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Abstract: Ensuring security of Internet of Things (IoT) devices in the face of threats and attacks is a
primary concern. IoT plays an increasingly key role in cyber–physical systems. Many existing intru-
sion detection systems (IDS) proposals for the IoT leverage complex machine learning architectures,
which often provide one separate model per device or per attack. These solutions are not suited to the
scale and dynamism of modern IoT networks. This paper proposes a novel IoT-driven cross-device
method, which allows learning a single IDS model instead of many separate models atop the traffic
of different IoT devices. A semi-supervised approach is adopted due to its wider applicability for
unanticipated attacks. The solution is based on an all-in-one deep autoencoder, which consists of
training a single deep neural network with the normal traffic from different IoT devices. Extensive
experimentation performed with a widely used benchmarking dataset indicates that the all-in-one
approach achieves within 0.9994–0.9997 recall, 0.9999–1.0 precision, 0.0–0.0071 false positive rate and
0.9996–0.9998 F1 score, depending on the device. The results obtained demonstrate the validity of
the proposal, which represents a lightweight and device-independent solution with considerable
advantages in terms of transferability and adaptability.

Keywords: Internet of Things; deep learning; autoencoder; botnet detection; cybersecurity; cyber–
physical systems

1. Introduction

The Internet of Things (IoT) is intertwined with many critical assets of our daily
lives, and it plays an increasingly key role in cyber–physical systems (CPSs). In fact,
CPSs are becoming more and more advanced—integrating industrial IoT, Edge and Cloud
computing—although their protection mainly relies on physical protection and isolation,
which makes security an open topic [1]. Assuring security of IoT devices in the face of
threats and attacks is a primary concern. To this aim, intrusion detection systems (IDS)
are a key component in IoT security as they support online detection and response to
incidents. The body of scientific literature on IDS for IoT is huge and ever-increasing.
IDS for IoT is often addressed through machine learning and (deep) neural networks,
e.g., [2,3]. This trend is pushed by: (i) the availability of commercial and open-source
products to transform raw network packets into ready-to-use records suited for machine
learning, (ii) the large number of public IoT datasets, such as MedBIoT (https://cs.taltech.
ee/research/data/medbiot/, accessed on 3 January 2023), N-BaIoT (http://archive.ics.
uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT, accessed on 3 January
2023) and IoTID20 (https://sites.google.com/view/iot-network-intrusion-dataset/home,
accessed on 3 January 2023)—just to mention a few—and (iii) specialized hardware and
deep learning frameworks (e.g., Keras, TensorFlow and PyTorch). It is a fact that IoT
network traffic—transformed into fixed-length records of features—can be successfully
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leveraged to recognize potential attacks, which is the primary aim of an IDS. As a result, a
wide community of academics and practitioners has the chance to conduct measurement
studies at the intersection of machine learning and intrusion detection for IoT.

In spite of the large availability of scientific proposals, there is a gap between “lab-
made” machine learning and real-life operations. For example, highly complex deep
networks proposed so far for intrusion detection, such as convolutional neural network
(CNN), long short-term memory (LSTM) and cascades/ensembles of autoencoders (AE),
might find no or limited adoption in production IoT environments. Another point is
that recent contributions in the area use the training data to learn a separate IDS model
per IoT device [2] or per attack [3]. Different from several related proposals, the aim of
this work is not the mere application of increasingly complex deep learning models for
intrusion detection. Rather, the novelty of our proposal is the application of well-founded
principles to a cross-device method,which allows us to learn a single IDS model—as
opposed to many separate models—atop the traffic of different IoT devices. The method
stems from the following principles. A “usable” IDS should opt for unsupervised and
semi-supervised approaches over supervised ones. It is unlikely that attacks are known
beforehand; as such, unsupervised and semi-supervised approaches are more widely
applicable. As for IoT-specific constraints, intrusion detection should pursue simplicity
over complexity (e.g., small-footprint neural networks) in order to assure low detection
latency, portability and energy efficiency. More importantly, given the ever-growing number
and the dynamicity and complexity of devices in an IoT network, IDS models should be
scalable and maintainable: learning separate models per device clashes with the ever-
increasing scale of current IoT networks.

