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Abstract: End-to-end text-to-speech (TTS) models that directly generate waveforms from text are
gaining popularity. However, existing end-to-end models are still not natural enough in their prosodic
expressiveness. Additionally, previous studies on improving the expressiveness of TTS have mainly
focused on acoustic models. There is a lack of research on enhancing expressiveness in an end-to-
end framework. Therefore, we propose HierTTS, a highly expressive end-to-end text-to-waveform
generation model. It deeply couples the hierarchical properties of speech with hierarchical variational
auto-encoders and models multi-scale latent variables, at the frame, phone, subword, word, and
sentence levels. The hierarchical encoder encodes the speech signal from fine-grained features into
coarse-grained latent variables. In contrast, the hierarchical decoder generates fine-grained features
conditioned on the coarse-grained latent variables. We propose a staged KL-weighted annealing
strategy to prevent hierarchical posterior collapse. Furthermore, we employ a hierarchical text encoder
to extract linguistic information at different levels and act on both the encoder and the decoder.
Experiments show that our model performs closer to natural speech in prosody expressiveness and
has better generative diversity.

Keywords: text-to-speech; hierarchical VAE; expressive TTS; multi-scale; end-to-end

1. Introduction

Text-to-Speech (TTS) is a technique that takes text as an input and produces audible
speech as an output. With the rapid development of machine learning over the years, the
TTS technology has made remarkable progress in its goal of generating natural speech
that is close to human speaking. However, there is still a huge gap in the diversity of the
expressiveness of generated speech compared with natural speech. Therefore, improving
the expressiveness of synthesized speech and enriching the diversity of expressiveness has
become a hot topic.

Speech is a hierarchical system [1] that comprises phonemes, syllables, words, phrases,
and sentences. Phonemes and syllables are defined by phonetic features; words, phrases
and sentences are mainly defined by semantic knowledge. Due to the hierarchical proper-
ties of speech, many studies aim to use multi-scale information to enrich the expressiveness
of speech synthesis. Sentence-level style vectors are first adopted in CHiVE [2], where
linguistic information of the different scales is introduced to both encoding and decoding
networks of a variational autoencoder (VAE). However, single scale style representation is
not expressive enough. Researchers focus on using multi-scale style vectors later. Google [3]
introduced phoneme and word-level latent variables to Tacotron2 to enhance generation
diversity by sampling. HiMuV-TTS [4] investigated phoneme and sentence-level variables
on FastSpeech. Moreover, the extracted style vectors are semantically related to the text.
Randomly sampling from latent variables leads to unnatural prosody. Therefore, MsE-
moTTS [5] was proposed to predict syllable and sentence-level style vectors from text
for inference. Lei et al. [6] subsequently used hierarchical textual information to predict
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multi-scale prosody information. However, there still remain some problems in the existing
research on multi-scale style modeling. First, the style vectors of different scales are usually
extracted in parallel. The dependence of different scale style vectors is not considered.
Second, the style extraction and style prediction modules are not jointly optimized, which
leads to a mismatch between training and inference. Finally, previous work on style has
modeling mainly focused on acoustic models, resulting in poor sound quality. The frame,
as the basic unit of speech acoustic features, is also an important scale level in the speech
generation process because it connects phonetic information to the speech waveform signal
generation process. New models, VITS and NaturalSpeech [7,8], utilize frame-level vari-
ables to implement end-to-end training of acoustic models and vocoder, which significantly
improves synthetic sound quality

We believe that, for a specific speech segment, style vectors of different scales all
describe the same style pattern, and the main difference is that coarser-grained vectors
depict changes over a longer period of time, and finer-grained vectors enrich more detail.
Therefore, in the process of style extraction [1], fine-grained style features should be
extracted first, and then coarse-grained information is abstracted on top of the fine-grained
information. The process of predicting is just the opposite [9]. First comes generating coarse-
grained information to set the overall tone. Then, more fine-grained style information is
predicted based on the coarse-grained style. In this way, styles of different scales can be
coordinated and organized.

We can view linguistic, phonological, and acoustic features as the representations of
speech at different scales. Therefore, we propose an expressive end-to-end text-to-waveform
generation model called HierTTS. It considers the latent variables of frames, phonemes,
syllables, words, and sentences and achieves highly expressive speech generation by mining
multi-scale information from both modalities, text and speech. In addition, we employ a
Gaussian distribution to model the latent variables at each scale. Gaussian sampling helps
to enrich generation diversity. To prevent the posterior collapse of hierarchical VAE, we
employed a staged Kullback–Leibler (KL) weighted annealing strategy.

