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W N e

Abstract: This study presents the optimization and tuning of a simulation framework to improve its
simulation accuracy while evaluating the energy utilization of electric buses under various mission
scenarios. The simulation framework was developed using the low fidelity (Lo-Fi) model of the
forward-facing electric bus (e-bus) powertrain to achieve the fast simulation speeds necessary for
real-time fleet simulations. The measurement data required to verify the proper tuning of the
simulation framework is provided by the bus original equipment manufacturers (OEMs) and taken
from the various demonstrations of 12 m and 18 m buses in the cities of Barcelona, Gothenburg, and
Osnabruck. We investigate the different methodologies applied for the tuning process, including
empirical and optimization. In the empirical methodology, the standard driving cycles that have
been used in previous studies to simulate various use case (UC) scenarios are replaced with actual
driving cycles derived from measurement data from buses traversing their respective routes. The key
outputs, including the energy requirements, total cost of ownership (TCO), and impact on the grid
are statistically compared. In the optimization scenario, the assumptions for the various vehicle and
mission parameters are tuned to increase the correlation between the simulation and measurement
outputs (the battery SoC profile), for the given scenario input (the velocity profile). Improved simple
optimization (iSOPT) was used to provide a superfast optimization process to tune the passenger
load in the bus, cabin setpoint temperature, battery’s age as relative capacity degradation (RCD),
SoC cutoff point between constant current (CC) and constant voltage charging (CV), charge decay
factor used in CV charging, charging power, and cutoff in initial velocity during braking for which
regenerative braking is activated.

Keywords: e-bus powertrain; tuning and optimization; iSOPT; digital twins; internet-of-things

1. Introduction

Automotive system engineering has come a long way since Henry Ford spearheaded
the assembly line process a century prior, resulting in sharp increases in productivity and
manufacturing efficiency and corresponding decreases in the price of the manufactured
vehicle [1]. The evolution in automotive system engineering in the 21st century saw the
advent of Industry 4.0, empowered by the very high-speed internet (Internet 2.0), resulting
in paradigm shifts in manufacturing production operations by merging the boundaries of
the physical and virtual worlds [2]; the current state of the art (SotA) includes the Internet-of-
things (IoT), cloud-connected processes, and digital twins (DT) technology. A DT model can
have various levels of fidelity [3] in the virtual domain, but they are all tuned to accurately
reflect a physical object or system. A DT model relies on the real-time measurement of
data from numerous sensors installed in the physical system to continuously train itself to
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behave as its physical counterpart to corresponding input stimuli [4]. A fully trained and
tuned DT offers several advantages, including quicker iterative testing of the virtual model,
using multiple copies for evaluation of different aspects of the vehicle at a fraction of the
cost and time. For a city bus operator (CBO) and electricity distribution system operator
(DSO), the virtual models can substitute for their real counterparts during fleet use case
(UC) simulations to determine the real-world feasibility of electrification of the bus routes.

In [5], a simulation framework developed for the European Commission’s Horizon
2020 project ASSURED was used to investigate the UCs of single buses and fleets of buses in
various cities to determine their energy expenditure and TCO. The simulation framework
was also used to study the reduction in energy utilization possible by applying different
energy saving (ECO) strategies, and various optimization scenarios were investigated
to determine the charging infrastructure that will minimize the fleet TCO (for the CBO)
and load on the grid due to fleet charging (for the DSO). However, due to the lack of
measurement data during the research conducted using various assumptions, including the
use of a standard (hybrid SORT) driving cycle as the input scenario, constant average vehicle
speed profile and a randomized passenger profile throughout the simulation period of one
day, these assumptions naturally were not consistent with real-world conditions, including
traffic situations on the road, and did not differentiate between peak and non-peak hours
for passenger commutes. The hybrid SORT driving cycle can only be applied repetitively,
synchronized to a constant average vehicle speed, throughout the simulation implying a
constant traffic situation throughout the day. Furthermore, although the passenger profile
was randomized, the output of the randomizer tended towards a full bus with time??,
resulting in energy requirements that were aggressive. Similarly, the charging scenario
assumed constant duration spacing in between two charging events, which resulted in a
more simplified charging strategy. Finally, the results of the simulation framework were
not validated using actual measurements; thus, the output of the simulation framework
could only be taken as estimates.

In this research, the measurement data from the electric buses in the cities of Barcelona,
Osnabruck, and Gothenburg are used to tune and validate the simulation framework.
Furthermore, the study investigates the differences in energy consumption between the
standard and actual driving scenarios, and finally an optimization was performed to deter-
mine the optimal charging strategy, given variable durations between two charging events,
based on the input scenario. The objectives of this research are twofold: one is to validate
the simulation framework, so that it can be used to investigate different scenarios with a
high degree of confidence in its results; and two is to lay the framework for the creation of
a DT of the electric bus for future research. Section 2 introduces the simulation framework
and the necessary modification that enables it to work with actual measurements. Section 3
reports on the energy requirements from the vehicle demonstrations in cities. The tuning
methodologies used to ensure that the output of the simulation framework matches the
measured output, given similar inputs, are described in Section 4. Section 5 describes the
optimization procedure for the charging strategy for bus fleets, whose driving scenarios
were constructed using the actual driving scenarios. Finally, Section 6 concludes with how
this research can be used to construct a DT from the simulation framework.

2. The Simulation Framework

A low fidelity (Lo-Fi) simulation framework illustrated in [5] was used to evaluate
the energy expenditure for fleets of vehicles and impact on the electricity grid for a given
mission profile in this research, with modifications in the framework to accept measure-
ment data as the scenario input. An offline scenario input process was developed for
the framework in this research, meaning that the simulation is not occurring parallelly in
real-time using the measurement data taken during the bus demonstrations. Rather, the
measurement data from the sensors are stored and later input to the simulation.

