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Abstract: Artistic style transfer aims to use a style image and a content image to synthesize a target
image that retains the same artistic expression as the style image while preserving the basic content
of the content image. Many recently proposed style transfer methods have a common problem;
that is, they simply transfer the texture and color of the style image to the global structure of the
content image. As a result, the content image has a local structure that is not similar to the local
structure of the style image. In this paper, we present an effective method that can be used to
transfer style patterns while fusing the local style structure to the local content structure. In our
method, different levels of coarse stylized features are first reconstructed at low resolution using a
coarse network, in which style color distribution is roughly transferred, and the content structure
is combined with the style structure. Then, the reconstructed features and the content features are
adopted to synthesize high-quality structure-aware stylized images with high resolution using a fine
network with three structural selective fusion (SSF) modules. The effectiveness of our method is
demonstrated through the generation of appealing high-quality stylization results and a comparison
with some state-of-the-art style transfer methods.

Keywords: image processing; nonphotorealistic rendering (NPR); style transfer; structure-aware;
deep learning

1. Introduction

Artistic style transfer is an attractive image-processing technique that is used to
generate a new image that preserves the structure of a content image but carries the pattern
of a style image. Recently, the seminal image-optimization method proposed by Gatys
et al. [1] was used to achieve style transfer by adopting the correlation of features extracted
from a pretrained deep neural network and the iterative optimization process. Like the
method presented by Gatys et al. [1], style transfer by relaxed optimal transport and self-
similarity (STROTSS) [2] is also an image-optimization style transfer method; this method
has achieved superior stylization results by adopting the relaxed earth mover’s distance
(rEMD) loss in a multiscale optimization process. However, the expensive computational
cost of these image-optimization methods restricts their use in practice applications in
industry. To speed up the optimization procedure, Johnson et al. [3] and Ulyanov et al. [4]
proposed model-optimization style transfer methods. They train a feed-forward neural
network that can be used to synthesize images with a single given style image in real time.
Both adaptive instance normalization (AdaIN) [5] and whitening and coloring transforms
(WCTs) [6] are model-optimization methods but are also arbitrary style transfer methods,
in which style patterns of arbitrary style images are transferred by adopting some feature
transforms. After reviewing these methods, we have found that although local style texture
and content structures can generally be combined, some key structures of the style image
are not accurately learned. For example, the color blocks and brushstrokes that constitute
the main objects in style images are not transferred very well. Meanwhile, in some cases,
these methods produce distorted objects and incongruous artistic effects in stylized images.
Therefore, our main task is to transfer the local structure of the style image to the content
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image and adopt a coarse-to-fine strategy to enhance the artistic details of the stylization
results.

We propose a novel artistic style transfer network for fusing an essential style structure
to a content structure and synthesizing a structure-aware stylized image. In our model,
a coarse network is designed to obtain reconstructed coarse stylized features in the first
stage. Because the coarse network works only at a low resolution, the coarse stylized
features can discard the trivial structure details of the content image and combine the global
content structure with the style patterns. Then, the task of a fine network is to adopt these
reconstructed coarse stylized features obtained at a low resolution and the original content
image with a high resolution to synthesize the final high-resolution stylized image in the
second stage. By adopting some SSF modules to fuse the coarse stylized features into the
fine network, the final high-resolution stylized images can selectively integrate structural
information at different scales. Our main contributions are as follows:

1. We introduce a novel style transfer model that can be used to synthesize appealing
structure-aware stylization results. This model consists of a coarse network and a fine
network. The former roughly transfers style patterns that include holistic structural
information and color distribution information, and then the latter enhances the
details of the style patterns by fusing multiscale features.

2. We propose a SSF module for fusing the reconstructed features to the content features
in a fine network. This module can help the fine network select essential structural
information for feature fusion on the basis of the channel attention mechanism. As a
result, the color distribution of the style images can be accurately transferred.

3. It is demonstrated through experiments that our method can be used to synthesize
high-quality stylizations, where the main structures of the content image are preserved
and the local structures of the style image are transferred. These stylization results
can maintain the same artistic expression as style images by discarding trivial content
details and injecting key local style structures.

The rest of the paper Is organized as follows. In Section 2, the works related to
different style transfer methods are reviewed. In Section 3, the pipeline of our framework
and the details of our two networks are described. Moreover, the different loss functions
are introduced. Different experimental results are shown and discussed in Section 4. The
conclusion is summarized in Section 5.

2. Related Work
2.1. Style Transfer

The goal of style transfer is to combine the texture of a style image with the structure
of a content image. Gatys et al. [1] proposed a seminal iterative method that was based on a
pretrained visual geometry group (VGG) network [7]. In this method, the content structure
and the style texture can be used to synthesize a new image, but it is expensive, and a
stylized image is generated only after the training process has been completed. Inspired
by Gatys et al. [1], Johnson et al. [3] proposed a feed-forward method, which can be used
to synthesize arbitrary images with a fixed style by an encoder-decoder architecture; the
time and computation costs are reduced when using this method. Numerous methods
have been developed to speed up the style transfer process [4,8] and improve the visual
quality [9–11]. Sanakoyeu et al. [12] also improved the stylization quality by proposing
a style-aware loss, but they trained a network with a set of style images instead of a
style image. This approach aimed to combine many style images created by one artist to
synthesize a stylized image with the overall style of this artist. The dual style generative
adversarial network (DualStyleGAN) [13] is proposed to characterize the content and style
of a portrait by retaining an intrinsic style path to control the style of the original domain
and an extrinsic path to model the style of the target extended domain. Peking Opera face
makeup (POFMakeup) [14] also is a portrait style transfer method that can transfer the
style of a portrait with a Peking Opera face to a target portrait. Lin et al. [15] combined
a universal style transfer method with image fusion and color enhancement methods to
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solve the problems of the color scheme, the strength of style strokes, and the adjustment of
image contrast.

