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Abstract: Face detection systems have generally been used primarily for non-masked faces, which
include relevant facial characteristics such as the ears, chin, lips, nose, and eyes. Masks are necessary
to cover faces in many situations, such as pandemics, crime scenes, medical settings, high pollution,
and laboratories. The COVID-19 epidemic has increased the requirement for people to use protective
face masks in public places. Analysis of face detection technology is crucial with blocked faces, which
typically have visibility only in the periocular area and above. This paper aims to implement a model
on complex data, i.e., by taking tasks for the face detection of people from the photo and in real-time
video images with and without a mask. This task is implemented based on the features around their
eyes, ears, nose, and forehead by using the original masked and unmasked images to form a baseline
for face detection. The idea of performing such a task is by using the Caffe-MobileNetV2 (CMNV2)
model for feature extraction and masked image classification. The convolutional architecture for
the fast feature embedding Caffe model is used as a face detector, and the MobileNetV2 is used for
mask identification. In this work, five different layers are added to the pre-trained MobileNetV2
architecture for better classification accuracy with fewer training parameters for the given data for
face mask detection. Experimental results revealed that the proposed methodology performed well,
with an accuracy of 99.64% on photo images and good accuracy on real-time video images. Other
metrics show that the model outperforms previous models with a precision of 100%, recall of 99.28%,
f1-score of 99.64%, and an error rate of 0.36%. Face mask detection was originally a form of computing
application, but it is now widely used in other technological areas such as smartphones and artificial
intelligence. Computer-based masked-face detection belongs in the category of biometrics, since it
includes using a person’s unique features to identify them with a mask on.

Keywords: deep neural network; face detection; face mask classification; Caffe-MobileNetV2 model;
transfer learning; feature extraction

1. Introduction

The face detection system is one of the most widely used techniques for detecting
human faces in digital photos and video images. Object classification in image processing
aims to detect all different shapes and colours of objects present in images and classify
them into the appropriate classes. Face detection, emotion classification, gender identi-
fication, and face mask recognition are examples of image processing tasks. The image
processing technique describes the process of extracting valuable information from im-
ages by applying procedures to them. Importing an image, performing operations, and
analysing the input image are some of the stages involved in producing the final results of
the transformed images.

Face detection has become an important topic due to its potential applications in
biometrics, human–computer interaction (HCI), and surveillance. It is critical to supervise
and monitor the use of face masks in public places. Despite advances in generic target
detection algorithms in other disciplines, face mask detection techniques are currently
less effective [1]. Some research has been conducted in this area by researchers who used
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the “you only look once v2” (YOLOv2) algorithm to build the detection model [2]. The
YOLOv3 algorithm is also utilized to improve feature extraction, which is an improved
spatial pyramid-like pooling structure [3]. Face mask detection also employs an algorithm
for eyelid face detection and an improved self-attention mechanism of the feature pyramid
network [4]. A modified YOLOv4 algorithm was developed for a tiny lightweight network
technique to obtain the most relevant features of multiple targets [5]. In general, the YOLO
network creates N predictions for bounding boxes for every grid with size G × G from an
image. The network cannot discover smaller items since each bounding box can only have
one class during prediction. Since the ratio of the bounding box is completely learned from
data, the major cause of YOLO’s problem is localization. This is due to YOLO’s errors with
unusual ratio bounding boxes [6].

Several transfer learning approaches can also be used to solve the problem of face
mask detection in the real world. As a transfer learning method, a pre-trained InceptionV3
model is used to detect people with or without masks [7]. The hybrid deep transfer learning
model that combines deep learning methods with traditional computer learning is used
for face mask detection [8]. The model was also created with a transfer learning concept
developed on the pre-trained MobileNetV2 model for real-time face mask detection and
localization [9].

Convolutional neural networks (CNN) are used in a cascading approach for detect-
ing masked faces [10]. In terms of modern approaches, the retina face mask network is
designed as a unique framework for correctly and effectively recognizing face masks [11].
Several experiments [12–14] were conducted to develop a technique that can automatically
determine whether or not the person is wearing a face mask. The YOLOv3 technique and
the haar cascading classifier are used to detect facial masks in real-time [15]. A comparison
of four reducing deep learning approaches are used in face recognition, namely, VGGFace,
FaceNet, OpenFace, and DeepFace [16]. A visual geometry group-16 (VGG-16) is also
used in deep neural network (DNN) methods [17] for face mask detection. The VGG-16
architecture for real-time face mask recognition is used to create real-time facial mask
identification with an alert system [18].

One of the well-researched practical issues is face detection and recognition. Significant
progress has been made in facial detection technology in last few years. It is difficult
because of the variations in facial structure and the existence of masks. The main goal of
this research is to improve the detection performance of various masked and unmasked
faces, particularly with regard to facial masks. The challenge of face mask detection in
the field of image processing and in computer vision has been shown to be extraordinary.
The main focus of the proposed research is to improve human protection by utilizing a
deep learning platform to identify people wearing a mask or not in public areas. The mask
detector will certainly and properly be utilized to help secure our protection. Furthermore,
it is sad to have lived during the COVID-19 period and witnessed what happened in the
world at the time. This motivates us to transform a real-world problem of having a habit of
wearing masks when going outside using machine learning techniques.

The face mask detection method proposed in this work used a transfer learning
approach to a pre-trained MobileNetV2 model, and the Caffe model as a single-shot
multibox detector for fine-tuning. Face mask detection is a natural extension of face
detection in the field of computer vision. The Caffe model works as a face coordinates
extractor; the classifier predicts the outcomes based on confidence values after receiving
the face dimensions. It is an easy task for humans to detect whether someone is wearing a
face mask or not by visualizing a human face, but it is more difficult for machines. This
problem is described as a computer vision issue that can be solved with the help of deep
learning (DL) techniques. This technology has the potential to be applied in a wide range
of real-world applications, including cancer detection, coronavirus identification, X-ray
sample analysis, crime scenes and for security improvement.