The simulation framework is based on basic electrical, mechanical, kinematic, and
thermal equations needed to represent the charging infrastructure and forward-facing
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electric bus (e-bus) powertrain model, as shown in Figure 1. Unlike a high fidelity (Hi-Fi)
simulation model, where the simulation model is based on detailed physical equations of
the actual system and uses small timesteps to ensure very high accuracy of the simulation
output, the Lo-Fi framework uses look-up tables (LuTs) to define the efficiency maps of the
various electronic, mechanical, electromechanical, and electrochemical devices integrated
within the powertrain; and basic equations that model the overall energy transfer behavior
of each component. The timestep in a Lo-Fi model is large to ensure high simulation
speed at the cost of accuracy. Thus, even though a Lo-Fi model cannot simulate transient
behaviors, they can be used to get a rapid estimate of the steady-state behavior. Therefore,
Lo-Fi models can be used to simulate large time ranges covering the lifetime of the e-bus
or large fleets of e-buses within a reasonable timeframe. Furthermore, a Lo-Fi model
can be used to perform a fleet-level energy management and charging strategy (EM&CS)
optimization, which require very fast simulation speeds. The Simulink framework was
designed to use the measurement data from the demonstrations as inputs: the design
of the energy storage system (ESS) block allowed comparison to be made between the
simulated and measured battery SoC values for validation purposes, while the energy
management system (EMS) block was designed to allow the model to be tuned to minimize
the difference between the simulated and measured values. More details of the tuning
process are provided in Section 4.
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Figure 1. Overview of the simulation framework illustrating the forward-facing e-bus powertrain
and grid infrastructure.

Inputs to the Simulation Framework

The framework was designed to accept measurement data from the bus as inputs in an
offline process. In ASSURED, the various OEMs and CBOs involved in the demonstrations
were responsible for the data collection process and then forwarding those data to the
simulation team. However, different OEMs and CBOs used different data logging and data
processing techniques. Therefore, it was not possible to apply a standardized methodology
for data collection, making the offline validation the most suitable option. Table 1 gives
a concise overview of the measurement data collected in each city. As can be seen, the
collected data seems rather arbitrary; it is due to different stakeholders being involved
in the data collection process. However, each stakeholder was required, at minimum,
to provide the vehicle’s speed profile (to be used as the simulation input) and battery
SoC profile (to be compared with the simulation output), at a data logging frequency of
1 Hz, to ensure reasonable tuning and validation of the simulation framework. Beyond
these constraints, each stakeholder communicated, according to their data sharing policies,
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a subset of the following parameters: energy usage rate, mileage, charging state, charging
time, ambient temperature, road inclination, GPS coordinates, and altitude.

Table 1. Overview of the measured data collected.

City and Bus Type Measured Parameter (Unit) Logging Frequency

Speed profile (km/h)
Measured energy (kWh)
State of charge (%)

GPS coordinates (°)

Speed profile (km/h)
State of charge (%)

Speed profile (km/h)
Measured energy (kWh)
State of charge (%)

GPS coordinates (°)

Speed profile (km/h)
Mileage (km)

State of charge (%)
Charging state (-)

Speed profile (km/h)
State of charge (%)
Mileage (km)

Charging time (s)

Road inclination (°)
Ambient temperature (°C)
* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

BCN, 12m* 0.5Hz

BCN, 18 m * 20 Hz

OSN, 12m * 0.5Hz

OSN, 18 m * 20 Hz

GOT, 12 m * 10 Hz

Sensor data in vehicles are mainly communicated via the CAN bus network and
logged via CAN-based dataloggers attached to the vehicle’s CAN network and wirelessly
communicated to a central server via the GSM (3G/4G) or Wi-Fi. The data is then decoded
from the CAN message format (.blf), which is binary, into a more user readable format,
including comma separated values (.csv), excel (.xlsx), or a simple text (.txt) file, using a
CAN database (.dbc) file structure. The next step is to convert them into a common format,
the MATLAB data (.mat) file, after which the parameter values are brought to a common
sampling rate of 10 Hz, using up-and-down sampling techniques; wherein 10 Hz was
chosen as a simulation time step of the Lo-Fi model. The data is then pre-processed to
remove noise from the data, especially those which were measured via the GPS module,
since GPS user accuracies, even with augmentation and when operated in wide open areas,
are in “meters” for horizontal (i.e., longitude and latitude) measurements, and much worse
for vertical (i.e., altitude) measurements [6]. In an urban setting featuring many obstacles
(i.e., buildings, bridges etc.) and a multipath signal environment due to reflected signals,
these accuracies are further degraded. Finally, the data is thoroughly checked to ensure
that the speed and acceleration do not exceed the vehicle maximum for those parameters,
and that the road inclination and difference in altitude between the lowest and highest
point of the route were within known ranges.

3. Use Case Demonstration Overview

Numerous demonstration runs were conducted in the cities of Barcelona and Os-
nabruck using 12 m and 18 m e-buses, and in the city of Gothenburg using 12 m e-bus. For
the 12 m bus, the demonstrations took place at two different months of the year to account
for variation in weather. Table 2 provides the details for all the demonstrations considered
for simulation and analysis. The simulations were run for approximately the same duration
as their standard driving cycle counterparts in [5]; thus, some of the scenarios described
in Table 2 were repeated until the desired timeframe was achieved. The complete specifi-
cations of the scenarios of the three routes, the 12 m and 18 m bus, as well as the climate
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profile for each city, used as inputs for the simulations are presented in [5], while the exact
maps of the demonstration routes are shown in the Appendix A.