To simultaneously handle multiple styles, [16] proposed a flexible conditional instance
normalization approach embedded in style transfer networks to learn multiple styles,
and [17] achieved multistyle generation in a generative network architecture with a learn-
able inspiration layer. Ye et al. [18] adopted a mechanism and instance segmentation to
achieve a regional multistyle style transfer model, which can solve the problem of unnatural
connections between regions. Alexandru et al. [19] combined various existing style transfer
frameworks to propose a novel framework that can generate intriguing artistic stylization
results by performing geometric deformation and using different styles from multiple
artists.

In AdaIN [5], adaptive instance normalization is implemented to train a network with
various styles, providing the ability to transfer arbitrary styles after the training process. In
WCT [6], the whitening and coloring transforms are adopted to synthesize arbitrary styles
with a pretrained VGG network and a series of pretrained image restructuring decoders.
Based on WCT, Wang et al. [20] achieved the diversity of style transfer by adopting a deep
feature perturbation (DFP) operation while preserving the quality of stylization results, and
Wang et al. [21] synthesized ultraresolution stylized images and reduced the convolutional
filters by using a knowledge-distillation method. A style-attentional network (SANet) [22]
is also an arbitrary style transfer method that can be used to efficiently generate stylized
images by injecting local style patterns into content features on the basis of using the style
attention mechanism.

2.2. Style Transfer Based on Multiscale Learning

Recently, some style transfer methods have been used to transfer style patterns on the
basis of multiscale learning. Multiscale holistic style transfer is achieved in Avatar-Net [23]
on the basis of the use of an hourglass with multiple skip connections and a style decorator.
STROTSS [2] is an image-optimization method that adopts multiscale learning to update
the content image and generate high-quality stylized images. Yang et al. [24] proposed
a novel video style transfer framework that can render high-quality artistic portraits on
the basis of the multiscale content features and preserve the frame details. A Laplacian
pyramid style network (LapStyle) [25] also exhibits high visual quality and is based on
a drafting network and a revision network. First, the former transfers the global style
patterns, and then, the latter enhances local style details. However, too many content
structure details are preserved in these methods. Key local style structures are not fused
into stylized images in any of these methods. In contrast, our method transfers global style
patterns at low resolution using a coarse network, which needs to be trained only once
to reconstruct coarse stylized features. Our fine network enhances local style details with
multiscale features from the coarse network and the high-resolution content image. As a
result, our method can discard trivial local content structures and synthesize high-quality
structure-aware stylized images by using a coarse-to-fine process. The differences between
our method and the methods in previous studies are shown in Table 1.

Table 1. The differences between our method and those in previous studies.

Methods Image-Optimization Model-Optimization Single Style Multiple Style Arbitrary Style

Ours
√ √

[1,2]
√ √

[3,4,8–15,24,25]
√ √

[16–19]
√ √

[5,6,20–23]
√ √
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3. Proposed Method
3.1. Framework Overview

Inspired by the painting process of artists, in which the coarse structure and color
distribution are first constructed and then fine details are added, our framework employs
a coarse network and a fine network to simulate the coarse-to-fine process. As shown
in Figure 1, given a content image xc ∈ R3×hc×wc and a style image xs ∈ R3×hs×ws , our
model eventually generates a stylized image xcs ∈ R3×hcs×wcs . In the first stage, the coarse
network takes xc and xs as inputs, where xc and xs are the results of downsampling xc and

xs by 2, respectively. Then three restructured coarse stylized features f
(i)
r ∈ Rc(i)r ×h(i)r ×w(i)

r

(i = 1, 2, 3) are generated by the coarse network, where c(i)r , h(i)r , and w(i)
r are the number of

channels, height, and width of the i restructured feature, respectively. In the second stage,

the fine network takes xc and f
(i)
r as inputs and then generates the final stylized image xcs

by adopting SSF modules for feature fusion.
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Figure 1. Overview of our framework.

As shown in Figure 2, different stylized images are generated by our method. In
Figure 2b, we adopt the last restructured coarse stylized features only to directly restructure
the coarse stylized image by the coarse network in the first stage. The coarse stylized image
discards the unnecessary local structures of the content image and transfers the global
color distribution of the style image. Then, the fine network is employed to encode the
high-resolution content image to obtain the content features, and these content features
and three coarse reconstructed features from the coarse network are decoded to generate
the high-quality structure-aware stylized image in the second stage. As shown in Figure 2c,
the final appealing stylized image is synthesized by adopting our full model with a coarse
network and a fine network. Moreover, to more clearly show the local style structure of
the final stylized image, we use the color control method [26] to keep the color of the final
stylized image consistent with the color of the original content image. As illustrated in
Figure 2d, although the color distribution of the stylized image remains the same as that
of the content image, the local structure of the stylized image is similar to that of the style
image.
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Figure 2. Different stylization results from the same content image and style image: (a) the content
image is a cat, and the style image is Starry Night by Vincent van Gogh; (b) this stylized image is
generated directly by our coarse network in the first stage; (c) the final stylized image is generated by
our full model in the second stage; (d) this stylized image maintains the same color as the content
image using color control.