Previous studies and existing research methods have not focused on the problem
of developing a single model for detecting both photo and real-time video images with
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and without masks. All research studies have been performed on real-time video or
photo images separately. The main goal of our research is to create a model that can
solve these problems with lesser parameters, low computation cost, fast computation and
better accuracy.

The proposed Caffe-MobileNetV2 (CMNV2) model was used as a transfer learning
approach for face mask detection. The experiments were performed on the image dataset
and the webcam video images. In this work, OpenCV was used to detect human faces and
a deep learning technique was used to recognize the region of interest (ROI) as that of the
person’s face. The classification was performed using lightweights such as MobileNetV2
and Caffe models such as feature extractors and image classifiers. The proposed CMNV2
model was trained on the two-class image dataset and tested on the image dataset and the
webcam video images for the face mask classification. The bounding boxes were drawn
around the faces with either green or red colours based on the output, along with the
classified class name. The main contribution of the work is:

i. To train and test the CMNV2 model for detecting face masks in the photo image
dataset and real-time video images.

ii. A transfer learning method was used by adding five of our own layers in the Mo-
bileNetV2 model and developeing a modified architecture (CMNV2) as the pro-
posed model.

iii. Additionally, a modified MobileNetV2 model was used for various image dimensions,
including 224 × 224, 192 × 192, 160 × 160, and 128 × 128 to measure the performance
of the proposed model with different image dimensions.

iv. To select the best model, the modified MobileNetV2 model with different image
dimensions was compared to the existing MobileNetV1 model with different image
dimensions along with the Caffe model.

The remainder of the paper is categorized as follows: The related work is described in
Section 2. Section 3 discusses the significance of standard convolution and the convolution
used in the modified MobileNetV2. The proposed methodology using the modified Mo-
bileNetV2 with Caffe model for face detection is described in Section 4. The performance
of the proposed methodology and the confusion matrix and various metrics are described
in Section 5. The results containing face detection with and without masks along with the
proposed model accuracy are mentioned in Section 6. Finally, the paper’s conclusion is
summarised in Section 7.

2. Related Work

Several recent studies have been performed on face mask detection during COVID-19,
and those are presented in the literature. Deep learning-based approaches were developed
by researchers to study the issue of face mask detection [19]. To address the issue of masked
face recognition, ResNet50 was developed as a reliable solution based on occlusion removal,
as well as deep learning-based features [20]. AlexNet and VGG16 convolutional neural
network designs are used as transfer learning for the development of new models [21].
Technology has been developed that prevents the spread of viruses and uses deep learning
technology to ensure that people are wearing face masks correctly. The CelebA dataset
was used to develop a model to automatically remove mask objects from the face and
synthesize the corrupt regions while maintaining the original face structure [22]. A multi-
threading strategy with VGG-16 and triplet loss FaceNet dependent on the masked faced
recognition approach is proposed, which is built on MobileNet and Haar-cascade to detect
face masks [23]. The embedding unmasking model (EUM) method was designed, which
aimed to improve upon existing facial recognition models. The self-restrained triplet (SRT)
technique was utilized, which allowed EUM to produce embeddings corresponding to the
associated characters of unmasked faces [24]. The margin cosine loss (MFCosface) masked
faced recognition algorithm, which is dependent on a wide margin cosine loss design,
was proposed for detecting and identifying criminals. An attention-aware mechanism
was improved by incorporating important facial features that helps in recognition [25].
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An attention-based component using the convolutional block attention module (CBAM)
model was designed, which depends on the highlighted area around the eyes [26]. The
near-infrared to visible (NIR-VIS) masked faced recognition problem was analyzed in terms
of the training approach and data model [27]. A method called heterogeneous semi-siamese
training (HSST) was designed, which attempts to maximize the joint information between
face representations using semi-siamese networks.

A real-world masked face recognition dataset (RMFRD) is the largest real-world
masked face dataset used for research on the face verification problem by researchers. An
identity-aware mask generative adversarial network (IAMGAN) using a segmentation-
guided multi-level identification module was used to produce the artificial masked face
images from full face images [28]. A methodology utilized its own FaceMaskNet-21 deep
learning model and also the deep metric learning approach to generate 128-dimension
(128-d) face encodings [29]. This helps in face identification in static images and live video
streams, as well as static video files. An attention-based approach for recognizing masked
faces was proposed by combining a cropping-based strategy with a convolutional block
attention module (CBAM) [30]. The attention-based model, diverse and sparse attentions-
Face (DSA-Face), was developed for face recognition and face matching [31]. The DSA-Face
model is composed of pairwise self-contrastive attentions (PSCA) and a sparsity loss (ASL).
The PSCA was able to extract diverse local representations by enlarging pairwise attention
distances, whereas the ASL shrinks responses from distracted regions in attention maps
towards zero.

The single shot multibox MobileNetV2 (SSDMNV2) approach uses the single shot
multibox detector as a face detector, and the MobileNetV2 design serves as the classifier [32].
An end-to-end de-occlusion distillation architecture containing two modules has been
developed as a methodology to transfer the mechanism of a model completion for the
problem of masked face recognition [33]. The multi-granularity (MGL) model was designed
for three different forms of masked face datasets for recognition, such as the simulated
masked face recognition dataset (SMFRD), the masked face detection dataset (MFDD)
and the real-world masked face recognition dataset (RMFRD) [34]. A novel latent part
detection (LPD) approach was used to find the latent face portion that is robust to mask
use and it was then utilized to extract discriminative features [35]. A face mask recognition
approach that distinguishes between images with and without masks has been developed
for static images and real-time videos [36]. The ensemble of the first two-stage detectors was
developed for low inference time and high accuracy. A bounding box transformation was
also developed to increase the effectiveness of localization during mask recognition [37].