Table 2. Overview of the demonstration scenarios.

City and Bus Type Demonstration Month Operational Scenario Route
December 25.7 km in 160 min
BCN 12m* 16.7 km in 68 min
’ February 13.3 km in 31 min H16
26.3 km in 126 min
BCN, 18 m * June 109.8 km in 558 min
49.1 km in 243 min
March 64.0 km in 310 min
OSN, 12 m * 63.2 km in 357 min NG
May 88.7 km in 473 min
OSN, 18 m * April 88.1 km in 252 min
168.3 km in 784 min
May . .
GOT, 12m* 99.5 km in 434 min R55
October 148.4 km in 575 min

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

The measurement data gathered from the demonstrations were used to improve the
UCs that were simulated using the standard driving cycles. Comparing the kinematic
characteristics between the actual and standard driving cycles, very striking differences can
be seen in their respective profiles. All measurements from the demonstrations exhibited
accelerations whose ranges were higher than what was assumed when simulating the
UCs using the standard driving cycle. Similarly, the maximum measured velocity from
the demonstrations were higher than the maximum velocities assumed in the standard
driving cycle, except in the case of the Osnabruck 12 m bus. Finally, in Barcelona, the
average velocity measured during the demonstrations were higher than what was assumed
in the standard driving cycle, while those of Osnabruck and Gothenburg were lower. From
these facts, it can be assumed that the energy requirements for the buses subject to the
measured driving cycles will be higher. Table 3 details the characteristics of the measured
driving cycle from the demonstrations as well as the standard driving cycle, while Figure 2
illustrates this difference visually. As can be seen from the figure, the standard driving
cycle is composed of clean and repeating patterns, while the actual measurements look
random and somewhat noisy.

Table 3. Comparison between the demonstration and the standard driving profile characteristics.

City and Bus Type Demonstration Profile Characteristics Standard Profile Characteristics
BCN, 12 m * Avg. Vell. 9.65~26.2 lf(m/l;1
(4 demos) Max. vel. 59.8~78.4 km/ 5 BCN, Route H16, All buses:
Max acc. 1.30~2.06 m/s Avg. vel. 9.52 km/h
" Avg vel. 11.8 km/h Max. vel. 29.8 km/h
Bcll\;' 18 m Max. vel. 72.0 km/h Max. acc. 0.51 m/s?
(1 demo) Max acc. 2.36 m/s?
OSN, 12 m * Avg. Vell. 10.6~12.8 lf(m/l;1
(4 demos) Max. vel. 43.2~59.0 km/ 5 OSN, Route N5, All buses:
Max acc. 1.30~3.51 m/s Avg. vel. 19.8 km/h
" Avg vel. 21.0 km/h Max. vel. 61.9 km/h
OSN, 18 m Max. vel. 67.3 km/h Max. acc. 1.06 m/s?
(1 demo)

Max acc. 2.39 m/s?
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Table 3. Cont.

City and Bus Type Demonstration Profile Characteristics Standard Profile Characteristics
. Avg. vel. 7.99~12.6 km/h GO Route R9, 12 m. bus:
GOT,12m Max. vel. 70.9~82.4 km/h Avg. vel. 18.3 km/h
(3 demos) o . Max. vel. 57.2 km/h

- 2
Max acc. 4.99~5.33 m/s Max. acc. 0.98 m/s2

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.
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Figure 2. Comparison between the measured driving cycle from the demonstrations and standard
driving cycles.

3.1. Simulation Output

Figure 3 compares the energy requirements determined from the simulation of the
measurement data of the demonstrations to those from the UC simulations in [5], while
Figure 4 illustrates the effects of the various ECO-features in reducing the energy consump-
tion of the bus. For the remainder of the article, the baseline energy requirement is defined
as the average energy requirement found from the UC simulations in [5] using the standard
driving cycle. Figure 3 shows, as expected, that in Barcelona the energy requirements are
significantly higher for the demonstrations compared with the baseline. However, the
opposite is true for Osnabruck, where the energy requirements are significantly lesser than
the baseline. This can be explained by the simple fact that in Barcelona, the average and
maximum speeds of the buses in the demonstration are much higher than the baseline.
Thus, the buses in the demonstration experience higher aerodynamic drag, leading to
greater energy requirements compared with the baseline. In the case of Osnabruck, the
opposite was true; for the 12 m bus, the average and maximum speeds of the demonstra-
tions were less than those of the baseline, thus lesser energy was required than for the
baseline. In the case of the 18 m bus, the average and maximum speeds are comparable
between the demonstrations and the baseline; thus, the energy requirement between the
baseline and demonstration is similar. For Gothenburg, the average velocity is less than
the average velocity of the baseline, even if the maximum velocity is higher. Thus, the bus
expends less energy on average compared to the baseline. From the results, it can also be
deduced that normal acceleration and deceleration have a low impact on the rate of energy
expenditure of the vehicle; this can be explained by the fact that the vehicle is an electric
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bus with an efficient energy recovery system (via regenerative braking), thus 70% to 80%
of the traction energy expended during acceleration is recovered during braking [7]. The
amount of energy recovered depends on several factors including the momentum of the
vehicle during braking, SoC of the battery, and capability of the battery to accept the power
influx. For small EVs such as the Renault Zoe, the cutoff velocity beyond which energy
recovery can efficiently occur during braking is 5 m/s [7], but for heavy-duty vehicles
such as buses, the regeneration can occur from a lower velocity due to their larger masses
resulting in greater braking momentum. Thus, regenerative braking in an urban scenario

with low speeds and heavy traffic is more suitable for electric buses and trucks.