3.2. Coarse Network

One problem with recent style transfer methods is that too many structural details of
the content image are retained during the transfer of style patterns. In the stylized image,
there are some small structures from the content image that do not change; they simply
transfer the color and texture of the style image. These local structures that do not exist in
the style image appear in the stylized image, resulting in a stylized image that fails to show
the spirit of the artistic expression of the style image. The reason is that these methods
directly extract features from high-resolution images and cannot decide which details to
discard from the content image. Contrary to previous work, our coarse network transfers
rough style patterns at low resolution. As a result, there is a larger receptive field to learn
low-frequency information to determine the overall structure of the image. Then, some
unnecessary high-frequency information is ignored during training. As shown in Figure 3,
the coarse network can transfer more details that are unnecessary in the coarse stylized
image at high resolution. At low resolution, the coarse network can discard some trivial
details of the structure and keep the objects smooth in the stylized image.
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3.2.1. WCT Module

Inspired by WCT [6], our coarse network adopts whitening and coloring transforms
to transfer coarse style patterns at low resolution. The whitening transform can remove
inessential information related to style while preserving the global structure of the content.
Then, the coloring transform can capture the salient visual style and fuse some style
structures to content structures. WCT is a multilevel stylization process that uses different
rectified linear unit (ReLU) layers of VGG features ReLU_X_1 (X = 1, 2, . . . , 5) and transfers
style patterns in a coarse-to-fine pipeline. The higher-layer features are adopted to capture
complex local structures, while lower-layer features carry low-level color and texture
information. The difference between our coarse network and WCT is that we use only a
single-level whitening and coloring transform for stylization. Moreover, we do not directly
reconstruct the stylized features to generate an image; however, we utilize the reconstructed
features at different layers during reconstruction. As a result, our coarse network, which
has the ability to capture the multilevel information by reconstructing the coarse stylized
features at different levels, can save computing resources.

3.2.2. Architecture of Coarse Network

The architecture of coarse network, which is shown in Figure 1, includes an encoder,
a WCT module, and a decoder. (1) The encoder is a pretrained VGG-19 network, which
is fixed during training. Given xc and xs, the VGG encoder extracts the content feature f c
and the style feature f s at ReLU_4_1. (2) Then, we apply a WCT module for whitening and
coloring transformation. As shown in Figure 4a, the whitening transform is adopted to
linearly transform f c to obtain f

′
c. Next, the coloring transform is carried out to obtain f cs

by using f
′
c and f s. (3) Finally, we adopt a reconstruction decoder to reconstruct the coarse

stylized feature f cs. The decoder is designed to be symmetrical to the VGG-19 network,
where the nearest neighbor upsampling layer is used for enlarging the feature map. We
take f cs as input for reconstruction and then generate these restructured stylized features

f
(i)
r as outputs. In this reconstruction decoder, these outputs are output before the second

upsampling layer, before the third upsampling layer, and after the last convolution layer.

These f
(i)
r will become a part of the input of the fine network.
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3.3. Fine Network

The fine network aims to synthesize high-resolution stylized images by fusing the
reconstructed coarse stylized features to the reconstructed content features. The recon-
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structed content features are from the high-resolution content image and contains the global
semantic information and local detail information. Contrary to the reconstructed content
features at high resolution, the reconstructed stylized features generated from the coarse
network preserve only the main content structure while blending some local structural style
information. By fusing multiscale information, the fine network can pay more attention
to the holistic structure of the content and ignore some trivial details by using our SSF
modules. Then, some significant details can be added to the structure, and appealing
artistic effects in the stylized image can be enhanced. In addition, fusing the reconstructed
coarse stylized information can greatly reduce the time cost of the training process of the
fine network, and the desired stylization results can be achieved at an earlier point in time.

3.3.1. SSF Module

The structural selective fusion (SSF) module is designed to fuse the reconstructed
coarse stylized features from the coarse network to the reconstructed content features in
the decoder of the fine network. Inspired by the attention mechanism [27,28], we employ a
weight matrix to select the key structural information of the reconstructed content features,
which is learned by adopting the merged features. The merged features are obtained by
concatenating reconstructed coarse stylized features and the reconstructed content features.
The matrix can help the SSF module obtain the selective features that focus on meaningful
structural information, and the selective feature is one part of the output of the SSF module.
Another part of the output is the refined merged features, which include different scale
information, such as some crucial local textures or global structures.

The architecture of the SSF module is shown in Figure 4b. First, we concatenate the

reconstructed coarse stylized features f
(i)
r and the reconstructed content features fcs as

input fcsr ∈ R(ccs+cr)×wr×hr . The reconstructed content features fcs are the output of the
convolution layer in the decoder of the fine network (except that the first SSF module
uses the content features fc from the encoder of the fine network as fcs). We adopt an
average-pooling operation to aggregate the spatial information of fcsr to generate the input
of the multilayer perceptron, which is adopted to produce an attention map Mcs ∈ Rccs×1×1

as the weight matrix. In summary, the attention map is calculated as follows:

Mcs( fcsr) = σ(MLP(AvgPool( fcsr))) (1)

where σ denotes the sigmoid function. Then the selective feature f ′cs is calculated as follows:

f ′cs = Mcs( fcsr)⊗ fcs (2)

where ⊗ denotes element-wise multiplication. Meanwhile, fcsr is fed into a convolutional
layer to produce a refined merged feature f ′csr ∈ Rcr×wr×hr . Eventually, the SSF module gen-
erates the final output fss f ∈ R(ccs+cr)×wr×hr as the fused feature by directly concatenating
f ′cs and f ′csr.

