aluminum alloys (2A12) are widely used as structural materials in
spacecrafts to reduce their structural weight [1,2]. However, the equilibrium temperature
of a spacecraft’s surface is high under solar radiation due to the low emissivity of these
alloys. Coating these surfaces with a layer of low-absorption, high-emission thermal control
coating can reduce the absorption of solar radiation, increase surface thermal radiation,
and reduce the thermal equilibrium temperature of the spacecraft, thus ensuring that the
spacecraft and its various instruments and equipment can maintain a normal operating
temperature range [3–5].

At present, the common thermal control coatings (TCCs) for aluminum surfaces are
mainly divided into the white paint type [6–9], the second surface mirror type [10–13], and
the electrochemical ceramic type [14–16]. The white paint type is mainly composed of white
powders (e.g., ZnO and TiO2) and binders such as epoxies, acrylics, silicones, and silicates,
which are deposited on the substrate surface by coating or air-spray technology and cured
to obtain a thermal control coating [8,9]. White paint coating offers the advantages of a
simple preparation process, high efficiency, and easy repair. However, the degradation
of the binder in an ultra-vacuum and alternating hot and cold environments leads to
the hardening of the coating, which reduces the bonding properties of the coating to the
substrate. The secondary surface mirror-type thermal control coatings, also known as
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optical solar reflectors (OSR), are usually made by depositing SiO2 thin films on metal
substrates by vacuum vapor deposition [11,12]. OSR coatings have both high IR emissivity
and low solar absorption and have shown excellent stability in practical applications.
However, they are expensive and cannot be deposited on the surface of large, complex
structural parts. In addition, secondary surface mirror-type coatings have poor wear
resistance and, therefore, are prone to wear and even peeling in the harsh environment of
space, resulting in degraded coating performance [13]. Ceramic thermal control coating
is an aluminum oxide coating formed on the surface of an aluminum alloy by anodic
oxidation or plasma electrolytic oxidation (PEO) [15,16]. In recent years, researchers have
achieved the modulation of coatings’ microstructure and composition by regulating the
electrolyte composition and optimizing the reaction’s electrical parameters, thus improving
coatings’ properties. However, this coating has poor high-temperature resistance and still
needs to be improved in terms of its solar absorbance performance. In summary, due to
limitations in terms of preparation technology and material properties, the mechanical
properties of thermal control coatings still need to be improved.

Compared with the latter materials and processes, plasma-spraying technology has a
high deposition rate and can deposit a variety of materials, from metals to ceramics, on
substrates of any geometry and of different sizes and offers a strong binding force with the
substrate [17–19]. As is commonly known, plasma-sprayed alumina coatings are widely
used in a variety of fields due to their excellent physical and chemical properties [20–23].
Recently, studies have shown that coatings prepared by spray-granulated nano-alumina
powder via atomization exhibit better mechanical properties than conventional coatings
due to their unique microstructure [24,25]. As shown in Figure 1a, during the spraying
process, the melting state of the granulated Al2O3 nanoparticles can be divided into three
stages, namely, completely melted, partially melted, and unmelted, and these stages depend
on their sizes and trajectory in the plasma jet [26,27]. Accordingly, Figure 1b shows that
some of the original nanoparticles are retained in the microstructure of the coating, and
these particles can effectively impede dislocation movement and improve the hardness
and creep resistance of the coating [28]. However, detailed studies regarding the influence
of microstructural features on the thermal control properties of nano-alumina coatings
are limited in the literature. In general, the thermal control properties (solar absorptance
(αs) and infrared emissivity (ε)) of coatings are determined by their microstructure and
composition [29,30]. J. Marthe et al. [29] optimized the scattering and reflective properties
of porous alumina by controlling the spray parameters in order to optimize porosity. The
absorption rate of the coating was less than 0.1 within 300–800 nm. In addition, Denis
Toru et al. [30] found a significant increase in the reflectivity of an alumina plasma-sprayed
coating caused by the conversion of γ-Al2O3 to α-Al2O3 after an annealing treatment.
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Figure 1. Schematic of formation process of plasma-sprayed nano Al2O3 coating. (a) Melting state of
particles; (b) nano-sized Al2O3 particle-based coating models [25].