Energy Requirement of Demonstrations for 12m and 18m Buses in Cities
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Figure 3. Comparison of the energy requirement for 12 m and 18 m buses in Barcelona, Osnabruck,
and Gothenburg between the standard and actual driving cycles.
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3.2. Energy Reduction Using ECO-Features

Three energy management techniques are considered to reduce the energy require-
ments of the buses, namely, ECO-comfort [8], ECO-driving [9], and ECO-charging [10,11].
ECO-comfort optimizes the thermal management system of the bus responsible for the
cabin and battery cooling systems, ECO-driving optimizes the EMS of the bus responsible
for vehicle traction and regeneration, and ECO-charging optimizes the charging man-
agement system of the vehicle responsible for battery charging. Figure 4 highlights the
effects of the ECO-features on the SoC; and details about the functionality of the three
ECO-algorithms are presented in the Appendix B. Based on the SoC profile shown in the
top row of Figure 4, ECO-driving has a significant effect on energy reduction, as seen from
the smaller drop in the battery SoC with ECO-driving compared with the baseline. This
is because the baseline driving profile featured aggressive driving, i.e., high speed (max.
velocity of 18.7 m/s) and acceleration (max. acceleration of 2.39 m/ sz), and ??these see
the highest reduction in the energy requirement due to the application of ECO-driving.
There is modest energy savings due to ECO-comfort, as it was simulated for moderate
springtime weather conditions. ECO-charging does not change the energy requirement of
the vehicle compared to the baseline, but as can be seen from the bottom row of Figure 4, it
does spread out the charging duration, resulting in a lower average load on the electricity
grid; this is important during fleet charging so as not to put undue stress on the electricity
grid. Overall, the 12 m bus saw an average reduction of 0.4 kWh/km from the baseline
energy requirements, while the 18 m bus had a reduction of almost 1.8 kWh/km from
the baseline. On average, at least three quarters of the reduction was achieved due to
ECO-driving, while barely 2% is due to ECO-charging, as shown in Figure 5.

12m Electric Bus 18m Electric Bus
(Avg. savings of 0.4 kWh/km) (Avg. savings of 1.8 kWh/km)
1% 1%

» ECO-comfort

» ECO-driving = ECO-charging » ECO-comfort * ECO-driving = ECO-charging

Figure 5. Breakdown of energy savings due to ECO-features for 12 m and 18 m electric bus.

Table 4 shows that there is a high correlation between the amount of energy savings
due to ECO-driving and average speed of the vehicle in the baseline scenario. There is also
a link between the size of the bus and possible energy savings. However, the data also
show that there is no link between the top speed of the vehicle in the baseline scenario and
possible energy reduction; this may be because the vehicle does not spend sufficient time at
its top speed for it to matter. These results prove that there is a lot of room for improvement
when it comes to driving behavior and low-speed driving is recommended for optimum
traction energy utilization.
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Table 4. Energy reduction possible due to ECO-driving.

City, Bus Type and Speed Baseline Energy Energy
Demo Number (Mean and maximum) Requirement Savings
BCN 12 m, Demo 1 * 2.68m/s,21.9m/s 1.47 kWh/km 21.8%
BCN 12 m, Demo 2 * 4.08m/s,16.6 m/s 1.52 kWh/km 22.8%
BCN 12 m, Demo 3 * 728 m/s,204m/s 1.57 kWh/km 27.5%
BCN 12 m, Demo 4 * 3.48m/s,21.4m/s 1.50 kWh/km 20.9%
BCN 18 m, Demo 1 * 428 m/s,20.0m/s 3.42 kWh/km 39.5%
OSN 12 m, Demo 1 * 3.37m/s,16.0m/s 1.50 kWh/km 24.2%
OSN 12 m, Demo 2 * 3.44m/s,12.0m/s 1.20 kWh/km 17.6%
OSN 12 m, Demo 3 * 295m/s,16.4 m/s 1.56 kWh/km 21.9%
OSN 12 m, Demo 4 * 3.13m/s,14.7 m/s 1.42 kWh/km 18.7%
OSN 18 m, Demo 1 * 5.82m/s,18.7 m/s 2.79 kWh/km 47.4%
GOT 12m, Demo 1 * 3.50m/s,22.9m/s 1.83 kWh/km 7.4%
GOT 12 m, Demo 2 * 2.22m/s,21.6m/s 1.75 kWh/km 8.1%
GOT 12 m, Demo 3 * 3.30m/s,19.7 m/s 2.11 kWh/km 5.3%

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

4. Validation of the Simulation Framework

This section focuses on the methodology followed to validate the simulation frame-
work through real measurement data from the demonstrations. The measurements were
also used to improve the inputs to the simulation model to have a better representation
of the UCs; these improved inputs are then used for the simulation. Measurement data
from Osnabruck and Gothenburg were used in the validation process. The quality of the
data from the two sources were different. The Gothenburg dataset consists of continuous
measurement values sampled at 20 Hz directly from the vehicle’s CAN-bus. The data from
Osnabruck, extracted from the CBO’s cloud server, were only available at intermittent
intervals. Thus, the two cases were handled differently.