3.3.2. Architecture of Fine Network

As shown in Figure 1, fine network is designed as a flexible encoder-decoder archi-
tecture, with an encoder, a series of residual blocks, and a decoder. The encoder contains
a convolutional layer with a stride of 1 and three convolutional layers with strides of 2,
followed by several residual blocks. The decoder contains three upsampling layers, three
convolutional layers with strides of 1, and three SSF modules. We use an SSF module
before each upsampling layer. Given the content image xc as the input of fine network, the
encoder and several residual blocks generate the content feature fc. Then, SSF modules

generate the fused features fss f by taking f
(i)
r and fcs as inputs, where fcs is the output of

these convolution layers in the decoder (except the first SSF module, which takes fc as fcs).
These fused features fss f are fed into an upsampling layer and a convolution layer. Finally,
the decoder generates the final stylized image xcs after the last convolution layer.
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3.4. Loss Function

Our coarse network needs to train only once, and it is fixed during the training of the
fine network. Compared with WCT [6], we train only one reconstruction decoder network
to reconstruct the coarse stylized feature. Our coarse network can reconstruct the stylized
features at three levels or directly generate a coarse stylized image by taking advantage of
the reconstruction decoder. Following WCT, we adopt pixel reconstruction and perceptual
loss [3] to train our decoder for image reconstruction:

lre =
∣∣∣∣∣∣Io − Ii

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣Φ(Io)−Φ(Ii)

∣∣∣∣∣∣22 (3)

where Ii and Io are the input image and output image, respectively, and Φ is the VGG
encoder that extracts features at ReLU_X_1 (X = 1, 2, 3, 4). In addition, λ is the weight to
balance the two losses.

The fine network is optimized with content and style loss during training. As shown
in Figure 5, we keep a single xs and a set of xc from a content dataset, then xcs is a stylized
image generated by the fine network. For xs, xc, and xcs, we can use a pretrained VGG-19
encoder to extract their features F(t)

c ∈ Rct×ht×wt , F(t)
s ∈ Rct×ht×wt , and F(t)

cs ∈ Rct×ht×wt ,
where t denotes the features extracted at ReLU_t (t = 1_1, 1_2, 2_1, 2_2, 3_1, 3_3, 4_1).
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For content loss, we adopt the commonly used perceptual loss between F(t)
c and F(t)

cs
proposed in [3]. The perceptual loss can measure high-level perceptual and semantic
differences between images, and it is defined as follows:

lp =
1

cthtwt

∣∣∣∣∣∣F(t)
c − F(t)

cs

∣∣∣∣∣∣2
2

(4)

For style loss, we adopt three style losses. The first and most significant style loss is
the relaxed earth mover’s distance (rEMD) loss [2], which helps the fine network generate
visual effects with minimum distortion to the layout of the content image. This loss plays a
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key role in migrating the structural forms of the style image to the target image. The rEMD
loss between F(t)

s and F(t)
cs can be calculated as follows:

lr = max

(
1

htwt

htwt

∑
i=1

min
j

Cij,
1

htwt

htwt

∑
j=1

min
i

Cij

)
(5)

where C is the cost matrix, which can be calculated as the cosine distance between F(t)
s and

F(t)
cs :

Cij = Dcos

(
F(t)

s,i , F(t)
cs,j

)
= 1−

F(t)
s,i · F

(t)
cs,j∣∣∣∣∣∣F(t)

s,i

∣∣∣∣∣∣∣∣∣∣∣∣F(t)
cs,j

∣∣∣∣∣∣ (6)

The second style loss is the commonly used style reconstruction loss proposed by
Gatys et al. [1], which is the difference between the Gram matrices of F(t)

s and F(t)
cs :

lg =
∣∣∣∣∣∣G(F(t)

s

)
, G
(

F(t)
cs

)∣∣∣∣∣∣22 (7)

where G denotes the calculation of the Gram matrix of the feature vectors. Finally, we use
the mean-variance loss as the third style loss, which is similar to the style reconstruction
loss. We can use this type of loss to reduce unnecessary visual effects in the stylized image
and keep the magnitude of the stylized feature the same as that of the style feature:

lm =
∣∣∣∣∣∣µ(F(t)

s

)
− µ

(
F(t)

cs

)∣∣∣∣∣∣22+∣∣∣∣∣∣σ(F(t)
s

)
− σ

(
F(t)

cs

)∣∣∣∣∣∣22 (8)

where µ and σ denote the mean and covariance of the feature vectors, respectively.
The overall optimization objective is defined as follows:

L = αlp + λ1lr + λ2lg + λ3lm (9)

where α, λ1, λ2, and λ3 are weight terms. By adjusting α, we can control the degree of
stylization. Specifically, lp and lm both work on ReLU_1_1, ReLU_2_1, ReLU_3_1, and
ReLU_4_1; then, lr works on ReLU_2_1, ReLU_3_1, and ReLU_4_1. Following Johnson
et al. [3], lg works on ReLU_1_2, ReLU_2_2, and ReLU_3_3.