Our contributions can be summarized as follows:

• A highly expressive TTS model which deeply couples the hierarchical properties of
speech with hierarchical VAE.

• A staged KL-weighted annealing strategy that helps eliminating posterior collapse in
hierarchical VAE.

2. Background
Hierarchical Variational Auto-Encoder

The variational autoencoder is a neural network generative model [10]. Given a dataset
X = [x1, x2..., xN ], VAE defines a prior distribution p(z) and models the joint distribution
p(x, z) with p(z)p(x|z), where p(x|z) is the decoder to generate data point x from latent
variable z. Due to true posterior p(z|x) being usually intractable, VAE utilizes an encoder
q(z|x) to approximate the posterior distribution. Generally, the prior distribution p(z)
usually adopts the standard Gaussian distribution with independent components. VAE is
optimized by minimizing reconstruction loss and KL divergence between prior distribution
p(z) and the estimated posterior q(z|x) using resampling tricks.

log pθ(x) ≥ Eqφ(z|x) log pθ(x | z)− KL
[
qφ(z | x)||p(z)

]
| (1)

However, the assumption of a Gaussian distribution makes it difficult to model a
more complex distribution. If the latent variable needs to model a more complex distribu-
tion, an ordinary VAE will lead to oversmoothing. Hierarchical variational autoencoders
(HVAEs) [11,12] improve the complexity of both prior and posterior distributions by mod-
eling hierarchically-dependent latent variables. A hierarchical VAE can be viewed as a
series of VAEs stacked together. Apart from observed variables x, it contains hierarchical
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latent variables {z1, z2, . . . , zL}, where L represents the number of hierarchies. According
to the chain rule, the joint distribution can be decomposed into:

p(x, z1, . . . , zL) = p(x | z≥1)
L

∏
`=1

p(z` | z<`) (2)

The prior and estimated posterior distributions are pθ(z) = ∏` pθ(z` | z<`) and qφ(z |
x) = ∏` qφ(z` | z<`, x), respectively. The conditional distribution of each level of prior
and estimated posterior adopts the standard Gaussian distribution with independent
components. Hierarchical VAEs extract the posterior distribution from the data based
on a bottom-up path and follow a top-down path to generate the prior distribution and
reconstruct samples. This architecture helps the model learn the hierarchy between latent
variables efficiently. The evidence lower bound (ELBO) of HVAE are

log pθ(x) ≥ Eqφ(z|x) log pθ(x | z)−
L

∑
`=1

Eqφ(z<`|x)
[
KL
[
qφ(z` | x, z<`) | pθ(z` | z<`)

]
(3)

where qφ(z` | x, z<`) and pθ(z` | z<`) are the approximate posterior and prediction priors
at the `th layer, respectively.

HVAE was first applied on the high-resolution image task, and then BVAE-TTS [13],
and VARA-TTS [14] applies it to the acoustic model of speech synthesis. However, they
only modeled the generation process from the phoneme to the Mel spectrogram. They did
not consider the hierarchical characteristic of speech in the network structure’s design. In
addition, due to the posterior collapse, some hidden variables in the hierarchical structure
are not activated. The Mel spectrogram generated by BVAE-TTS is very blurred. Unlike
these two approaches, we built hierarchical networks that directly generate waveforms.
Furthermore, we closely combine the hierarchical properties of speech with hierarchical
VAE to further improve prosodic expressiveness.

3. Method
3.1. Overview

Considering the hierarchical properties of speech, we propose HierTTS, which deeply
couples the hierarchical properties of speech into VAEs. The overall architecture is shown in
Figure 1, which contains a hierarchical audioencoder (HAE), a hierarchical context encoder
(HCE), and a hierarchical audiodecoder (HAD). HierTTS introduces five latent variables
at different temporal resolutions—the sentence, word, subword, phoneme, and frame
levels. First, HAE extracts the hierarchical latent variables from the linear spectrogram in a
fine-to-coarse manner, and then the HAD reconstructs the speech waveform from coarse-
to-fine leveraging-extracted hierarchical latent variables. To introduce text information,
HCE obtains linguistic and phonological information at different scales from phoneme
and character sequences and then injects it into each hierarchy of HAE and HAD. For the
modeling of duration, we inject phoneme-scale durations at the phoneme-level encoder and
reconstruct the durations using the phoneme decoder. Thus, the duration and waveform
reconstruction share some of the hierarchical hidden variables, which facilitates learning
more consistent prosody. The training goal of HierTTS is to maximize the lower bound of
evidence (ELBO) for the marginal log-likelihood log pθ(x,D | c).