The validation and tuning process addressed the following features:

o  The EMS: The energy recovery system was tuned to align the traction energy profile
with the measurement data. The regenerative braking system (RBS) is a proprietary
system for many OEMs; thus, assumptions were made during model development.

e The charging management system (CMS): The cutoff between the constant current
(CC) mode and the constant voltage (CV) mode, and the current decay parameter
during the CV mode were tuned based on the measurement data. These parameter
values are also not forthcoming by the OEMs.

e The passenger load estimation: Passenger load inside the bus is the one aspect that
could not be automatically measured and requires manual counting; thus, it is usually
ignored. Instead, some simulations involved an intricate passenger model based on
the passenger appearance rate at each bus stop as a function of time [12], which is
modeled on actual bus traffic data by the CBO. Others use agent-based modeling
whereby each passenger is a unique object that has “preferences”, such as drop in
point, drop off point, and waiting time [13]. In [14], a cellular automata model is
utilized to study behavioral characteristics of bus passengers boarding and alighting
behavior. There are also certain cases where a fixed load was assumed within the
bus, based on passenger load factor [15], when the passenger load is ancillary to other
considerations. The UC simulations carried out in [5] assumed a random passenger
profile as a function of time within the bus cabin; however, for this validation, the
passenger inside the bus was estimated based on the measured SoC profile.

4.1. Tuning and Validation Methodology

The tuning was performed by using optimization to directly determine the parame-
ters’ values of the powertrain module (e.g., EMS, CMS, BMS) that needs to be tuned, to
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minimize the normalized root mean squared error (NRMSE) between the simulated and
measured outputs.

Y1 (SOCsiv, i— SOCwmEas,)
n

max (SOCME AS ) — min ( SOCME AS )

Crotal = + constraint penalty 1)

The cost function, Cyya1, shown in (1), gives an estimate of the deviation between the
simulated and measured SoC of the battery. The closer the value of the cost function is
to zero, the closer the match between the two SoC signals. To achieve a minimum value
of Cyotar in the optimization process, not only must the two SoC signals match as closely
as possible, but the simulation must also not violate any of the constraints elaborated on
in Section 4.2. The output score calculated by the NRMSE ranges from 0 (perfect match
between simulated and measured signals) to 1 (implying the maximum mismatch between
the two signals), thus any penalty applied has values greater than 1. The magnitude of the
penalty depends on the extent of the violation of a given constraint.

By the standard definition [16], the tuning methodology described in this study is an
example of the offline tuning process because the tuning occurs in the simulation model
using saved data, i.e., the measured input during the demonstration was not processed in
real-time but cached for later processing and simulation. Instead, for this study, a different
definition is used to differentiate between an offline and an online tuning process. The
online tuning process is defined as the tuning that occurred while the simulation was still
ongoing, whereas in offline tuning, the tuning occurred in an iterative process between
separate simulations, after each simulation had finished running in its entirety. For the
online tuning process, the total time duration of the simulation was split into several
“windows”; the tuning occurred in between each time window, and its result was applied
to the next window until no further improvement could be seen, i.e., it converged. If
the convergence occurred before the end of the simulation, the tuning was considered
completed; otherwise, the simulation was repeated with the latest tuned configuration as
the starting condition. As expected, the online process is faster due to the small dataset
involved in the tuning process, so the tuning completes quicker.

The online tuning process was applied during the optimization; the simulation time
duration was split into variable-sized windows based on the driving cycle. As there were no
discernable patterns, the split was made according to different categories of driving, such
as constant speed driving or driving with frequent accelerations, as shown in Figure 6. The
tuning algorithm assessed various parametric configurations within a window sample to
minimize the NRMSE within that window, before applying the best possible configuration
to the next window and repeating the process, as in [16].

I I

Velocity (km/h)

n w - [+ =23 ~
o o o o o o
I I | I I l

| | | | |

-
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=)
]
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Figure 6. Tuning the simulation using variably sized windows applied based on the driving cycle.

4.2. Optimization Based Tuning Process

In [17], constrained minimization was used in the tuning process of the controller to
allow the controller to become flexible, so it can respond in a robust fashion to changes in
the inputs, and be used for different purposes by optimally retuning the control parameters
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subject to different constraints. In [18], a constrained nonlinear optimization was carried
out using a sequential quadratic programming (SQP) algorithm to tune PID gains to allow
the controller to adapt to changes in the plant; this not only offered superior performances
when compared to traditional PID tuning, the tuning process was much quicker. Similarly,
linear programming was utilized in [19] to tune the weights of a symmetric finite impulse
response (FIR) filter of low-bandwidth controllers for a linear time and spatial invariant
(LTSI) systems; a hybrid genetic algorithm (GA) followed by constrained nonlinear mini-
mization was used in [20] to optimize in real time the autopilot gain of an unmanned aerial
vehicle (UAV); the GA ensured a global minimum, but without running the GA process
to its conclusion, and the fincon function utilized to finetune the results of the GA at a
higher speed. In this study, the meta-heuristic algorithm, improved simple optimization
(iSOPT) [21], was used to tune the EMS and CMS of the electric bus powertrain model, to
ensure a global minimum within the fastest possible time, so that the tuning can be carried
out in real-time.
The set of parameters that were tuned for the EMS are:

Cutoff velocity for regenerative braking activation
Passenger load in the bus (broad categories: full load, half load, driver only)

The set of parameters that were tuned for the thermal management system (TMS) are:
e  (Cabin setpoint temperature
The set of parameters that were tuned for the CMS are:

Cutoff SoC between CC and CV charging mode
The current decay factor for CV charging mode
The charging duration and power

Initial Battery ageing

The final two parameters that were tuned are the passenger load estimate in the bus
and the cabin setpoint temperature. Thus, a total of seven parameters makes up the solution
space. An initial population size of 11 with random combinations of the seven parametric
values was generated, and the algorithm described in [5] is followed till its conclusion. The
maximum number of iterations was set to 50. The optimization is handled via MATLAB
scripts, which populates the variables of the Simulink model with updated values every
iteration while simulating the demonstration scenario.