4. Experimental Results and Analysis
4.1. Experimental Dataset and Implementation Details

During training, we use the MS-COCO [29] dataset as the set of content images and
select some famous art paintings as style images. To show the experimental results of our
method, we also select some copyright-free images as content images, from Pexels.com.

In our experiment, the coarse network is trained on the MS-COCO dataset only once
for image reconstruction, and the weight λ in Equation (1) is set as 1. In the experiments,
we use the content images and the style image with a resolution of 512 × 512. Then these
images are downsampled by 2. Each image that is input into the coarse network has a
resolution of 256 × 256. During the training of the fine network, we use the Adam [30]
optimizer with a learning rate of 1 × 10−4, and the batch size is set as 1 because of the
limitation of the graphics processing unit (GPU) memory. To train a style, a training process
consists of 15,000 iterations. The loss weight terms α, λ1, λ2, and λ3 are set to 1, 20, 1000,
and 5, respectively. The experimental environment configuration is shown in Table 2.



Appl. Sci. 2023, 13, 952 10 of 23

Table 2. Experimental environment configuration.

Designation Information

Operating system Windows 10

System configuration CPU: AMD Ryzen 9 5900X

GPU: NVIDIA GeForce RTX 3090

Software PyCharm 2021.3.1 (Community Edition)

Python 3.8.12

Python library Cuda 11.7

Pytorch 1.8

Torchvision 0.9

Numpy 1.21
Matplotlib 3.5.1

4.2. Qualitative Comparisons with Methods in Prior Works

Inspired by the recent WCT [6] and STROTSS [2] methods, our method adopts the
whiting and coloring transformation proposed in WCT and the rEMD loss proposed in
STROTSS. In Figure 6, we compare our method with WCT and STROTSS. WCT can transfer
the color distribution and simple texture of arbitrary style images; however, some context
local structure is discarded, resulting in messy and disordered stylized images (e.g., rows 1,
2, and 3). STROTSS is an image-optimization style transfer method that transfers the visual
attributes from the style image to the content image with minimum semantic distortion.
Nevertheless, too many structural details are preserved, and the overall palette of the style
image is not accurately transferred (e.g., rows 2 and 3). In contrast to these two methods,
our method can transfer the main structure and discard some trivial details of the content
image. Moreover, some notable local structures of the style image, such as brushstrokes,
can be fused into the global structure of the content image, and the overall palette of the
stylized image remains the same as that of the style image. For example, in the second
and fourth rows, the color blocks of mountains and the brushstrokes of vegetation in our
stylized images are explicitly similar to those in the style images. Our model can learn
some key style structures while ignoring some unimportant content details.
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images are generated by WCT; (e) The stylized images are generated by STROTSS.

As shown in Figure 7, we compare our method with other state-of-the-art style transfer
methods. Gatys et al. [1] proposed the original optimization-based style transfer algorithm,
which can transfer the overall style texture and the color distribution. However, some
incongruous textures appear in the stylized images, leading to the stylizations’ looking
unnatural (e.g., rows 4, 5, and 6). Similar to our method, the method proposed by Johnson
et al. [3] is also a feed-forward method. It can combine the local color and texture of style
images with the structure of the content but often maintains too many content structures
and may play a role in shifting the color histogram only in some cases (e.g., rows 1, 2,
and 3). AdaIN [5] and SANet [22] are both arbitrary style transfer models, which mainly
transfer simple style patterns. AdaIN often fails to transfer the color distribution of style
images, and SANet has the severe problem of messy texture and disordered structure (e.g.,
rows 4, 5, and 6). All of the methods mentioned above maintain some unnecessary small
local structures of the content images, and the essential local structures of style images
are not integrated into the target image. In contrast to these methods, our model can
simultaneously transfer the style color distribution accurately and combine the local style
structure with the global content structure. For example, in the fourth row, the image of the
rabbits generated by our method looks more harmonious and natural in the stylized image.



Appl. Sci. 2023, 13, 952 12 of 23

It seems as though the style image consists of ink dots; the same artistic expression can be
exhibited by our method.
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4.3. Quantitative Comparisons with Methods in Prior Works

In the experiment of quantitative comparisons, we use the learned perceptual image
patch similarity (LPIPS) proposed in [31] and the structural similarity index measurement
(SSIM) proposed in [32] to compute the difference in style structure between the stylized
image and the style image. In each method, 1500 pairs of stylized and style images that
include 10 styles are used to compute the average distance. As shown in Table 3, lower
values indicate the higher similarity of human perceptual judgments when we use LPIPS
as the metric, and higher values indicate the higher structural similarity when we use SSIM
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as the metric. For both evaluation metrics, our proposed method achieves the highest
similarity in style structure. The experimental results show that our method can synthesize
structure-aware stylized images that have a higher structural similarity to the style images.

Table 3. Quantitative comparisons of LPIPS and SSIM between our method and six state-of-the-art
methods.