ELBO =Eqφ(z|x) log pθ(x,D | z, c)−Eqφ(z<5|x,D,c)
[
KL
[
qφ(z5 | x, z<5) | pθ(z5 | z<5)

]
−

4

∑
`=1

Eqφ(z<`|x,D,c)
[
KL
[
qφ(z` | x,D, z<`, c`) | pθ(z` | z<`, c`)

] (4)

where z` and c` denote the latent variables and linguistic features located at the `-th level,
respectively. The first term represents the reconstruction loss, and the second and third
terms denote the Kullback–Leibler (KL) divergence. Since the second term models the
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frame-level latent variable, it does not conditionally depend on linguistic features. In the
training phase, HAE learns the posterior distribution of the latent variables to guide the
prior distribution in HAD. However, HAD directly generates a speech waveform using
predicted prior at the inference. The specific structure of HierTTS is described in detail in
Section 3.5.
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Figure 1. The architecture of HierTTS.

3.2. Reconstruction Losses

The reconstruction loss contains two parts: waveform reconstruction and duration
reconstruction. For the waveform reconstruction loss, we use the multi-precision STFT
loss [15] instead of calculating the waveform directly. It is equivalent to the sum of multiple
spectrogram losses computed using various STFT parameter sets, consisting of a spectral
convergence loss and a logarithmic STFT magnitude loss. It is defined as follows:

Lsc(s, ŝ) =
‖s− ŝ‖F
‖s‖F

, Lmag (s, ŝ) =
1
S
‖(log(s)− log(ŝ))‖1 (5)

Lst f t =
1
M

M

∑
m=1

Ex,x̂
[
Lsc(sm, ŝm) + Lmag(sm, ŝm)

]
(6)

where ‖.‖F and ‖.‖1 represent the Frobenius and L1 norm, respectively. s denotes the
number of elements in the spectrum, and M is the number of sets of STFT parameters
chosen. Similarly to VITS and FastSpeech2s [16], we employ a window training strategy,
only taking fragments of speech generated for calculating the waveform reconstruction loss.

For the duration reconstruction loss, we first get the phoneme duration as the target
with the help of an external alignment tool and then optimize the duration reconstruction
using the log-scale L2 loss.

Ldur =
∥∥∥log

(
Dtarget

)
− log

(
Dpredict

)∥∥∥
2

(7)
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3.3. Adversrial Training

To further enhance the waveform generation, we introduce adversarial training in
the time domain and frequency domain [17]. A multi-precision spectral discriminator
(MRSD) is employed to discriminate speech from different levels of temporal and spectral
precisionsfrom different temporal and spectral accuracies. Additionally, a multi-period
waveform discriminator (MPWD) is used to enhance the detailed adversarial modeling in
the time domain. For the MPWD, the periodic components of the waveform are extracted
at a set of prime intervals and used as input for each sub-discriminator. In this paper, we
use the objective function of least squares [18] to perform adversarial training.

LG =
1
K

K

∑
k=1

Ez,c

[
(Dk(G(z, c))− 1)2

]
(8)

LD =
1
K

K

∑
k=1

Ex

[
(Dk(x)− 1)2

]
+Ez,c

[
Dk(G(z, c))2

]
| (9)

In these equations, Dk denotes the k-th sub-discriminator of MPWD and MRSD, and
K denotes the total number of sub-discriminators.