The following constraints were applied to the optimization, and a penalty was added
to the optimization score if one or more of these constraints were exceeded in any way:

The current decay factor, cutoff velocity, and cutoff SoC were positive
The cutoff SoC was below 100%

The RCD was below 25%

The charging duration exceeds 1 min and charging power was positive
The battery SoC should not drop below 10% during the simulation

The advantage of using optimization techniques to tune the model is that it preserves
the integrity of the model, with the only factor being changed is the set of parameter values
of the respective modules that are being tuned. The improvements of the optimization
methodology followed in this research compared with [5] are twofold. The first is an
improvement in speed of optimization. In all cases, it is noticed that Topt < n * Tim,
where n was the number of iterative simulations required during the optimization before
convergence and Tgjn, is the duration of one complete simulation. This is because using the
methodology in [5], we would have needed to run the complete simulation 'n’ times before
convergence, but with the window technique presented in this article, we only needed to
run the 1st and the 2nd windows ‘n’” times, and the subsequent windows needed to be run
less than 'n’ times, as the parameters values have already become optimal by that point.
The second improvement was the fact that the optimization process could be made online
in the traditional sense [16] by focusing on optimizing the model using the measurement
data dump from a previous time window, while the measurement is in progress for the



Appl. Sci. 2023, 13, 940

12 of 27

current time window. This is a necessary first step to overcome in the process to develop a
real-time DT of the system, which is the end goal of this research track.

5. Validation Results
5.1. Osnabruck

The demonstration for Osnabruck city took place in the months of March, April, and
May using an 18 m bus type. Measurement data are available for a total of 9 days, with 2
days each in March and May, and the rest in April. The demonstrations focus on different
charging characteristics, with the March and April demonstration clearly focusing on low-
power depot charging, and the May demonstration focusing on the high-power opportunity
charging. The measurement data provided included the time, speed, and distance travelled
data taken at 5-minute intervals. The sampling rate of the provided data is not sufficient to
perform simulation and, therefore, each five-minute interval was replaced by the standard
SORT driving cycle whose mean velocity was adjusted to match the measured speed value
if the distance covered by the adjusted driving cycle was less than or equal to the actual
distance traversed during that five-minute interval. If, on the other hand, the adjusted
driving cycle covered a larger distance than the actual measured value, the simulation was
conducted assuming a constant velocity for that five-minute interval. The measurement
also consisted of the battery SoC level at different points during the demonstration. These
SoC values are used to verify the simulation results by comparing the simulated SoC
values with the actual demonstration SoC values at the same point in time. The simulation
assumptions were tuned to give the scenario configuration that provides a simulation with
the closest match between the simulated SoC values and measured SoC values.

Figure 7 illustrates the driving and charging scenario constructed from the demonstra-
tion data provided for March 29th and 31st, April 7th, 12th & 13th, and 20th & 21st, and
May 6th and 12th. The driving and charging scenario will be shown within the same plot.
There is no charging taking place between the 20th and 21st; the vehicle is switched off
and restarted the next day. The estimated (average) power of the charger used during the
March and April demonstrations is 18 kW, thus making it an AC charger in the depot; the
estimated power of the charger used for the May demonstrations is 290 kW, thus making
it a DC fast charger used for opportunity charging. The charging duration is determined
by the type of charger, with opportunity charging active for 10 minutes, while the depot
charging is active for hours. The total increase in battery SoC during charging was used to
estimate the rated power of the charger.

Table 5 lists the estimates of the driving scenario that gave the closest SoC match
between the simulated values and demonstration measurements. Based on these estimates,
Figure 8 shows the validation output of the simulation framework.

Table 5. Estimation of the driving scenario configuration for the Osnabruck demonstration.

Parameter to Be Estimated March April May 6th May 12th
Passenger load Driver only Full load Full load followed by driver only
Cabin setpoint temperature 20°C 15°C 20°C
Charging type Depot Opportunity
Charging power 18 kW 290 kW
Battery capacity 120 kWh
Initial battery age Relative capacity degradation of 20%

RBS cutoff velocity RBS active when vehicle speed above 1.5 m/s
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5.2. Gothenburg

The demonstration for Gothenburg city took place in the month of May and October
using 12 m bus. Measurement data are available for a total of 3 days, with 2 days in
May and 1 day in October. The demonstrations focus on different charging characteristics,
with the May demonstration clearly focusing on shorter duration opportunity charging in
the constant voltage (CV) mode, and the October demonstration focusing on the longer
duration opportunity charging in the constant current (CC) mode. The duration of the May
demonstration was between 12 h to 14 h per day, while the October demonstration was
limited to below 3 h. The Gothenburg demonstration had access to continuous driving cycle
data; thus, the actual speed measurements were used as inputs after suitable preprocessing.
Furthermore, the Gothenburg demonstration also had access to the road inclination profile
and ambient temperature profile, in addition to the velocity profile, as inputs. Thus, more
relevant simulations could be produced for the validation process. The speed tracking
and battery SoC level were validated by comparing the measured values against the
simulated values. Table 6 lists the estimates made for the simulations, which achieved a
high correlation between the simulated and measured SoC.
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Figure 8. The SoC output profile of the 18m bus subject to the driving and charging scenario in
Figure 7 using the estimates given in Table 5, and showing the correlation between the simulated

outputs and measured values.
Table 6. Estimation of the driving scenario configuration for Gothenburg demonstration.
May 12th

April

March
Only driver when idle (i.e., at end of

Parameter to Be Estimated

Passenger load

Only driver initially, full load between
1hand 4 h, then half load until 13 h, then = Driver only

the route or during charging), full load
when bus is moving

driver only until end

Cabin setpoint temperature 20°C
Charging type Opportunity
Charging power 450 kW (current decay has a 3 = 0.23 in CV mode, which is activated when SoC > 87.5%)
Battery capacity 200 kWh
Initial battery age New batteries with no degradation
RBS cutoff velocity RBS active when vehicle speed above 1.5 m/s