Deep neural networks can be used to handle image detection and recognition prob-
lems because the problem has grown more complex over time. However, adding more
layers to the networks makes them more complex and challenging to train; as a result,
accuracy degradation is frequently observed. ResNet, which stacks additional layers and
achieves improved performance and accuracy, was developed to address this problem [38].
Complex characteristics can be learned by the additional layers; however, the optimal
number of layers to add must be determined experimentally in order to prevent any model
performance reduction. One of the most significant and widely applied lightweight deep
neural networks for face recognition tasks is MobileNet [39], which is primarily dependent
on a streamlined design. Its architecture displayed a strong hyperparameter performance,
and faster calculations of the model [40]. As another well-known CNN-based architec-
ture, Inception and its variants [41–43] are unique such that they construct networks with
convolutional layers using modules or blocks as opposed to building them. The mod-
ules of Inception are replaced with depthwise separable convolutions in Xception [44], an
advanced extension of Inception.

3. MobileNetV2

A pre-trained version of the network called MobileNetV2 was loaded. This network
uses the ImageNet database [45]. The pre-trained network is able to classify images into
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different object categories. The modified MobileNetV2 model was used as a transfer learn-
ing model, and the Caffe model was used as a single shot detector (SSD) for identification
and verification. The MobileNetV2 architectural classifier is an improved version of the
MobileNetV1 architectural classifier. The MobileNetV2 model utilizes inverted residual
blocks with linear bottlenecks over the MobileNetV1. It has a significantly lower parameter
count than the original MobileNetV1. Larger image sizes provide a better performance,
and MobileNetV2 supports any input size greater than 32 × 32. The block diagram for the
MobileNetV2 architecture is represented in Figure 1. The model is like a CNN-based deep
learning model that utilizes layers such as convolutional, pooling, dropout, non-linear,
fully connected, and linear bottlenecks. The model consists of a 1 × 1 convolution layer,
seventeen 3 × 3 convolutional layers, a max pooling average layer, and a classification
layer. The algorithm must be run on sufficient datasets to train and classify the face with
or without the mask. The aim of the proposed technique is to improve the accuracy of
face mask detection with fewer trainable parameters. The most important building block
in MobileNetV2 is known as the depth-wise separable convolution (DWSC) layer, which
makes it very fast.

Figure 1. MobileNetV2 model.

The standard MobileNetV2 model was modified and improved by adding by our own
five layers in the architecture, which includes average pooling of 7 × 7 size, flattening, a
density of 128 neural networks, a dropout size of 0.5, and dense_1 of 2 for detection. Apart
from these layers, the remaining layers were used for feature extraction. Each layer and
individual building block, along with their output size, shape, and parameter count are
explained in Tables 1 and 2. The modified MobileNetV2 model required 164,226 trainable
parameters and 2,257,984 non-trainable parameters out of the 2,422,210 total parameters.
The standard MobileNetV2 model, on the other hand, required 2,223,872 trainable pa-
rameters and 34,112 non-trainable parameters out of a total of 2,257,984 parameters. The
main goal of the proposed model was to use a less number of trainable parameters for the
improved MobileNetV2 model than the standard MobileNetV2 model, because it did not
need to train the remaining parameters while they were being used for feature extraction
for the detection of the face with and without a mask.
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Table 1. Architecture of the Proposed Methodology-1(a).

Head:Layers Name Output Size Parameters Used
Input-1 (input layer) (224,224,3) 0
Convolution1D/Convolution2D (112,112,32) 864
Batch Normalization_Conv1 (112,112,32) 128
ReLU_Conv1 (112,112,32) 0
Extended Depthwise_Conv (112,112,32) 288
Extended Depthwise_Conv_BN (112,112,32) 128
Extended Depthwise_Conv_ReLU (112,112,32) 0
Extended Convolution2D (112,112,16) 512
Extended Batch Normalization_Conv (112,112,16) 64
Block-1:Layers Name Output size Parameters used Block-2:Layers Name Output size Parameters used
Extended_Conv2D (112,112,96) 1536 Extended_Conv2D (56,56,144) 3456
Extended_BN (112,112,96) 384 Extended_BN (56,56,144) 576
Extended_ReLU (112,112,96) 0 Extended_ReLU (56,56,144) 0
Zero Padding2D (113,113,96) 0 Depthwise_Convolution (56,56,144) 1296
Depthwise_Convolution (56,56,96) 864 Depthwise_BN (56,56,144) 576
Depthwise_BN (56,56,96) 384 Depthwise_ReLU (56,56,144) 0
Depthwise_ReLU (56,56,96) 0 Convolution2D (56,56,24) 3456
Convolution2D (56,56,24) 2304 Batch Normalization (56,56,24) 96
Batch Normalization (56,56,24) 96 Add (56,56,24) 0
Block-3:Layers Name Output size Parameters used Block-4:Layers Name Output size Parameters used
Extended_Conv2D (56,56,144) 3456 Extended_Conv2D (28,28,192) 6144
Extended_BN (56,56,144) 576 Extended_BN (28,28,192) 768
Extended_ReLU (56,56,144) 0 Extended_Relu (28,28,192) 0
Zero Padding2D (57,57,144) 0 Depthwise_Conv (28,28,192) 1728
Depthwise_Conv (28,28,144) 1296 Depthwise_BN (28,28,192) 768
Depthwise_BN (28,28,144) 576 Depthwise_ReLU (28,28,192) 0
Depthwise_ReLU (28,28,144) 0 Convolution2D (28,28,32) 6144
Convolution2D (28,28,32) 4608 Batch Normalization (28,28,32) 128
Batch Normalization (28,28,32) 128 Add (28,28,32) 0
Block-5:Layers Name Output size Parameters used Block-6:Layers Name Output size Parameters used
Extended_Conv2D (28,28,192) 6144 Extended_Conv2D (28,28,192) 6144
Extended_BN (28,28,192) 768 Extended_BN (28,28,192) 768
Extended_ReLU (28,28,192) 0 Extended_ReLU (28,28,192) 0
Depthwise_Conv (28,28,192) 1728 Zero Padding2D (29,29,192) 0
Depthwise_BN (28,28,192) 768 Depthwise_Conv (14,14,192) 1728
Depthwise_ReLU (28,28,192) 0 Depthwise_BN (14,14,192) 768
Convolution2D (28,28,32) 6144 Depthwise_ReLU (14,14,192) 0
Batch Normalization (28,28,32) 128 Convolution2D (14,14,64) 12,288
Add (28,28,32) 0 Batch Normalization (14,14,64) 256
Block-7:Layers Name Output size Parameters used Block-8:Layers Name Output size Parameters used
Extended_Conv2D (14,14,384) 24,576 Extended_Conv2D (14,14,384) 24,576
Extended_BN (14,14,384) 1536 Extended_BN (14,14,384) 1536
Extended_ReLU (14,14,384) 0 Extended_ReLU (14,14,384) 0
Depthwise_Conv (14,14,384) 3456 Depthwise_Conv (14,14,384) 3456
Depthwise_BN (14,14,384) 1536 Depthwise_BN (14,14,384) 1536
Depthwise_ReLU (14,14,384) 0 Depthwise_ReLU (14,14,384) 0
Convolution2D (14,14,64) 24,576 Convolution2D (14,14,64) 24,576
Batch Normalization (14,14,64) 256 Batch Normalization (14,14,64) 256
Add (14,14,64) 0 Add (14,14,64) 0
Block-9:Layers Name Output size Parameters used Block-10:Layers Name Output size Parameters used
Extended_Conv2D (14,14,384) 24,576 Extended_Conv2D (14,14,384) 24,576
Extended_BN (14,14,384) 1536 Extended_BN (14,14,384) 1536
Extended_ReLU (14,14,384) 0 Extended_ReLU (14,14,384) 0
Depthwise_Conv (14,14,384) 3456 Depthwise_Conv (14,14,384) 3456
Depthwise_BN (14,14,384) 1536 Depthwise_BN (14,14,384) 1536
Depthwise_ReLU (14,14,384) 0 Depthwise_ReLU (14,14,384) 0
Convolution2D (14,14,64) 24,576 Convolution2D (14,14,96) 36,864
Batch Normalization (14,14,64) 256 Batch Normalization (14,14,96) 384
Add (14,14,64) 0
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Table 2. Architecture of the Proposed Methodology-1(b).