3.4. Staged KL Weighted Annealing

Hierarchical VAEs are difficult to train [19,20], since the latent variables in the higher
hierarchy tend to remain independent of the input data, which is the so-called phenomenon
of posterior collapse. Eventually, there will be a tendency for the posterior distribution
to fall back to the prior distribution. This problem is especially severe at the hierarchy
furthest from the input: When training the HierTTS with a true variational lower bound,
we found that the KL divergence at the sentence and word levels drops rapidly to zero,
indicating that those upper hierarchy neurons may not be activated. Therefore, inspired
by Beta-VAE [21], we propose the mechanism of staged KL weight annealing for HVAE
training, where we set different weights for KL terms of different scales. Like a waterfall, to
let the information gradually flow from the bottom latent variable to the top, we ensure a
drop in KL weights in the adjacent hierarchy. The KL weight far away from the output is
relatively higher. As shown in Figure 2, in the initial stage of training, we set lower weights
for the overall KL items and increased the KL weights from fine-to-coarse step by step as
the training progressed. The closed term of KL divergence at the `-th level will be

KL` =
∫ 1√

2πσ1
e
− (x−µ1)

2

2σ2
1

[
log

σ2

σ1
+

(x− µ1)
2

2σ2
1

− (x− µ2)
2

2σ2
2

]
dx (10)

where µ1, σ2
1 and µ2, σ2

2 represents the parameters of `-th estimated posterior and predicted
prior. After combining the VAE loss and GAN loss, the final loss of the training phase is

Ltotal = Ldur + Lst f t +
5

∑
`=0

β` ∗ KL` + Ladv(G) (11)

where β` denotes the penalty weight of the KL term at the `-th level.
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Figure 2. Weight changes of different scales.

3.5. Component of HierTTS

In this section, we will describe the components of HierTTS, including HAE, HAD,
and HCE. It is worth mentioning HAE is only used in the training phase.

3.5.1. HAE

HAE estimates the posterior distribution of hierarchical latent variables from fine
to coarse. We first generate frame-level representations from the linear spectrogram.
Then, frame-level representations are sequentially down-sampled into phoneme-level,
subword-level, word-level, and sentence-level representations using hard alignment. The
posterior distribution parameters of the corresponding hierarchy can be obtained with
affine transformation.

HAE contains five components: the frame, Frame2Phone, Phone2Subword,
Subword2Word, and Word2Sentence encoders. For the frame encoder, we use the non-
causal WaveNet residual block in WaveGlow [22], Glow-TTS [23], and VITS. The WaveNet
residual block consists of a dilated convolutional layer with gated activation units and
skipped connections. Other encoders adopt a similar network structure to that shown
in the left of Figure 3. It contains a bidirectional GRU and an attention-pooling module
(AP). Finer representations and linguistic information are first sent to bidirectional GRU
to extract temporally relevant contextual information. Then, AP is used to obtain coarser
representations utilizing alignment information.

FFT Blocks with RoPE

Length Regulator

� ×

Finer Representation

Linguistic 
Input

Coarser
Latent Variable

Coarser
Representation

Bidirectional-GRU

AP

Finer
Representation

Coarser
Representation

APAP

Figure 3. Components of fine-to-coarse and coarse-to-fine HAE.

3.5.2. HAD

HAD generates the prior distribution of hierarchical latent variables from coarse
to fine granularity utilizing multi-scale linguistic information and ultimately generates
speech waveforms. We successively up-sample sentence-level representations to word-
level, subword-level, phoneme-level, and frame-level representations with hard alignment
information. Similarly, each level’s prior distribution parameters can be obtained by using
the affine transformation on corresponding representations.
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HAD consists of Sentence2Word, Word2Subword, Subword2Phone, Phone2- Frame,
and frame decoders. For the frame decoder, we follow the vocoder structure of UnivNet [17].
It incorporates a MelGAN generator enhanced with location-variable convolution (LVC)
where a noise sequence is used as input and a frame-level representation as the condition.
All kernels of the LVC layer are directly predicted from the frame-level representation pre-
diction using a residual module. Except for the frame decoder, the decoders in HAD adopt
a similar structure. We adopt feed-forward transformer blocks [24] as the basic structure
of a decoder. Rotary position embedding (RoPE) [25,26] is employed to provide relative
location information. As shown in the right of Figure 3, coarse-grained representations are
the first duplicates at a finer level. Then, the expanded features and linguistic information
are fed into the FFT module to obtain fine-grained representations.

3.5.3. HCE

HCE is used to extract linguistic information at different granularity. Similarly to HAE,
we rely on the structure on the left of Figure 3 to realize fine-to-coarse encoding except for
replacing the bidirectional GRU with a linear layer. The obtained linguistic representations
are input into each hierarchy of the HAE and HAD.