Figure 9 shows the results of the October 13th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 2.5 h with the bus standing
idle for the first 40 min. The bus charged using an opportunity charger, with a rated power
of 450 kW, at the 1.5 h mark. The simulation tracks the speed accurately with minimal
deviation between the simulated and measured outputs. The battery SoC is also tracked

accurately; however, there is a deviation between the measured and simulated outputs
when the bus is standing idle. The energy usage during that time is very high according to
the measured SoC values, which cannot be reasonably explained, unless the speed signal is

missing/corrupted.
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Figure 9. Validation of the October 13th demonstration of 12 m bus in Gothenburg city using the

estimates in Table 6. (a) Scenario inputs, (b) Scenario outputs and validation.
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Figure 10 shows the results of the May 27th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 13.5 h with the bus standing
idle for the first 1 h. The bus was charged using an opportunity charger, with a rated power
of 450 kW at 22 different instances. The first charging instance occurs entirely in the CC
mode and the second charging instance happens partially in both CC and CV modes, while
the remaining charging occurs entirely in the CV mode. The charging current decay (3)
of 0.23, when battery SoC exceeds 90%, accurately models the measured charging current.
There is a deviation between the measured SoC and simulated SoC at two points; one when
the bus was standing idle and the measured SoC showed greater than expected energy
usage for an idle vehicle, and the other when the reference speed of the bus was 83 km/h,
which exceeded the modeled maximum speed of the bus of 80 km/h.

Figure 11 shows the results of the May 29th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 12.5 h; however, the mea-
surements are only available after the 5 h mark. The bus was charged using an opportunity
charger, with a rated power of 450 kW at 14 different locations; all the charging events were
short in duration. For this demonstration, all charging events occurred entirely in the CV
mode. Unlike the other demonstrations, which were modeled with high passenger loads,
this one is modeled with only the driver to account for the minimal energy utilization
observed. There is a deviation between the measured SoC and simulated SoC at a few
locations; the deviations are most likely due to inaccurate battery models for LEP battery
chemistry above 90% SoC. The deviations in the beginning can be explained by the fact
that the measurements prior to the 5 h mark are not presented; thus, it was not possible
to determine the state of the bus prior to the start of the simulation. The deviation at the
end was most likely due to a more efficient energy recovery process during regenerative
braking than was accounted for in the vehicle model.

There is a deviation between the measured SoC and simulated SoC at a few locations
in Figure 11; the deviations are most likely due to inaccurate battery models for LFP battery
chemistry above 90% SoC. The deviations in the beginning can be explained by the fact
that the measurements prior to the 5 h mark are not presented; thus, it was not possible
to determine the state of the bus prior to the start of the simulation. The deviation at the
end was most likely due to a more efficient energy recovery process during regenerative
braking than was accounted for in the vehicle model.

One of the clear outcomes of the validation process was an accurate determination of
the current decay factor (3) during the CV mode of charging and the CC/CV cutoff SoC
value. It is understood that after the bulk charging phase of a battery in CC mode, the
charging switches to the CV mode, where the current reduces to a trickle. This reduction of
the current was modeled as an exponential decay once the battery SoC exceeds 87.5%.

The decay amount is given as:

Iout = ‘Imaxfcc x B x(50C=90),  goC > 87.5 )

| Imaxfcc ’ otherwise

where Imax_cc is the maximum charging c-rate during the CC charging mode (-3C for an
LFP battery chemistry), and (3 is the decay factor; it was found that a 3 of 0.23 models the
charging current that gives the closest correlation between the measured and simulated
battery SoC profile during charging.
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Figure 10. Validation of the May 27th demonstration of 12 m bus in Gothenburg city using the
estimates in Table 6. (a) Scenario inputs, (b) Scenario outputs and validation.
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Figure 11. Validation of the May 29th demonstration of 12 m bus in Gothenburg city using the
estimates in Table 6. (a) Scenario inputs, (b) Scenario outputs and validation.
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6. Conclusions

This study presents a methodology for improving the accuracy of a Lo-Fi model of
the electric bus powertrain using measurement data from 12 m and 18 m electric bus
demonstrations in cities. First, a qualitative comparison is made of the bus’s energy
requirements between the baseline UC simulations, which used a standard driving profile,
and the actual driving profile from the demonstrations. The results show that in Barcelona,
the energy requirements of the 12 m buses were 17.5% higher, while those of the 18 m buses
were 33% higher, when using the driving profile of the demonstration. For Osnabruck, the
energy requirements were 20% lower for the 12 m buses when using the driving profile of
the demonstrations, while the 18 m buses had similar energy requirements to the baseline.
This is because the Barcelona demonstrations had a higher average velocity compared
with the baseline, while the Osnabruck 12 m bus demonstrations had a lower average
velocity. The magnitude of the acceleration and deceleration had less effect on the energy
requirements of an electric powertrain, since energy expended during accelerations are
recovered during decelerations. Only in cases where the driving profile showed many hard
decelerations did the energy requirement become higher; this was because during hard
decelerations, the bus requires friction brakes to decelerate in addition to the electric motor,
leading to less energy recovered via regeneration.

Next, the measurement data of the vehicle’s speed profile from the demonstration were
used as inputs to the simulation framework, and the simulation results of the battery SoC
profile were compared to measured battery SoC profiles from the demonstrations. A tuning
methodology, based on iISOPT optimization, combined with splitting the simulation into
smaller time windows during optimization, was used to minimize the NRMSE between
the simulated and measured battery SoC signals and ensure that there is a high degree of
correlation between them. The results show that the tuning process based on the window
technique applied to the optimization process successfully synchronized the simulation and
measurement outputs quicker than the technique presented in [5]. In rare cases, deviations
are encountered between the simulated and measured output. Of these, the deviations that
describe a situation that is physically impossible, based on the data provided, are ignored.
Other deviations result from limitations in the assumptions made during the design of the
simulation framework, and those were fixed by correcting the assumptions. However, in
two cases, deviations occurred for which no suitable explanation could be determined, and
those would require further research to fix. Overall, the optimization achieved more than
90% correlation between the simulated and measured SoC profile.