Block-11:Layers Name Output Size Parameters Used Block-12:Layers Name Output Size Parameters Used
Extended_Conv2D (14,14,576) 55,296 Extended_Conv2D (14,14,576) 55,296
Extended_BN (14,14,576) 2304 Extended_BN (14,14,576) 2304
Extended_ReLU (14,14,576) 0 Extended_ReLU (14,14,576) 0
Depthwise_Conv (14,14,576) 5184 Depthwise_Conv (14,14,576) 5184
Depthwise_BN (14,14,576) 2304 Depthwise_BN (14,14,576) 2304
Depthwise_ReLU (14,14,576) 0 Depthwise_ReLU (14,14,576) 0
Convolution2D (14,14,96) 55,296 Convolution2D (14,14,96) 55,296
Batch Normalization (14,14,96) 384 Batch Normalization (14,14,96) 384
Add (14,14,96) 0 Add (14,14,96) 0
Block-13:Layers Name Output size Parameters used Block-14:Layers Name Output size Parameters used
Extended_Conv2D (14,14,576) 55,296 Extended_Conv2D (7,7,960) 153,600
Extended_BN (14,14,576) 2304 Extended_BN (7,7,960) 3840
Extended_ReLU (14,14,576) 0 Extended_ReLU (7,7,960) 0
Zero Padding2D (15,15,576) 0 Depthwise_Conv (7,7,960) 8640
Depthwise_Conv (7,7,576) 5184 Depthwise_BN (7,7,960) 3840
Depthwise_BN (7,7,576) 2304 Depthwise_ReLU (7,7,960) 0
Depthwise_ReLU (7,7,576) 0 Convolution2D (7,7,160) 153,600
Convolution2D (7,7,160) 92,160 Batch Normalization (7,7,160) 640
Batch Normalization (7,7,160) 640 Add (7,7,160) 0
Block-15:Layers Name Output size Parameters used Block-16:Layers Name Output size Parameters used
Extended_Conv2D (7,7,960) 153,600 Extended_Conv2D (7,7,960) 153,600
Extended_BN (7,7,960) 3840 Extended_BN (7,7,960) 3840
Extended_ReLU (7,7,960) 0 Extended_ReLU (7,7,960) 0
Depthwise_Conv (7,7,960) 8640 Depthwise_Conv (7,7,960) 8640
Depthwise_BN (7,7,960) 3840 Depthwise_BN (7,7,960) 3840
Depthwise_ReLU (7,7,960) 0 Depthwise_ReLU (7,7,960) 0
Convolution2D (7,7,160) 153,600 Convolution2D (7,7,320) 307,200
Batch Normalization (7,7,160) 640 Batch Normalization (7,7,320) 1280
Add (7,7,160) 0
Base:Layers Name Output size Parameters used
Convolution2D_Conv1 (7,7,1280) 409,600
Batch Normalization_Conv1 (7,7,1280) 5120
ReLU_Out (7,7,1280) 0
AveragePooling2D (1,1,1280) 0
Flatten (1280) 0
Dense (128) 163,968
Dropout (128) 0
Dense_1 (2) 258
Total parameters: 2,422,210
Trainable parameters: 164,226
Non-trainable parameters: 2,257,984

The five additional layers used in the pretrained architecture of the MobileNetV2 model
are highlighted in bold.