This study instantiates the cross-device method in the context of the detection of
IoT botnets by deep autoencoders (AE). The use of deep learning and autoencoders is
motivated by several reasons. First, while understanding the “power of depth” in deep
neural networks is an ongoing challenge in learning theory [4], deep networks perform
better than traditional shallow neural networks in many practical applications (e.g., [5,6]).
Furthermore, multiple AEs— possibly complemented by sophisticated feature selection
methods— are often used in complex cascades/ensembles for IoT intrusion detection; as
such, they are suitable to explore whether the complexity of related deep learning IDS
proposals is actually justified. More importantly, AEs can be conveniently trained only by
means of normal network traffic in order to learn a semi-supervised IDS model, i.e., one
of the principles driving our proposal. The study is based on the widely used N-BaIoT
dataset, which provides normal and attack traffic data collected with 9 IoT devices ranging
from a thermostat to webcams and security cameras and arranged into separate datasets—1
per device—in the form of records of 115 features. Our study is twofold. First, we conduct
a fine-grain experiment aiming to pursue a “conventional” approach by training a distinct
AE per IoT device, i.e., separate autoencoding. Second, we train a single AE with the
normal traffic of all the IoT devices, i.e., all-in-one autoencoding, which provides a single
cross-device IDS model for botnet detection. Both separate and all-in-one models are tested
by means of the typical metrics of recall (R), precision (P), false positive rate (FPR) and
F1 score computed through a test set of normal and attack traffic held-out from training.
These metrics—extensively described in Section 5—provide insights into the effectiveness
of the classification: values of R, P and F1 score close to one and FPR close to zero indicate
that the IDS is effective.

The results indicate that it is relatively easy to achieve impressive detection figures
by separate training–testing an autoencoder on top of each individual device. In fact,
a “minimal” AE with three hidden layers could be successfully applied—although after
retraining from device to device—to seven out of nine devices with no changes of the im-
plementation; moreover, the same AE could be extended to all the devices by means of
a minor addition of neurons. Overall, separate autoencoding achieves 0.9995–1.0 recall,
0.9997–0.9999 precision, 0.0002–0.0417 FPR and 0.9997–0.9999 F1 score, depending on the
device. Although remarkable, the separate approach underlies the need for maintain-
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ing one model per device, which poses major scalability and maintainability issues in
large-scale IoT networks. As for the all-in-one autoencoding, we observe that an AE of
5 hidden layers is enough to obtain a single cross-device IDS model, which achieves within
0.9994–0.9997 recall, 0.9999–1.0 precision, 0.0–0.0071 FPR and 0.9996–0.9998 F1 score, de-
pending on the device. The results indicate that it is possible to train a single model with
normal traffic collected from different devices, which is strongly beneficial to the FPR. The
cross-device learning method paves the way for more scalable intrusion detection solutions
in the context of IoT. As for the Cloud–Edge–IoT paradigm, Edge nodes are suited to
host our all-in-one IDS, which means IoT devices are not subjected to extra computational
and energy burden. Moreover, the proposed approach does not interfere with IoT opera-
tions. As only passive tracing of network traffic—also known as sniffing—is required, the
approach is inherently nonintrusive.

In a previously paper [7], we documented a preliminary experimentation of the
“all-in-one” notion. The novelty of this study with respect to the previous paper is a
better exploration of the design space of the autoencoder, a more comprehensive set
of experiments—leading to refinements and improvements of the original results—and
additional findings along different directions on the subject. For example, here we address
a larger number of IoT devices and an improved data partitioning scheme that aims to
preserve sequences of related records. The findings of this paper should be contextualized
with respect to the attacks and data available in the N-BaIoT dataset. Moreover, it is worth
noting that privacy issues due to the adoption of the cross-device method are not in the
scope of this paper. Our long-term objective is to capitalize on federated learning [8] and to
leverage the decentralized data concept to cope with privacy facets. The rest of the paper is
organized as follows. Section 2 discusses related work in the area. Section 3 provides the
background on deep autoencoders and our semi-supervised intrusion detection approach.
Section 4 addresses the IoT devices and datasets and presents data partitioning, training and
implementation of the autoencoders. Section 5 presents the results of our study. Section 6
discusses the limitations and threats to validity of our study and how they have been
mitigated, while Section 7 concludes the paper.

2. Related Work

This section presents related studies, surveying the state of the art of intrusion
detection in IoT environments, with emphasis on the methods based on machine
learning techniques.

Nowadays, the Internet of Things (IoT) has spawned a new ecosystem of connected de-
vices, and an increasing number of organizations are using it to improve their performance,
e.g., to operate more efficiently or to improve decision making. However, while the IoT has
gained popularity, security challenges pose a significant barrier to widespread adoption
and deployment of these devices. The security vulnerabilities introduced by complexity
and interconnectivity of IoT devices and applications pave the way for the development of
increasingly sophisticated anomaly detectors. Over the last few years, the use of machine
learning to aid security and anomaly detection in IoT environments has become extremely
important to face their security issues [9] and to develop subsequently appropriate lines of
defense [10]. Al-Fuqaha et al. [11] surveyed some challenges and issues for the design and
the deployment of IoT applications.