Therefore, in this study, we used an atmospheric plasma-spraying method to prepare
conventional alumina coatings and nanostructured alumina coatings in order to character-
ize the microstructures, thermal control properties, and mechanical properties of different



Appl. Sci. 2023, 13, 956 3 of 12

alumina coatings and to relate their microstructures and composition with their thermal
control and mechanical properties.

2. Materials and Methods
2.1. Powder Characterization

As shown in Figure 2, scanning electron microscopy (SEM) (Supra55, Zeisi, Germany)
and Mastersizer 2000 laser particle size analyzer were used to characterize the morphology
and size statistics of two Al2O3 powders (conventional micron powder and nano-powder
after granulation) selected for spraying experiment. We determined that the particle size
distributions of conventional powder and granulated nano-alumina powder obtained via
atomization are in the range of 20–100 µm and 20–80 µm, respectively, with an average
particle size of (Dv50) 52.1 µm and 40.8 µm, respectively. The morphologies of the powders
are angular and spherical, respectively.
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Figure 2. SEM and Laser particle-size analysis of (a) conventional micron powder and (b) granulated
nano-alumina powder generated by atomization.

X-ray diffraction (XRD) (D8 Advance, Bruker, Germany) analysis of the nano- and
micron-sized Al2O3 powders was carried out using Cu Ka radiation at a scanning speed of
6◦ per minute between 2θ = 20 and 90◦ (shown in Figure 3). It can be seen from the figure
that an α-Al2O3 phase structure was obtained.
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2.2. Coating Preparation and Characterization

The substrate material was a square 2A12 aluminum alloy with a length of 40 mm
and a height of 5 mm, and its elemental composition is shown in Table 1. Before spraying,
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the substrate was ultrasonically cleaned with acetone to remove surface oil and dust and
sandblasted with quartz sand to coarsen the surface, thus ensuring mechanical anchoring
between the coating and the substrate.

Table 1. Chemical compositions of the 2A12 aluminum.

Composition Si Cu Mg Zn Mn Ti Ni Fe Al

Percentage, w/w ≤0.5 3.8~4.9 1.2~1.8 ≤0.3 0.3~0.9 ≤0.15 ≤0.1 ≤0.5 Bal

Before depositing the Al2O3 coating, a NiCrCoAlY transition layer with a thickness of
about 100 µm was sprayed on the aluminum alloy substrate using German GTV plasma-
spraying equipment to reduce the residual stress between the substrate and the Al2O3
ceramic due to the difference in thermal expansion coefficients. The plasma-spraying
parameters are shown in Table 2.

Table 2. Process parameters of plasma spraying.

Parameters NiCrCoAlY Al2O3 Unit

Plasma gas (Primary-Argon) 50 41 NLPM
Carrier gas (Secondary-Hydrogen) 9 14 NLPM

Arc current 530 580 A
Arc voltage 65 71 V

Spray distance 130 120 mm
Powder feed rate 30 20 g/min

Field emission scanning electron microscopy (SEM) (Supra55, Zeisi, Germany) was
used to investigate the microstructural characteristics of the coatings. MicroEYE 3000
software was used to analyze porosity of coating cross-section images. The nano- and
micro-sized coatings were characterized by X-ray diffraction analysis (D8 Advance, Broker,
Germany) using Cu Ka radiation at a rate scanning speed of 6◦ per minute between
2θ = 20 and 90◦. The three-dimensional morphologies of the coatings were obtained by
three-dimensional shape profiler (GT-X, Broker, Germany), which was also used to measure
the root-mean-square height of the surface (Rq). The hardness of the coatings was measured
20 times under 100 g (0.9807 N) for 15 s using a Vickers microhardness tester (MF 1000,
Mega, China).