3.1. Depthwise Separable Convolution

A convolution is a mathematical technique that is commonly used by artificial neural
networks (ANNs) to create a convolutional neural network (CNN). CNN can classify data
as well as learn new characteristics by using image frames. CNNs are classified into several
types, one of which is depthwise separable CNNs. This type of CNN is frequently used
in comparison to traditional CNNs due to the following two factors: they have fewer
parameters to change, which reduces overfitting. They are appropriate for mobile vision
applications because they require fewer computations, making them less computationally
expensive. This study examines the efficiency of depthwise separable convolutional net-
works compared with simple convolutional neural networks and describes the architecture
and operations utilized in these networks.

The input data size was DF × DF × M, where DF × DF was the image size and M
was the number of channels (three for RGB images). A total of N filters or kernels were
considered for the convolutions of size DK × DK × M. The output size of a normal or
standard convolution (SC) operation will be DP × DP × N, which is shown in Figure 2.
The total complexity of the standard convolution can be computed by the multiplication of
the size of the kernel which is equal to DK × DK × M and the number of multiplications
in one convolution operation. There were N filters, and each filter traveled vertically and
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horizontally DP times. Therefore, the total number of multiplications per convolution was
DP × DP × N. The normal or standard operation cost or the complexity of convolution
operations is given in the Equation (1).

SCcost = (DK × DK × M)(DP × DP × N) = DP
2 × DK

2 × M × N. (1)

Figure 2. Standard Convolution.

Now coming to depthwise separable convolution (DWSC). This procedure is divided
into two steps: depthwise convolution (DWC) and pointwise convolution (PWC). In
contrast to standard convolution, which performs convolution on all M channels at the
same time, DWC operations only apply convolution to one channel at a time. As a result,
the filters or kernels in this case will be DK × DK × 1. It follows that M of these filters
are needed because there are M channels in the input data. Therefore, the output will be
obtained as DP × DP × M as shown in Figure 3. DK × DK multiplications are required for
a single convolution operation, since the filter is multiplied by DP × DP across each of the
M channels. Equation (2) gives the depthwise convolution operation cost.

DWCcost = (DK × DK × 1)(DP × DP × M) = DP
2 × DK

2 × M. (2)

Figure 3. Depthwise Convolution.

In the pointwise operation, 1 × 1 convolution is performed on the M channels. This
procedure will employ a 1 × 1 × M filter. The output size changes to DP × DP × N when
N such filters are obtained as shown in Figure 4. Each convolution operation necessitates
1 × M multiplications. Since DP × DP times travel through the filter. The pointwise
convolution operation cost is given in Equation (3).

PWCcost = (1 × 1 × M)(DP × DP × N) = DP
2 × M × N. (3)
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Figure 4. Pointwise Convolution.

The overall depthwise separable convolution (DWSC) cost is computed by sum of the
cost of depthwise convolution and the cost of pointwise convolution. The computational
cost of convolution operations is given in Equation (4).

DWSCcost = (DP
2 × DK

2 × M) + (DP
2 × M × N) = (DP

2 × M)(DK
2 + N). (4)

The proposed methodology MobileNetV2 utilized the depthwise separable convolu-
tion, which is well known for its fast computational time, and lower computational cost
compared to other models. The reduced computation cost of DWSC can be computed
by taking the ratio of the DWSC cost (DWSCcost) and the SC cost (SCcost), which is given
below in Equation (5).

Ratio(R) =
DWSCcost

SCcost
=

(DP
2 × M)× (DK

2 + N)

DP
2 × DK

2 × M × N
=

1
N

+
1

DK
2 . (5)

For N = 224 and DK = 3, the DWSC cost is reduced by nine times as compared to the
SC cost.

3.2. Inverted Residual Blocks

The inverted residual blocks consist of a skip connection connecting the beginning and
end of a convolutional block. The network will be able to access previous activations that
were not changed by the convolutional block by including these two states, which helps to
create networks with a lot of depth. A detailed observation of the skip connection shows
that an original residual block uses a wide-narrow-wide strategy. The input contains many
channels, which are reduced via a low-cost 1 × 1 convolution. The next 3 × 3 convolution
will then have fewer parameters as a result. In the end, another 1 × 1 convolution is
used to expand the number of channels to add input and output. On the other hand,
the MobileNetV2 utilizes inverted residual blocks as a narrow-wide-narrow strategy as
shown in Figure 5. In order to reduce the number of parameters for the subsequent 3 × 3
depthwise convolution, the network is first made wider using a 1 × 1 convolution. The
network is then restricted by another 1 × 1 convolution to match the original number
of channels.
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Figure 5. Inverted Residual Block.

3.3. Linear Bottlenecks

A linear bottleneck is an idea in which the final convolution of a residual block has a
linear output before it is added to the initial activations. The compressed, low-dimensional
representation is fed into the module after it has been quickly depthwise convoluted
into higher dimensionality before being filtered. Using a linear convolution, the features
contribute to a low-dimensional form. The collection of layer activation functions for a set
of real images used as input is the region of interest. According to this intuition, the overall
dimension of the activation space can be reduced using the width multiplier methodology
until the region of interest occupies the entire area.

The experimental results show that utilizing linear layers seems important because
it protects against non-linearity by removing excessive information. Utilizing shortcuts
straight in between bottlenecks is preferred because of the belief that they truly include all
the information required, even though such expansion layers are more simply associated
with an implementation detail for one non-linear tensor modification. According to the
purpose of traditional residual connections, the idea of adding shortcuts is really to increase
one’s capacity towards such a gradient that will spread over numerous levels. The tests
show that the inverted architecture performs much better and uses a less memory. It is a
key element of the architecture that input or output areas of the construction blocks such as
bottleneck layers and modification of layers, a non-linearity functional which changes the
input to output, will be properly separated.