Since intrusion detection in the IoT domain is increasingly addressed through machine
learning and (deep) neural networks, many ready-to-use public intrusion detection IoT
datasets have been produced to support the testing of new designs. Most of these datasets
are collected in synthetic environments—across various IoT domains—under normative
conditions and multiple intrusion scenarios. They attempt to emulate real network traffic,
and they do not contain any confidential data. Popular public IoT intrusion detection
datasets are MedBIoT [12], N-BaIoT [2] and IoTID20 [13].
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2.1. IDS with IoT, Machine and Deep Learning

Lopez-Martin et al. [14] propose a novel network intrusion detection method specifi-
cally developed for an IoT network. The approach is based on a conditional variational
autoencoder (CVAE) that integrates the intrusion labels inside the decoder layers. The pro-
posed method is less complex than other methods based on a variational autoencoder, and
it provides better classification results than other familiar classifiers. The authors of [15],
instead, propose a network intrusion detection system design for the IoT, which is based on
a deep learning model comprising a customized feed-forward neural network. They tested
the efficacy of the models for binary and multi-class classification. The results obtained
show the efficacy of the proposed technique. In particular, the performance of the binary
classifier was found to be close to 99.99%, while a detection accuracy of approximately
99.79% was achieved for multi-class classification.

Albulayhi et al. [16] proposed and implemented a novel extraction approach and
feature selection (FS) for anomaly-based IDS in the IoT domain. The method starts by
utilizing two entropy-based concepts (gain ratio (GR) and information gain (IG)) to extract
and select appropriate characteristics in different ratios. A comparison of various deep
learning algorithms such as convolutional neural networks (CNN) and recurrent neural
networks (RNNs) such as long short-term memory (LSTM) and gated recurrent unit (GRU)
networks is instead proposed by Ahmad et al. [17] and used to find zero-day anomalies
within an IoT network with a false alarm rate (FAR) ranging from 0.23% to 7.98%. The
authors in [18] propose a semi-supervised learning method for detecting intrusions, which
is very similar to our approach. However, their experimentation is not conducted in an IoT
context. In particular, an autoencoder and a variational autoencoder are used to extract
flow-based features from network traffic data of the CICIDS2017 dataset.

The Fog computing domain along with elasticity of cloud and auto-scaling techniques
are also active research topics [19]. Almieani et al. [20] show a model which uses multi-
layered recurrent neural networks designed to be implemented for Fog computing security
that is very close to the end-users and IoT devices. However, the authors show the validity
of the proposal by using a balanced version of the NSL-KDD dataset. It is an obsolete
dataset, not specifically conceived for IoT applications. As highlighted in [21], this issue
might also lead to the lack of transferability of the impressive results obtained on reference
datasets (possibly outdated and not free from statistical biasing) in even slightly different
data collection settings.

In the last few years, federated learning (FL) has gained importance in the field of
cybersecurity, with several works already using this paradigm for IoT security. The works
presented in [22,23], for example, are specifically conceived for industrial IoT devices, and
they analyze application samples and sensor readings, respectively, rather than network
data. In [8], FL was studied through the use case of intrusion detection systems. This
work also includes blockchain technology to mitigate the problems faced in adversarial
FL. However, it concentrates on the early steps of intrusion detection rather than detecting
already running malware, and it does not focus specifically on IoT devices.

2.2. Work on N-BaIoT Dataset

In [3], an IoT micro-security add-on is presented. The model comprises two key
security mechanisms working cooperatively, namely: (i) a distributed convolutional neural
network (DCNN) model for detecting phishing and application layer DDoS attacks, and
(ii) a cloud-based temporal long short-term memory (LSTM) network model for detecting
botnet attacks and ingesting CNN embeddings to detect distributed phishing attacks across
multiple IoT devices. The N-BaIoT dataset is used for training the backend LSTM model.

The work closest to our proposal is Kitsune [24], an unsupervised learning approach
to detect attacks online. Kitsune’s core algorithm is KitNet, which uses a collection of
autoencoder neural networks to distinguish between normative and abnormal traffic. The
approach involves the integration of multiple autoencoders into a classifier. The experi-
mental results show that Kitsune is effective with different attacks, and its performance is
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as outstanding as offline detectors. Similarly, the authors in [2] propose a network-based
anomaly detection method which extracts behavior snapshots of the network and uses
deep autoencoders to detect anomalous network traffic emanating from compromised IoT
devices. It is worth pointing out that the aforementioned methods, differently from our
approach, create individual models per IoT device [2] or per attack [3], which are not suited
to the ever-evolving IoT environments and security threats. Moreover, authors of [25] show
that a single AE can obtain classification accuracy comparable to the ones published in the
research literature for supervised networks and for more complex designs built around one
or several AEs.