Method Our WCT
[6]

STROTSS
[2]

Gatys et al.
[1]

Johnson et al.
[3]

AdaIN
[5]

SANet
[22]

LPIPS 0.6287 0.6393 0.6516 0.6477 0.6452 0.6445 0.6408

SSIM 0.2135 0.1975 0.2108 0.2022 0.2068 0.1933 0.1893

4.4. Comparisons of Time Efficiency with Methods in Prior Works

We further compare the time efficiency of our proposed method with other state-
of-art methods. In each method, we synthesize 100 stylized images with a resolution of
512 × 512. All experiments are conducted on the same environment configuration. As
shown in Table 4, Johnson et al. [3] achieve the highest time efficiency because they use
only a simple encoder-decoder architecture to generate stylized images. Like [3], AdaIN [5]
and SANet [22] also use the simple encoder-decoder network to generate stylized images.
However, they apply some feature transform modules in their networks to integrate content
features and style features. As a result, their time efficiencies are lower than [3] but are
still satisfactory. Different from these three methods that work at the same image scale,
our model includes two networks and works in two stages. Although our model can
capture richer multiscale information and synthesize higher-quality stylized images, the
time efficiency of our method is only slightly lower than that of AdaIN and SANet. We
traded a small increase in time cost for a promising improvement in the quality of stylized
images. WCT [6] has low time efficiency because it uses five encoders and decoders to
generate a stylized image. The time efficiencies of STROTSS [2] and Gatys et al. [1] are far
lower than other methods because they are image-optimization methods that generate only
one stylized image after a training process.

Table 4. Running time comparison between our method and six state-of-the-art methods (in seconds).

Method Our WCT
[6]

STROTSS
[2]

Gatys et al.
[1]

Johnson
et al. [3]

AdaIN
[5]

SANet
[22]

Time (s) 0.829 2.816 40.157 20.418 0.075 0.105 0.291

4.5. User Study

The user study is conducted on social media, and all participants are anonymous
and voluntary. We choose 10 content images and 10 style images to synthesize 10 stylized
images in each method and then ask subjects to select their favorite one. By the end of
this user study, we had collected 341 votes from these anonymous participants. As shown
in Figure 8, we show the percentage of votes for each method. The result shows that the
stylization results obtained by our method are more appealing than those of other methods.
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4.6. Ablation Study on Loss Function

We conduct ablation experiments to verify the effectiveness of each loss term used
for training our model, and the results are shown in Figure 9. (1) Without perceptual
loss lp, too many structures of the content image are discarded; for example, the basic
structure of the dog disappears in the stylized image. (2) Without Gram matrix loss lg, the
stylization result is acceptable because mean-variance loss lm has a similar effect to lg, but
the color distribution of the stylized image is slightly different from that of the style image.
Moreover, the textures of the dog in the stylized image are increasingly denser and smaller.
(3) Without rEMD loss lr, the texture distribution is chaotic, and some visual artifacts occur
in the stylized image. (4) Without mean-variance loss lm, the global color distribution of
the stylized image is not exactly the same as that of the style image; for example, the dark
color of the dog in the stylized image is more similar to that in the content image. This dark
black color is completely absent in the style image.
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4.7. Effectiveness of Coarse Network

During training, we compare our full model with the model without the coarse
network. As shown in Figure 10, our full model is trained faster than the model without the
coarse network. The preliminary stylization result can be obtained with fewer iterations.
Moreover, the stylized images of the comparison during the training phase are shown in
Figure 11. At 3000 iterations, our full model can generate a stylized image with a basic
structure, while the model without the coarse network generates a completely unstructured
image. At 10,000 iterations, the stylization result of our full model is substantially acceptable.
However, the stylized result of the model without the coarse network is less than satisfactory
because the main structure has not been generated. At 30,000 iterations, the model without
the coarse network finally synthesizes the final stylized image, but some messy textures
and unnatural structures appear in the stylized image. Compared with this compromised
stylized result, our full model can generate an enhanced promising stylized result with
more-refined details, such as the brushstrokes of the cat’s fur and eyes at 30,000 iterations,
which are more delicate and finer than those at 10,000 iterations.
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4.8. Effectiveness of Fine Network

As shown in Figure 12, we demonstrate the effectiveness of the fine network. Without
the fine network, the coarse network can transfer the color and texture of style images, but
the local details and global structure are worse than when our full model is utilized. The
stylized image generated directly by the coarse network resembles an unfinished work in
progress.
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4.9. Effectiveness of the SSF Modules

We compare two feature fusion methods through some experiments. In the first
method, the reconstructed coarse stylized features from the coarse network are fused to the
reconstructed content features in the fine network on the basis of our SSF modules. In the
second method, we directly concatenate these two features for feature fusion. As Figure 13
shows, the stylization results that are based on the second method are transferred to the
wrong color distribution in some regions. According to the first method, our model can
accurately transfer the color distribution, and more-natural textures in the stylized images
can be generated by selecting more-critical information.
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4.10. Additional Experiments

In Figure 14, we zoom in on some details in style images, content images, and stylized
images. The local structures of these style images are transferred to the content image,
and the object of the stylized images looks like a reasonable combination that is composed
of the style structures rather than a simple mixture of the content structure and the style
texture.
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As shown in Figure 15, we can control the stylization degree by adjusting the weight
term α in the training phase. These experiments demonstrate that the main content structure
can be preserved even though the stylization degree is large. Some local style structures,
such as lines or color blocks, can be fused to the global content structure.
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Following Gatys et al. [26], we incorporate color control and spatial control into our
method. In Figure 16b, the color distribution and the local structure of the stylized image
are consistent with those of the style image. Then we use color control to make the stylized
image preserve the global color of the content image. In Figure 16c, although the color is
similar to the content image, the local structure and texture are the same as those of the
style image. In Figure 17, we use spatial control to transfer different regions of the content
image to different styles. The stylization result is appealing as the local style structures and
color distribution are greatly maintained. Both experiments demonstrate that our model
can synthesize high-quality structure-aware stylized images by fusing key local structures
from the style image to the main content structure while discarding some trivial details
from the content image.
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5. Conclusions

The conclusions are summarized as follows:

1. We proposed a novel feed-forward style transfer algorithm that fuses the local style
structure into the global content structure. Different from most style transfer methods
that work at the same scale, our model can integrate richer information from features
from different scales and then synthesize high-quality structure-aware stylized images.
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2. We first proposed a coarse network to generate reconstructed coarse stylized features
at low resolution, which can capture the main structure of the content image and
transfer the holistic color distribution of the style image. Then, we proposed a fine
network to enhance local style patterns and three SSF modules to selectively fuse the
reconstructed stylized features to reconstructed content features at different levels.