4. Materials and Methods

The proposed methodology includes the CMNV2 model, which is used for photo
images and real-time face mask detection on live webcam video streaming. The proposed
CMNV2 method was created with the DNN architecture using TensorFlow, Keras, and
OpenCV libraries to detect face masks in real-time. In the proposed model, two sets of
files were used to explore the model architecture and store the weights for each layer. The
first is the prototxt file, which contains the layer model architecture, and the second is
the Caffe model, which stores the weights for each layer. An image may contain multiple
objects, with non-linear boundaries between them. An activation function known as ReLU
was used after each convolution layer to introduce non-linearity into the neural network.
The ReLU function is linear for all positive values of the convolution layer output and
zeroes for all negative values. After training the proposed model, this model was used for
the classification of photos and real-time video images, as shown in the block diagram of
Figure 6.
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Figure 6. Block Diagram.

The following steps describe the above block diagram of the proposed CMNV2 model.
Step 1: In this work, a dataset of the joint photographic expert group (JPEG)/ portable

network graphics (PNG) images of people’s faces with and without masks was used.
Step 2: The images were arranged in two folders, one with a mask and one without a

mask. The images were then labeled using the graphical tool ‘labeling’. Both the training
and testing datasets for these labels contained label data for each image.

Step 3: The data of a total of 1376 images were randomly split into training and testing
each time, and stratification was used to determine the ratio of masked and unmasked data
in the training and test data.

Step 4: The collected images were mainly split into two categories. The first one
of them is a training dataset consisting of 1100 images, representing 80% of the entire
dataset. The second category is the testing data, which consists of the remaining 276 images,
representing 20% of the total dataset.

Step 5: After processing the training and testing data, various batches were used to
determine the number of samples to process before updating the model.

Step 6: The model training was used to run the algorithm on the input data and
compare the processed results with the sample output, which is explained in Section 4.2.

Step 7: After loading the modified MobileNetV2 and Caffe model, the proposed
CMNV2 model was saved and later utilized for the testing dataset as explained in Section 4.3.

Step 8: Testing the model output results with the display of photo and real-time videos
images is explained in Section 4.4.

Prajna Bhandary created a dataset of 1376 images related to the artificial mask by
adding facial masks to standard images of faces to categorize the class of masked images
dataset. There are 690 images with masks and 686 images without masks among them.
The ‘Prajna Bhandary’ dataset, which is available and taken from GitHub [46], contains
images of people with and without masks. During the proposed methodology, we used an
additional five of our own images, one with a mask and four without, to test the model’s
accuracy on the different datasets. The proposed research paper has a total data of 1381
images as shown in Figure 7.
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Figure 7. Data Visualization.

4.1. Data Preprocessing

The dataset was saved in a folder on the laptop after being downloaded so that the
following step may be accessed from there. Pre-processing is a function that loads all files
from a folder as input and resizes the images for future use with the proposed model. The
images are pre-processed by adding the data after loading and converting it to an array.
To speed up the calculation, the images were converted to a numerical python (NumPy)
library, utilized for working with the values. The pattern was first analyzed by storing the
image data in the label binarizer (LB) to identify categories 0 and 1 integer values. The next
step was to go to the images and split them into training and testing sets.

4.2. Model Training

A detailed representation of the proposed model design flow is shown in Figure 8.
As a base model, the pre-trained MobileNetV2 model was loaded from ImageNet. After
loading the base model, we added our own five layers for the transfer learning, as shown
in Table 2. The added layers consist of average pooling of 7 × 7 size, flattening, a density of
128 neural networks, a dropout size of 0.5, and dense_1 of 2. These layers helped to improve
the performance of the modified MobileNetV2 using fewer parameters by obtaining an
average value using the average pooling layer. Flattening helps to come into a single
dimension. A dense layer such as an activation function such as rectified linear unit (ReLU)
was used to create fully connected layers, in which every output depends on every input.
Certainly, preventing overfitting is helped by adding a dropout layer, followed by adding
two dense layers for binary classification. Due to the existence of more than one output
neuron, the softmax function was utilized.

To prevent the loss of previously acquired characteristics, the base layers were frozen.
A new set of trainable layers was added, and these layers were trained using the acquired
dataset to find the attributes that could be utilized to classify a mask-wearing face from a
face without a mask. Following that, the weights were saved and the model was modified.
By using these pre-trained models, a model can take the benefit of bias weights without
spending extra computational expenses and the ability to retain learned features without
forgetting them. Afterward, the summary of the proposed methodology is included. Then,
the modified MobileNetV2 model was trained with more additional parameters such as a
learning rate of 0.001, 35 epochs and a batch size of 21. Many deep learning applications,
such as computer vision, use the Adam optimizer. We utilized the Adam optimizer, which
adjusts the learning rate for each neural network weight by estimating the first and second
moments of the gradient. The suitable algorithm performed transfer learning to modify the
weights in the neural network after each batch was received. A neural network was trained
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and finally saved for use in making predictions on the image dataset and the real-time
video images.

Figure 8. Flow of the Design.

4.3. CMNV2 Model

The Caffe-MobileNetV2 (CMNV2) model is the proposed model that combines Caffe
and MobileNetV2 for face mask detection. After training the CMNV2 model, the model
can be used for face mask detection as the Caffe model for FaceNet and the modified
MobileNetV2 model for MaskNet. Loading a face detector model which is better designed
as a Caffe model used a pre-trained model which needed to import two files of prototxt
as well as loading the modified MobileNetV2 model as a mask detector. The DNN was
further trained to detect and predict using the modified MobileNetV2 model for MaskNet,
along with the Caffe model for FaceNet, and then the frame’s dimensions were captured
and a blob function was created. The blob function’s input and initialization of the list of
faces, their corresponding locations and list of predictions were set. The DNN model was
used to process the previously imported files and also loaded the modified MobileNetV2
main model by adding parameters. When the test images were loaded, the model took the
loaded image and converted it to a value for the classification.