The techniques utilized in this research will be refined further in future research to
perform real-time tuning of the platform with the aim of deploying a cloud-based DT of
the electric bus that will be able to make predictions in real-time based on the measurement
data from the real vehicle. To achieve that goal requires two systems working in synergy:
first, it would be necessary to invest in CAN dataloggers with WiFi or 3G /4G capability
that will capture the sensor data from the vehicle’s CAN network and periodically transmit
these measurements to a cloud server. Then, a highspeed simulation model needs to be
deployed in the cloud server that will periodically take in these measurements data as
inputs and quickly simulate the outputs and tune itself using appropriate tuning techniques
to minimize the error between the simulated and measured outputs. The key will be
to reduce the simulation time needed during the tuning process (whether via machine
learning or optimization), so the model can tune itself in real time. This requires further
improvements to the optimization technique and utilizing machine learning using artificial
neural networks. Machine learning algorithms are also able to adapt to changes in behavior
over time. Once the error has been reduced below an acceptable threshold, then many
virtual copies of the DT can be deployed in the cloud to act as virtual testbeds for a
myriad of different tests, or to simulate fleets of such vehicles to investigate the charging
infrastructure requirements in city bus routes and depots.
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Appendix A. Input Scenario for Bus Demonstrations
Appendix A.1. Barcelona City
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Figure A1. Route map of H16 for the demonstration.
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Appendix A.2. Osnabruck City

52°18'N

Latitude

52°17'N

500 m
2000 ft
Land NRW, E.sri, HERE, Garmin, USGS

8°02'E 8°03'E 8°04'E 8°05'E

Longitude
Figure A2. Route map of N5 for the demonstration.

Appendix A.3. Gothenburg City
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Figure A3. Route map of R55 for the demonstration.
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Appendix B. Review of Energy Management (ECO) Features
Appendix B.1. ECO-Driving Functionality

ECO-driving transforms the driving cycle into an eco-friendlier profile that limits the
maximum acceleration and speed of the vehicle resulting in less tractive energy require-
ments; furthermore, it also optimizes the energy recovery during regeneration by keeping
the EM in the optimum power band to recover the maximum power. As can be seen from
Figure A4, the velocity profile is smoothened by application of a ramp to the acceleration.
The velocity modification ensures smoother changes in velocity and removes discontinuity
in the acceleration. The top velocity and acceleration are also limited to save energy. The
overall driving behavior is gentler, with minimal hard accelerations and braking. This
is important because, unlike normal braking action, hard braking is not as efficient at
energy recovery as a large portion of the braking power needs to be diverted to the friction
brakes, rather than the electric motor, to cope with the braking load. This is why applying
ECO-driving to an aggressive driving style results in significant energy savings. Therefore,
good driving behavior is a requirement for proper regenerative braking action and is a
core component of ECO-driving. The ECO-driving method also ensures that regardless of
the velocity modification, the distances traveled between the ECO and non-ECO version
remains synchronized. This distance synchronization is important to convince many CBOs
to adopt ECO-driving principles for their routes, as they can still maintain their default bus
schedules even while limiting top speed and acceleration.
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Figure A4. Velocity modification for Eco-friendly profile generated for a standard driving cycle.

Appendix B.2. ECO-Comfort Functionality

Figure A5 shows how the ECO-comfort functionality dynamically alters the cabin
setpoint temperature throughout the day. The dynamic temperature setpoint of the ECO-
comfort depends on the passenger count inside the bus as well as the ambient temperature.
The temperature setpoint is devised to save the energy required for climate control at the
expense of slightly reduced passenger comfort. This means a little less cooling inside the
bus during summers and a little less heating inside the bus during winters. As well as dy-
namic temperature setpoints, ECO-comfort also uses pre-conditioning to reduce the energy
requirement needed for heating or cooling when the bus is in motion. Pre-conditioning
means to utilize the thermal management system to track the setpoint temperature of the
bus while it is connected to the grid for charging; thus appropriating the energy from the
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grid instead of the battery. The energy reduction by ECO-comfort is highly dependent on
the climate, e.g., for a hot climate, the maximum energy reduction due to ECO-comfort is
achieved during mid-summer, while for colder climates, the maximum energy reduction is
attained in mid-winter.
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Figure A5. The daily dynamic cabin setpoint temperature for a 12 m bus.

Appendix B.3. ECO-Comfort Functionality

Figure A6 shows the ECO-charging functionality, which makes use of pulsed charging,
instead of continuous charging. Since the charging is pulsed, the battery has a chance to
cool down in between the charging pulses; this reduces the temperature increase during
charging, and necessitates less cooling by the HVAC system. At the same time, this
also results in low c-rate charging on average, thus improving battery longevity. The
disadvantage of this charging method is that the battery will take longer to charge; to
mitigate this, either the charging duration needs to be increased, which is not always
possible due to bus scheduling constraints, or the battery size needs to be increased so that
the battery can deliver the range required during its scheduled operational period. Thus,
ECO-charging prevents excessive battery heating during charging, has minimal effect on
the vehicle’s energy requirements, and lowers the load on the electricity grid.
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Figure A6. ECO-charging profile highlighting the effects of pulsed charging functionality.
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