3. Through comparative experiments, it was demonstrated that our method was effective
in synthesizing appealing high-quality stylized images, and these stylization results
outperformed the results generated by current state-of-the-art style transfer methods.
The experimental results also demonstrated the effectiveness of the coarse network,
the fine network, and the SSF module.

Although the high-quality stylization results can be synthesized by our method, our
model generated the stylized images with a single style only after a training process. In
future studies, we will achieve a novel arbitrary style transfer framework that is based on
our full model in this paper. Appealing high-quality structure-aware stylized images with
an arbitrary style can be generated by this framework after a training process. In addition,
we will try to use more feature transform methods to replace the whitening and coloring
transforms for achieving higher running time efficiency.
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Abbreviations

SSF Structural selective fusion
NPR Nonphotorealistic rendering
STROTSS Style transfer by relaxed optimal transport and self-similarity
rEMD Relaxed earth mover’s distance
AdaIN Adaptive instance normalization
WCT Whitening and coloring transforms
VGG Visual geometry group
DualStyleGAN Dual style generative adversarial network
POFMakeup Peking Opera face makeup
SANet Style-attentional network
LapStyle Laplacian pyramid style network
ReLU Rectified linear unit
GPU Graphics processing unit
LPIPS Learned perceptual image patch similarity
SSIM Structural similarity index measurement
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Symbol

xc Content image
xs Style image
xcs Stylized image
xc The result of downsampling xc by 2
xs The result of downsampling xs by 2

f
(i)
r Restructured coarse stylized features

c(i)r Channels of f
(i)
r

h(i)r Height of f
(i)
r

w(i)
r Width of f

(i)
r

f c Content feature extracted from VGG network
f s Style feature extracted from VGG network
f
′
c The result of linearly transforming f c

f cs Stylized feature generated by WCT module
fcs Reconstructed content features
fcsr The input of SSF module
Mcs Attention map of fcsr
f ′cs The result of refining fcs
f ′csr The result of refining fcsr
fss f The output of SSF module
lre Reconstruction loss
Ii Input image
Io Output image
Φ VGG encoder that extracts features at ReLU_X_1
λ Weight term of lre

F(t)
c Content feature extracted at ReLU_t

F(t)
s Style feature extracted at ReLU_t

F(t)
cs Stylized feature extracted at ReLU_t

lp Perceptual loss
lr Relaxed earth mover’s distance (rEMD) loss
C Cost matrix
Dcos Cosine distance
lg Gram matrix loss
G Calculation of the Gram matrix
lm Mean-variance loss
µ Mean
σ Covariance
L Overall optimization objective
α Weight term of L
λ1 Weight term of L
λ2 Weight term of L
λ3 Weight term of L

References
1. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 2414–2423. [CrossRef]
2. Kolkin, N.; Salavon, J.; Shakhnarovich, G. Style Transfer by Relaxed Optimal Transport and Self-Similarity. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp.
10043–10052. [CrossRef]

3. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the
Computer Vision—ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham,
Switzerland, 2016; pp. 694–711. [CrossRef]

4. Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.
In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016. [CrossRef]

http://doi.org/10.1109/CVPR.2016.265
http://doi.org/10.1109/CVPR.2019.01029
http://doi.org/10.1007/978-3-319-46475-6_43
http://doi.org/10.48550/arXiv.1603.03417


Appl. Sci. 2023, 13, 952 22 of 23

5. Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. In Proceedings of the 16th
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1510–1519. [CrossRef]

6. Li, Y.J.; Fang, C.; Yang, J.M.; Wang, Z.W.; Lu, X.; Yang, M.H. Universal Style Transfer via Feature Transforms. In Proceedings of
the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014. [CrossRef]
8. Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In Proceedings of

the 14th European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, 8–16 October 2016; pp. 702–716. [CrossRef]
9. Li, C.; Wand, M. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp.
2479–2486. [CrossRef]

10. Wang, X.; Oxholm, G.; Zhang, D.; Wang, Y.F. Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast
Artistic Style Transfer. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 7178–7186. [CrossRef]

11. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward
Stylization and Texture Synthesis. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4105–4113. [CrossRef]

12. Sanakoyeu, A.; Kotovenko, D.; Lang, S.; Ommer, B. A Style-Aware Content Loss for Real-Time HD Style Transfer. In Proceedings
of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 715–731. [CrossRef]

13. Yang, S.; Jiang, L.M.; Liu, Z.W.; Loy, C.C. Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp.
7683–7692. [CrossRef]

14. Zhang, F.C.; Liang, X.M.; Sun, Y.Q.; Lin, M.G.; Xiang, J.; Zhao, H.H. POFMakeup: A style transfer method for Peking Opera
makeup. Comput. Electr. Eng. 2022, 104, 108459. [CrossRef]