The thermal control properties (absorptance and emissivity) of the coatings were
investigated by an ultraviolet-visible-near infrared spectrophotometer instrument (UV-3600,
Shimadzu, Japan) and Dual-band emissivity measurement instrument (IR2, Wanyi, China).

3. Results and Discussion
3.1. The Microstructure and Phase of the Coatings

Figure 4 shows the XRD patterns of the NC and CC. The metastable γ-Al2O3 phase
is the dominant phase of the alumina coatings. This is due to the molten Al2O3 droplets
dropping onto the cold substrate and cooling rapidly (about 106 K/s [31]) during the
plasma-spraying process. Compared with α-Al2O3, metastable γ-Al2O3 with lower critical
free energy is more likely to nucleate during rapid solidification. In addition, to calculate
the content of the α-Al2O3 phase in the coatings, a semi-quantitative analysis was carried
out by following Equation (1) for NC and CC [32].

Cα =
I(104) + I(113) + I(116)

I(104) + I(113) + I(116) + I(311) + I(400) + I(440)
(1)

where Cα represents the content of the α-Al2O3 phase and I denotes the area of the peak.
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Figure 4. XRD pattern of Al2O3 coating.

The results show that the α-Al2O3 phase in NC (21.4%) is much higher than that in CC
(12.7%). It was reported that the α-Al2O3 phase in these coatings is mainly derived from
unmelted particles during spraying [33]. Compared with the micron-sized alumina powder,
the granulated nano-alumina powder produced via atomization has a lower coefficient
of thermal conductivity [24]. Therefore, the coating formed by the nano-alumina powder
contains more unfused particles compared to the micron powder formed under the same
spraying parameters, resulting in increased α-Al2O3 phase content.

Figure 5a,c show the surface morphology of CC and NC, respectively. From these
figures, it is evident that the coatings exhibit lamellae structures of different shapes and
sizes. In the spraying process, the molten droplets contact the substrate and spread out,
leading to the formation of a lamellar morphology. As shown in Figure 5a, the lamellar area
of the CC is larger compared to the NC, which is due to the different melting degrees of the
powder [34]. The nanostructured coatings exhibit a two-state distributed microstructure,
which consists of both fully melted lamellae and the partially melted structure of particles.
This is similar to the coatings reported in the literature [34]. Further, the CC’s surface
has more cracks due to tensile stress exceeding the material’s fracture strength during
solidification [35], as shown in Figure 5c. However, in the nanostructured alumina coatings,
partially melted zones can act as barriers for crack propagation but also cause greater
porosity, as shown in Figure 5d. This effect has been extensively reported in the APS
literature [36].
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Figure 6a,b depict the surface three-dimensional morphology of the CC and NC,
respectively. The root-mean-square heights (Rq) of the surfaces of the CC and NC are
9.984 µm and 18.347 µm. According to the literature, the surface roughness of a coating
is inversely proportional to the melting degree of the powder [37]. As a result, the nanos-
tructured coating exhibits a higher degree of surface roughness due to the lower melting
degree of the nanopowder.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 12 
 

greater porosity, as shown in Figure 5d. This effect has been extensively reported in the 

APS literature [36]. 

 

Figure 5. SEM images of (a,b) micro Al2O3 coating (CC) and (c,d) nano Al2O3 coating (NC). 

Figure 6a,b depict the surface three-dimensional morphology of the CC and NC, re-

spectively. The root-mean-square heights (Rq) of the surfaces of the CC and NC are 9.984 

μm and 18.347 μm. According to the literature, the surface roughness of a coating is in-

versely proportional to the melting degree of the powder [37]. As a result, the nanostruc-

tured coating exhibits a higher degree of surface roughness due to the lower melting de-

gree of the nanopowder. 

 

Figure 6. Surface morphology of (a) micro Al2O3 coating; (b) nano Al2O3 coating. 