4.4. Model Testing

After loading the Caffe-MobileNetV2 (CMNV2) model, the testing data of photos and
real-time video images were loaded for determining whether the person is wearing a mask
by predicting their facial features and obtaining a level of confidence. Although there is a
probability of detection on photo images, it will first compute the X and Y coordinates of
the bounding box of the objects before detecting the face if the probability is greater than
the threshold value for real-time video image detection. It was ensured that the bounding
boxes fit within the frame’s boundaries by establishing the class label ‘with mask’ in green
and ‘without mask’ in red. These were used to create the text and bounding box. The
text contained the label with a probability value for photo image detection and should
contain the label for real-time video detection. Images were scaled with RGB dimensions
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of photo images and real-time video images in different channels using the blob function
by utilizing a combination of prototxt files; the face was detected by adding the label and
bounding boxes. Finally, the prediction of the photo images and real-time video images
output results are displayed.

5. Performance Discussion of the Proposed CMNV2 Model

As discussed in Section 4, a total of 1376 images created by Prajna Bhandary were
used in this research paper. The dataset was divided into 1100 images that represent 80% of
the dataset and 276 images that represent 20% of the dataset. A total of 1100 images were
used to train the proposed model and 276 images were used to test the model. The test
dataset consists of 138 images with masks and the remaining 138 images without masks.
After training of the model, the test accuracy of the proposed model is 99.64% for face
mask classification.

The performance measures of the proposed CMNV2 model are also presented using
a confusion matrix, which is displayed in the form of a summarized table and is used to
assess the efficiency of the model’s classifications [47]. A true positive occurs when the
predicted class and the actual class of the data point are both ‘with mask’. A true negative
occurs when the predicted class is ‘without mask’ and the actual class of the data point is
also ‘without mask’. False positives occur when the actual class of a data point is ‘without
mask’ but the predicted class is ‘with mask’. False negatives occur when the actual class of
a data point is ‘with mask’ but the predicted class is ‘without mask’.

The generalized confusion matrices and the confusion matrix for the classification by
proposed model are shown in Figure 9a,b, respectively. The proposed CMNV2 methodology
was evaluated based on the acquired measures, such as accuracy, precision, recall (or)
sensitivity, f1-score and error rate. From Figure 9b it can be clearly observed that the true
positive (TP) value is 137, the true negative (TN) value is 138, the false positive (FP) value
is 0, and the false negative (FN) value is 1.

(a) (b)
Figure 9. (a) Confusion matrix of standard form, (b) Confusion matrix of CMNV2 proposed model.

For the proposed CMNV2 model using a two-class binary classifier, metrics for the
output of binary classification with and without masks were developed and the accuracy,
precision, recall, f1-score, and error rate were obtained.

5.1. Accuracy

The accuracy is the most widely used evaluation metric for recognition and catego-
rization challenges. It calculates the proportion of correct predictions to the total number of
samples. The Equation (6) gives the model accuracy for classification.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
= 0.9964 = 99.64%. (6)
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5.2. Precision

Precision in positive observations is defined as the ratio of correctly predicted positive
observations to all predicted positive observations. Equation (7) gives the classification
precision value.

Precision =
TP

(TP + FP)
= 1 = 100%. (7)

5.3. Recall

The recall is defined as the ratio of correctly predicted positive observations to all
actual class observations. Equation (8) gives the recall value for the classification.

Recall =
TP

(TP + FN)
= 0.9928 = 99.28%. (8)

5.4. F1-Score

The F1-score is computed by harmonic mean of precision and recall. As a result, this
score considers both false positives and false negatives. Equation (9) yields the classifica-
tion’s F1-score.

F1 − score =
(2 × Precision × Recall)
(Precision + Recall)

= 0.9964 = 99.64%. (9)

5.5. Error Rate

The reverse of the accuracy is the error rate, also known as the misclassification rate.
This metric indicates the number of samples from both the positive and negative classes
that are misclassified. Equation (10) gives the error rate of the model for classification.

Errorrate = (1 − Accuracy) = 0.0036 = 0.36%. (10)

The developed CMNV2 model can detect faces with and without masks accurately
and uses fewer parameters than the existing models, according to experiments.

According to our research paper, the overall model achieved an accuracy of 99.64%
and when it comes to precision calculations, the false positive (FP) value is zero. The
100% precision value is obtained by substituting the values of the confusion matrix into
Equation (7) in our manuscript.

6. Results Visualization

All of the research was completed on a laptop with an Intel(R) with Core(TM) of
i3-1005G1 CPU processor with 1.2 GHz, 8 GB of RAM, and a 64-bit operating system
with an x64-established processor. For the construction and implementation of the many
experimental paths in the proposed paper, Python 3.9 version kernel, and Jupyter Notebook
tools, were utilized. The proposed CMNV2 model was applied to the photo image dataset
and to the extracted real-time video images from the webcam for the classifications.

The proposed model makes predictions based on the training dataset’s pattern and
labels. The visualization of the classification results of the photo images data and video
images are shown in Figure 10 and Figure 11, respectively. The face with a proper mask
is displayed with a green bounding box and the face without/with an incorrect mask is
displayed with a red bounding box. The classification accuracy of our model is 99.64%
on the test dataset. The accuracy and the loss curve for the training and testing data of
the images are shown in Figure 12. The training and test accuracy are represented by the
green colour and blue colour, respectively, in Figure 12a. The training and testing loss
are represented by the green colour and blue colour, respectively, in Figure 12b. Table 3
indicates that the proposed model produces better results in all metrics for the classification
of faces with and without masks.
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The proposed CMNV2 model was mainly tested and trained on images of straight
faces with and without masks. This model performs less accurately in real-time video
images with sudden facial movements than in still images.

Figure 10. Face detection with and without masks in photo images.

Figure 11. Face detection with and without masks in real-time video images.
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(a) (b)
Figure 12. (a) Accuracy curve for training and testing, (b) Loss curve for training and testing.

Table 3. Comparison of different dimension images of MobileNetV1 and MobileNetV2 implemented
along with Caffe model.