4. Experimental and Results
4.1. Experimental Setup
4.1.1. Dataset

The experiment was implemented on an internal expressive Mandarin dataset, which
contains 15 h of recordings from a male speaker, including 5 h of emotional data. The whole
dataset contains 18,376 sentences. We randomly selected 17,776 sentences for training,
300 sentences for validation, and the remaining 300 sentences for testing.

The audios were unified to a 16,000 sampling rate and 16-bit PCM. The silence
at the beginning and end of each sentence was removed. In addition, phone align-
ment was obtained by the MFA tool [27]. Subwords in Chinese mandarin correspond
to Chinese characters. Using the pronunciation dictionary, the relationships between
Chinese characters and phonemes can be determined. Subword-level information was
provided from tiny-bert [28]. Additionally, we used the PKUseg word segmentation
tool [29] to obtain word boundary information. In addition, we used the configura-
tion of frame length 1024, frameshift 256, and window length 1024 to extract the lin-
ear spectrogram. We have made both our demo page and source code publicly avail-
able (source-code: https://github.com/shang0712/HierTTS (accessed on 4 January 2023);
demo: https://shang0712.github.io/HierTTS/ (accessed on 4 January 2023)).

4.1.2. Training Setting

All models were trained with a batch size of 32 for 100,000 iterations. An AdamW
optimizer with β1 = 0.8, β2 = 0.99 and weight decay λ = 0.01 was adopted for training.
The starting learning rate was 2× 10−4, and the period decay coefficient was set to 0.9991/8.
Following previous work, we used a window generation training method. This method
generates only part of the speech waveform at a time during training, which shortens
the training time and reduces memory usage. Specifically, frame-level feature fragments
of length 120 were fed to the frame decoder to generate the corresponding speech. We
found that setting larger segment lengths may contribute to more stable performance in
prosody generation.

4.2. Baselines

To further evaluate the performance of HierTTS, four baseline systems were employed
for comparison: (1) FastSpeech 2 + HiFiGAN [30], (2) MultiGST [6] + HiFiGAN, (3) Por-
taSpeech [31] + HiFiGAN, (4) VITS [7]. MultiGST was proposed by Lei and Zhou et al.,
which employs multiple GSTs to extract style vectors at different scales and uses the hier-
archical text information to predict the style vectors extracted during inference. For a fair

https://github.com/shang0712/HierTTS
https://shang0712.github.io/HierTTS/
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comparison, paragraph-level GST was removed, since our dataset was recorded sentence
by sentence.

4.3. Expressiveness

We relied on a 5-value mean opinion score (MOS) to evaluate the naturalness of speech
synthesis systems. During the testing phase, 100 test samples were generated for each
system, and each test sample was evaluated by 20 testers. Moreover, the text for generation
contained a portion of sentences with significant emotional tendencies.

The listening test results are shown in Table 1. The recordings in our dataset contain
rich prosodic variations. Among those baselines, PortaSpeech achieved the lowest MOS,
since our dataset is a mix of emotional speech and reading; maybe it is difficult for Por-
taSpeech to fit training data with such rich prosodic variation. The MOS of FastSpeech2
is also low; its prosody is relatively flat, which may be the cause of the over-smoothing
of FastSpeech2. MultiGST improves the naturalness of FastSpeech2, which suggests that
leveraging semantic information helps learn variable prosody. However, since MultGST
only models prosody at the subword level and sentence level, the rhythm it produces is far
from that of recordings. The speech generated by VITS also suffers from rhythm and stress
errors. Our model achieves higher naturalness compared to all the baselines. HierTTS is
very natural in pauses and stresses and close to the rhythmic performance of the recording.

Table 1. MOS evaluation of HierTTS and baselines with 95% confidence intervals.