15. Lin, C.C.; Hsu, C.B.; Lee, J.C.; Chen, C.H.; Tu, T.M.; Huang, H.C. A Variety of Choice Methods for Image-Based Artistic Rendering.
Appl. Sci. 2022, 12, 6710. [CrossRef]

16. Dumoulin, V.; Shlens, J.; Kudlur, M. A learned representation for artistic style. arXiv 2016. [CrossRef]
17. Zhang, H.; Dana, K. Multi-style Generative Network for Real-Time Transfer. In Proceedings of the 15th European Conference on

Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 349–365. [CrossRef]
18. Ye, W.J.; Liu, C.J.; Chen, Y.H.; Liu, Y.J.; Liu, C.M.; Zhou, H.H. Multi-style transfer and fusion of image’s regions based on attention

mechanism and instance segmentation. Signal Process.-Image Commun. 2023, 110, 116871. [CrossRef]
19. Alexandru, I.; Nicula, C.; Prodan, C.; Rotaru, R.P.; Tarba, N.; Boiangiu, C.A. Image Style Transfer via Multi-Style Geometry

Warping. Appl. Sci. 2022, 12, 6055. [CrossRef]
20. Wang, Z.; Zhao, L.; Chen, H.; Qiu, L.; Mo, Q.; Lin, S.; Xing, W.; Lu, D. Diversified arbitrary style transfer via deep feature

perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 7789–7798.

21. Wang, H.; Li, Y.J.; Wang, Y.H.; Hu, H.J.; Yang, M.H. Collaborative Distillation for Ultra-Resolution Universal Style Transfer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electro Network, Seattle, WA,
USA, 14–19 June 2020; pp. 1857–1866. [CrossRef]

22. Park, D.Y.; Lee, K.H. Arbitrary Style Transfer with Style-Attentional Networks. In Proceedings of the 32nd IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5873–5881. [CrossRef]

23. Sheng, L.; Lin, Z.Y.; Shao, J.; Wang, X.G. Avatar-Net: Multi-scale Zero-shot Style Transfer by Feature Decoration. In Proceedings
of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8242–8250. [CrossRef]

24. Yang, S.; Jiang, L.M.; Liu, Z.W.; Loy, C.C. VToonify: Controllable High-Resolution Portrait Video Style Transfer. ACM Trans. Graph.
2022, 41, 15. [CrossRef]

25. Lin, T.W.; Ma, Z.Q.; Li, F.; He, D.L.; Li, X.; Ding, E.R.; Wang, N.N.; Li, J.; Gao, X.B. Drafting and Revision: Laplacian Pyramid
Network for Fast High-Quality Artistic Style Transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Electro Network, Nashville, TN, USA, 19–25 June 2021; pp. 5137–5146. [CrossRef]

26. Gatys, L.A.; Ecker, A.S.; Bethge, M.; Hertzmann, A.; Shechtman, E. Controlling Perceptual Factors in Neural Style Transfer. In
Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017; pp. 3730–3738. [CrossRef]

27. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

28. Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

29. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September
2014; pp. 740–755. [CrossRef]

30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014. [CrossRef]

http://doi.org/10.1109/ICCV.2017.167
http://doi.org/10.48550/arXiv.1409.1556
http://doi.org/10.1007/978-3-319-46487-9_43
http://doi.org/10.1109/CVPR.2016.272
http://doi.org/10.1109/CVPR.2017.759
http://doi.org/10.1109/CVPR.2017.437
http://doi.org/10.1007/978-3-030-01237-3_43
http://doi.org/10.1109/CVPR52688.2022.00754
http://doi.org/10.1016/j.compeleceng.2022.108459
http://doi.org/10.3390/app12136710
http://doi.org/10.48550/arXiv.1610.07629
http://doi.org/10.1007/978-3-030-11018-5_32
http://doi.org/10.1016/j.image.2022.116871
http://doi.org/10.3390/app12126055
http://doi.org/10.1109/CVPR42600.2020.00193
http://doi.org/10.1109/CVPR.2019.00603
http://doi.org/10.1109/CVPR.2018.00860
http://doi.org/10.1145/3550454.3555437
http://doi.org/10.1109/CVPR46437.2021.00510
http://doi.org/10.1109/CVPR.2017.397
http://doi.org/10.1109/CVPR.2018.00745
http://doi.org/10.1007/978-3-030-01234-2_1
http://doi.org/10.1007/978-3-319-10602-1_48
http://doi.org/10.48550/arXiv.1412.6980


Appl. Sci. 2023, 13, 952 23 of 23

31. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 586–595. [CrossRef]

32. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/CVPR.2018.00068
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction 
	Related Work 
	Style Transfer 
	Style Transfer Based on Multiscale Learning 

	Proposed Method 
	Framework Overview 
	Coarse Network 
	WCT Module 
	Architecture of Coarse Network 

	Fine Network 
	SSF Module 
	Architecture of Fine Network 

	Loss Function 

	Experimental Results and Analysis 
	Experimental Dataset and Implementation Details 
	Qualitative Comparisons with Methods in Prior Works 
	Quantitative Comparisons with Methods in Prior Works 
	Comparisons of Time Efficiency with Methods in Prior Works 
	User Study 
	Ablation Study on Loss Function 
	Effectiveness of Coarse Network 
	Effectiveness of Fine Network 
	Effectiveness of the SSF Modules 
	Additional Experiments 

	Conclusions 
	References