Sl.No. Model Version (Dimension) Accuracy% Precision% Recall% F1-Score% Error Rate%

1 MobileNetV1 (128 × 128) 93.84% 99.18% 88.40% 93.48% 6.16%
2 MobileNetV1 (160 × 160) 94.20% 99.19% 89.13% 93.89% 5.80%
3 MobileNetV1 (192 × 192) 94.56% 99.20% 89.85% 94.29% 5.44%
4 MobileNetV1 (224 × 224) 94.92% 98.43% 91.30% 94.73% 5.08%
5 MobileNetV2 (128 × 128) 97.82% 98.53% 97.10% 97.80% 2.18%
6 MobileNetV2 (160 × 160) 98.19% 98.54% 97.82% 98.18% 1.81%
7 MobileNetV2 (192 × 192) 98.55% 98.55% 98.55% 98.55% 1.45%
8 MobileNetV2 (224 × 224) 99.64% 100% 99.28% 99.64% 0.36%

The classes are evenly distributed, and accuracy calculated using Equation (6) is a
good starting point. The performance measure of the several versions of MobileNetV1 and
MobileNetV2 with different dimension images are also calculated and compared in terms
of various metrics such as accuracy, precision, recall, f1-score, and error rate as shown in
Table 3 and displayed in Figure 13a–c.

The results of our proposed CMNV2 model in terms of accuracy and with fewer
parameters utilized in comparison with other various models are summarised in Tables 4
and 5, which show that the proposed CMNV2 methodology performed better than other
existing models.

(a) (b)
Figure 13. Cont.
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(c)
Figure 13. Comparison graphs of various dimension images: (a) accuracy, precision (b) recall and
f1-score and (c) error rate of MobileNetV1 and MobileNetV2 implemented along with Caffe model.

Table 4. Comparison of various models’ accuracy.

Sl.No. Model Name Year Accuracy%

1 ResNet50 [19] 2021 47.00%
2 OpenFace [16] 2020 63.18%
3 DeepFace [16] 2020 63.78%
4 MTCNN+FaceNet [48] 2020 64.23%
5 FaceNet [16] 2020 67.48%
6 VGG-Face [16] 2020 68.17%
7 IAMGAN [28] 2020 86.50%
8 FaceMaskNet21 [29] 2022 88.92%
9 DSA-Face [31] 2021 91.20%
10 CNNs [20] 2022 91.30%
11 CBAM [30] 2021 92.61%
12 SSDMNV2 [32] 2021 92.64%
13 GANs [33] 2020 94.10%
14 MGL [34] 2020 95.00%
15 FaceNet [49] 2020 97.00%
16 LPD [35] 2020 97.94%
17 CNN [36] 2022 98.00%
18 ResNet50 [37] 2021 98.20%
19 LW-CNN [50] 2022 98.47%
20 CMNV2 (Proposed Model) 2022 99.64%

Our CMNV2 model in terms of accuracy is represented in Table 4 and displayed
in Figure 14. Our proposed model of CMNV2 requires fewer parameters for face mask
detection compared to other different methodologies [50,51] as illustrated in Table 5.

The 224 × 224 photo image dimension that was utilized in this research presents
higher classification accuracy as compared to 192 × 192, 160 × 160, and 128 × 128 size
image dimensions. This has been theoretically and practically seen throughout testing on
the photo and real-time video images. This proposed method can be integrated with CCTV
cameras, and the data can be used to determine whether any of their employees or patients
are not wearing masks in hospitals or offices. If a person is discovered without a mask,
a message can be sent to instruct them to wear one. This methodology can be helpful to
maintain safety requirements in an attempt to prevent the spread of any airborne disease.

Limitations of the study: The proposed CMNV2 model was mainly tested and trained
on images of straight faces with and without masks. Our model is less accurate with
sudden facial movements in real-time video images, than it is with still faces. The overall
model accuracy of our research decreased due to this.
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Figure 14. Comparison graph of various models’ accuracy.

Table 5. Comparison of various models’ parameters and total layers.

Sl.No. Name of the Model Parameters Used Total Layers Used

1 VGG19 143,000,000 19
2 VGG16 138,000,000 16
3 AlexNet 62,000,000 8
4 InceptionV2 56,000,000 48
5 Inception-ResNetV2 56,000,000 164
6 ResNet101 44,000,000 101
7 InceptionV4 43,000,000 164
8 InceptionV3 24,000,000 48
9 Xception 23,000,000 71
10 ResNet50 22,500,000 50
11 MobileNetV1 13,000,000 30
12 GoogleNet 7,000,000 27
13 MobileNetV2 3,500,000 53
14 CMNV2 (Proposed Model) 164,226 159

7. Conclusions

The proposed research describes the methodology for detecting masked faces by
modifying the MobileNetV2 method and the Caffe model. Our research implemented
the proposed model with software using Python 3.9 related libraries such as TensorFlow,
Pandas, Keras, scikit learn (sklearn) and OpenCV. The installed Anaconda Navigator
experience of Juypter notebook made it easy and convenient to continue our research,
compared to using Pytorch. The transfer learning technique helped the model to distinguish
between people wearing or not wearing a face mask. The dataset of images and real-time
video frames from a webcam were used to validate the efficiency of the face mask classifier.
The effectiveness of the model was determined using accuracy, precision, recall, f1-score,
and error rate. The proposed methodology worked substantially very well on the dataset
with an accuracy of 99.64%. A face mask classifier was also used for real-time video
images. Experimental results for video images are accurate when faces are localized by
a webcam using the CMNV2 model after the classifier detects the face locations. Using
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video surveillance as an input in public places, government agencies can benefit from this
detection process. An implementation of this approach was successfully tested in real-time
by installing a model of CMNV2. The proposed method can significantly reduce violations
through real-time intervention, thus saving time and improving public safety by slowing
airborne transmission. A facial mask detection approach in real-time can be used in a
variety of places such as in airports, shopping malls, subway stations, temples, offices,
hospitals, educational institutions, etc.
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