The cross-sectional morphologies of the coatings are shown in Figure 7. The inter-

faces among the substrate, the NiCrCoAlY bonding layer, and the ceramic coating can be 

observed. The thickness of the bonding layer in both coatings is 70-120 μm, the thickness 

of the ceramic coating of the CC ranges from 287-342 μm (Figure 7a), and the thickness of 

the ceramic coating of the NC ranges from 285-317 μm (Figure 7c). The porosity of the 

coating was measured by MicroEYE 3000 software. The average porosity observed in the 

CC was 3.48% compared to 5.21% for the NC. 

Figure 6. Surface morphology of (a) micro Al2O3 coating; (b) nano Al2O3 coating.

The cross-sectional morphologies of the coatings are shown in Figure 7. The interfaces
among the substrate, the NiCrCoAlY bonding layer, and the ceramic coating can be ob-
served. The thickness of the bonding layer in both coatings is 70–120 µm, the thickness of
the ceramic coating of the CC ranges from 287–342 µm (Figure 7a), and the thickness of the
ceramic coating of the NC ranges from 285–317 µm (Figure 7c). The porosity of the coating
was measured by MicroEYE 3000 software. The average porosity observed in the CC was
3.48% compared to 5.21% for the NC.
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Figure 7b,d show high-magnification FESEM images of the pores of the plasma-
sprayed CC and NC, respectively. It can be observed that the pores of the CC show the typ-
ical lamellar structure of a plasma-sprayed coating (Figure 7b), whereas partially/unfused
nanoparticles can be seen in the pores of the NC with the fully melted lamellae bonded
together in a mesh (Figure 7d). The microhardness of the coatings was measured using
a Vicker’s micro hardness tester, with a load of 0.9807 N applied to the polished cross-
sections of the coatings for 15 s. The average microhardness values for the CC and NC
were 1079.7 HV and 1168.8 HV, respectively. The average micro hardness of the NC is
higher than the CC due to the following reasons: (1) At low loads, the microhardness of
the coatings depends largely on their phase composition rather than coarse pores, cracks,
etc. [38]. (2) According to the Hall-Petch theory, the increase in the hardness of an NC is
also related to its nanograin size [39].

Weibull statistical analysis was used to further analyze the hardness parameter, as
shown Figure 8 [40]. Figure 8a shows a single linear distribution of the fitted Weibull curve
for the CC, which is due to the essentially uniform coating organization and the small
variation in the hardness values. However, as shown Figure 8b, the Weibull curve fitted for
the NC consists of two lines with different slopes: section A—low hardness due to poor
interparticle bonding (cohesion); section B—high hardness due to the presence of unfused
particles with an α-Al2O3 phase. The difference in the hardness distribution of the coatings
is also verified by the microstructure; the hardness distribution of the conventional coating
reflects its micromorphology, which is basically composed of completely melted laminates,
while the hardness distribution of the nano-coating is related to the two-state distribution
of the microstructure.
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3.2. Thermal Control Property

Figure 9 shows the reflection spectra of the alumina coatings (NC and CC). The CC
has a reflectance coefficient of 70–75% within 417–1418 nm (Figure 9a). Its main absorption
boundary is located at 285 nm (Figure 9b). The reflectivity of the NC within 446–1586 nm is
more than 75% (Figure 9a). Its maximum absorption peak is located at 227 nm (Figure 9b).
The micron-alumina coating has a reflectance coefficient of 70–75% within 417–1418 nm.
Over the entire wavelength range, the solar absorptance (αs) values of the nanostructured
and conventional alumina coatings are 0.26 and 0.324. In the NIR band, this difference can
be caused by adsorption via gas. However, in the short-wavelength region (in the range
of 200–400 nm), the absorption difference is caused by the band gap of the material [9].
According to Planck’s law, i.e., λ ≥ hc/Eg, (h is Planck’s constant), for intrinsic absorption
to occur, the photonic energy must be equal to or greater than the band gab (Eg).
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(b) 200–400 nm.