System MOS

FastSpeech2 + HiFiGAN 3.84± 0.15
MultiGST + HiFiGAN 4.05± 0.13

PortaSpeech + HiFiGAN 3.06± 0.13
VITS 3.93± 0.11

HierTTS 4.32± 0.12

GroundTruth 4.56± 0.13

4.4. Diversity Analysis

HierTTS has better generative diversity due to modeling five levels of
latent variables. To verify the improvement of the model in generative diversity,
we generated 100 samples using different systems for the same text
(text to be synthesized: 淋过雨的空气，疲倦了的伤心，我记忆里的童话已经慢慢的融
化。). Figure 4 shows example histograms of each prosody feature for the generated speech
samples. For the duration, among the baseline models, only VITS has duration diversity.
Other models can only generate a deterministic duration for the same text. However,
compared to VITS, HierTTS is more diverse in duration. HierTTS can speak both quickly
and slowly, but in VITS, durations tend to be aggregated to some centralized locations in
the distribution. In terms of fundamental frequency diversity, PortaSpeech and VITS can
generate diverse fundamental frequencies, and their fundamental frequency diversity is
still inferior to HierTTS. As shown in the left and right panels of Figure 4, HierTTS covers
the range of VITS and PortaSpeech. This means that VITS and Portaspeech cannot learn
the completed distribution, and HierTTS can better fit the real prosodic distribution.
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Utterence length

Average F0 (Hz) F0 standard deviation (10Hz)

Figure 4. Example histograms of utterance length, utterance average pitch, and pitch standard
deviation within an utterance. One-hundred samples were generated from each model.

4.5. Ablation Experiments and Methodological Analysis
4.5.1. Ablation Study

We implemented an ablation study to verify the effectiveness of different scales for
HierTTS. We chose comparative MOS (CMOS) with seven points (from −3 to 3) to evaluate
the example by pairs. Results are summarized in Table 2: (1) By removing the HAE,
HierTTS degrades into a simple cascaded TTS model, which brings a CMOS drop of 0.24.
The performance loss is mainly manifested in unnatural rhythms and stress. For example,
an unexpected pause occurs in the middle of a word, or there are multiple accents in a
sentence. Additionally, some words are mispronounced. This may be because the text
in the training data are sparse, and the generalization problem can be severe when the
latent space is unconstrained, thereby affecting the pronunciation. For example, there are
speech pauses within words or even multiple stresses within a sentence. In addition, some
words are mispronounced. This may be because the text in the training data is sparse, and
when the latent space is not constrained, the generalization issue will be serious, which
will affect the pronunciation. (2) Removing the sentence-level latent variable brings a
CMOS drop of 0.33. The sentence-level information encodes the overall prosody. After
removing the sentence level, the prosody fluctuates too much in a sentence, which also
leads to unnatural prosody. Occasionally, the speaking speed suddenly becomes fast or
slow. (3) Removing word-level latent variables brings a CMOS drop of 0.22. After the
word level is removed, the model loses the ability to recognize word boundaries, and the
most direct impact is wrong pauses, especially for some nouns, such as names of people
and places. (4) Removing the subword-level hidden variable brings a CMOS drop of 0.18.
The rhythm of the generated speech is not coherent enough—e.g., it will be read word by
word. (5) Removing staged weight annealing brings a CMOS drop of 0.42. KL divergence
at the sentence and word level quickly drops to zero, and sampling over the corresponding
hidden variable will not affect generated speech. Synthesized speech also suffers from
serious prosody problems.

Table 2. CMOS evaluation of ablation studies.

System CMOS

-HVAE −0.24
-Sentence level −0.33
-Word level −0.22
-Subword level −0.18
-Staged weight annealing −0.42

HierTTS 0
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4.5.2. Visualization of Latent Space

In Figure 5, we visualize the distribution of the hidden variables. The hidden vectors
of different emotions in the sentence-level hidden space are clustered together, and there
are no obvious boundaries in the hidden spaces of several other scales. This indicates that
the sentiment-related information is mainly encoded in the sentence-level hidden vectors.
As shown on the right of Figure 5, HierTTS is able to infer sentimental tendencies from the
text. It is worth mentioning that we do not enforce clustering among different emotions.
Therefore, by sampling, HierTTS is able to generate speech rich in emotions at inference.

Sentence Word Subword phone Frame

Figure 5. TSNE of priors (upper) and posteriors (lower).

5. Conclusions

This paper proposed HierTTS, an end-to-end text-to-waveform architecture designed
to improve the expressiveness and generation diversity of text-to-speech systems. It models
hierarchically dependent style variables and use hierarchical variational autoencoders
to jointly optimize style extraction and style prediction. Experiments verified the im-
provements in naturalness and generation diversity. However, compared with recording,
HierTTS still has room for improvement in sound quality. In the future, we will explore
how to close the gap in sound quality in recordings and explore a more stable hierarchical
generation neural network without the aid of staged KL weighted annealing.
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