As shown in Figure 10, the band gap corresponding to the maximum absorption peak
of the alumina coating was calculated by the Kubelka-Munk method. The band gap of
the CC near 285 nm is 3.71 eV (Figure 10A) and the maximum absorption peak of the NC
corresponds to a band gap of 5.12 eV (Figure 10B). The blue-shift phenomenon of the main
absorption peak in the NC is caused by the increase in the α-Al2O3 phase. Therefore, the
reflectance of the NC is significantly increased compared to the CC within 227–285 nm.
This result is consistent with previous reports in the literature [30].
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In addition, differences in the microscopic morphology of the coating can also cause
differences in spectral reflectance. When solar radiation is incident on the surface of an
alumina coating, unlike metal coatings, wherein reflection, absorption, and emission occur
only at the thin interface, alumina coatings have low absorption and high transmission at
the interface [41,42]. Therefore, the reflectivity of alumina coatings depends on the volume
of absorption and the scattering properties of the radiation.

As shown in Figure 11, plasma-sprayed nano-alumina coatings typically have a het-
erogeneous, usually porous, microstructure [29]. When radiation enters the interior of the
coating, volume scattering often occurs due to the optical index gaps between the air in
the pores and the matrix, which results in the modification of the direction of radiation
propagation around the point of heterogeneity and multiple reflections at the interface
between heterogeneity and the matrix medium. Some radiation scatters and finally returns
to the surface, which can contribute to the reflectivity of the coating. In fact, the intensity
and direction of scattered radiation is determined by the inhomogeneity of the medium’s
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density and the internal particle scale. The internal scattering of a coating is enhanced with
the increase in porosity. In addition, the nanostructured coating has a large number of
nanoparticles, as shown in Figure 7d, and backscattering occurs when radiation encounters
these particles, which also improves the reflection performance of the coating. Therefore,
the NC shows high reflective performance and its degree of volume scattering is enhanced
due to the presence of numerous pores and nanoparticles inside.
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Figure 11. Schematic diagram of radiation in nano-alumina coating.

Figure 12 shows the temperature dependence of the emissivity (ε) of the CC and NC in
1–22 µm wavebands. From the figure, the NC and CC have higher emissivity values than
some forms of PEO and anodizing coatings applied to aluminum alloys [14,43], ranging
from 0.863 to 0.870 and 0.875 to 0.883, respectively, at different temperatures. According to
Kirchhoff’s law, for an opaque object under thermal equilibrium conditions: ε = α = 1 − ρ
(α and ρ are the absorption rate and reflectance of the sample with respect to the projected
energy, respectively) [44]. Therefore, the emissivity of the NC is reduced due to its high-
reflectance property. In addition, due to the excellent thermal stability of alumina, the
plasma-sprayed alumina coating’s emissivity is less affected by thermal effects, and the
variation is less than 0.01 in the range of 300–393 K.
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4. Conclusions

In this work, nanostructured and conventional alumina coatings were successfully
deposited on an aluminum alloy substrate (2A12) using the plasma-spraying technique. The
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hardness and thermal control properties of the coatings prepared from different alumina
powders were compared and analyzed. Compared to the CC, the hardness of the NC
increased from 1079.7 Hv to 1168.8 Hv, solar absorptance decreased from 0.324 to 0.26
within 200–2500 nm, and the emissivity difference was about 0.012 within 300–393 K.

These results are related to the two-state distribution in the nano-alumina coating,
which can be explained as follows. (1) The microstructure of the two-state distribution
causes the coating to produce more α-Al2O3 phases, while the increase in the content of
α-Al2O3 causes the absorption boundary to shift to a short wavelength direction such that
the absorption of radiation by the coating is reduced. (2) The bimodal microstructure leads
to the existence of a large number of pores in the coating, and the nanoparticles promote the
volume reflection of radiation, which improves the reflective performance of the coating.
The results of this study demonstrate the potential of the plasma-spraying process towards
fabrication of thermal control coatings.
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