In [26], the authors propose an ML-based method for efficient botnet detection in
IoT networks. The approach uses a hybrid model which pipelines a trained variational
autoencoder (VAE) for meaningful latent feature extraction, and a one-class classifier OCC
to classify network traffic from the IoT devices. The experimental results on the N-BaIoT
dataset show that the latent representations generated from VAE help the OCC to perform
better for botnet detection in terms of AUC metric with an acceptable detection time.
Reference [27] proposes a federated-based approach which uses a deep autoencoder to
detect botnet attacks using on-device decentralized traffic data. The proposed model,
evaluated by means of the N-BaIoT dataset, differentiates benign patterns of behavior from
malicious activities by means of decentralized on-device data at the edge layer.

In [28], the authors present a novel deep ensemble learning model framework called
DeL-IoT for IoT anomaly detection. They use the deep and stacked autoencoders to extract
features for stacking into an ensemble of probabilistic neural networks (PNNs) learning
model for performance improvement while addressing the data imbalance problem. The
N-BaIoT dataset is used as a benchmark dataset. The approach can detect anomalies
with 0.99 detection rate for this dataset. In [29], the authors propose nested Log-Poly,
a communicationally efficient model for distributed density estimation in naive Bayes
classification. The method is evaluated on the N-BaIoT dataset.

Al Shorman et al. present in [30] a botnet detection mechanism based on a one-
class support vector machine (OCSVM). The approach incorporates an unsupervised
evolutionary IoT botnet detection method using a grey wolf optimization (GWO) algorithm
to optimize the hyperparameters of the OCSVM and simultaneously identify features that
best describe the IoT botnet problem. The system is tested using the N-BaIoT dataset and
shows the best recall for the Samsung SNH 1011 N webcam device. Finally, Kan et al. [31]
propose an adaptive particle swarm optimization convolutional neural network (APSO-
CNN) to detect intrusions in the IoT networks. The model achieves the best accuracy
on the N-BaIoT dataset if compared with three popular algorithms such as SVM, FNN
and R-CNN.

Although deep learning approaches are extensively used for intrusion detection in IoT
domains—as for many of the papers referenced above—we take a different perspective by
considering well-founded principles and IoT-specific constraints in order to pave the way
to better IDS design. Primarily, our approach capitalizes on a cross-device method, which
allows us to learn a single IDS model atop the traffic of different IoT devices. Existing
approaches to intrusion detection in the IoT domain, such as [2,3], differ from our solution
because they provide one separate model per device [2] or per attack [3]. Furthermore,
some of these approaches capitalize on training sets made up of normal and attack data.
For example, in [3], the authors train one model for each attack by merging the normal
traffic along with the malicious traffic representing the attack of interest. Therefore, they
train, validate and test the model ten times, since in the reference dataset there are ten attack
categories. We remark that our method leverages a semi-supervised learning approach,
and it does not require anomalies during training. This makes it potentially effective for the
detection of zero-day attacks, since the model is not constrained by specific attack data. One
more key point is that we developed around the intuition that complexity is not justified
because a single autoencoder is enough to obtain similar (if not better) performance figures
compared to existing proposals. Among the existing proposals, multiple autoencoders
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are often used in complex and mixed configurations (e.g., [24,26,28]). Our approach with
a single AE ends up with a small-footprint neural network without any assistance from
other external components, such as feature selection: this is a clear advantage in terms of
simplicity of training and tuning.

3. Anomaly Detection Method
3.1. Background on Deep Autoencoders

Our cross-device method is based on the use of deep autoencoders, i.e., a specific type
of neural network where the input layer has the same length as the output layer. The middle,
hidden, layer of an autoencoder is also known as the bottleneck layer, and its dimension is
lower than the input/output layer. An autoencoder consists of two parts: encoder and
decoder. Let x be a vector of n real numbers [x1,x2,...,xn], such as the records representing
IoT traffic for the dataset used in the experiments. The encoder maps x to a code vector—or
hidden representation—y at the bottleneck layer. On the other hand, the decoder transforms
y into a vector of n, i.e., the same size of x, real numbers z = [z1, z2, ..., zn]. Figure 1
represents an autoencoder with three hidden layers. Encoding–decoding formulas are
given in Equations (1) and (2). They represent the case of an autoencoder with only one
hidden layer:

y = σ(Wx + b) (1)

z = σ′(W ′y + b′) (2)

where W, W ′, b and b′ are weight matrices and bias vectors, while σ and σ′ are activation
functions. An autoencoder compresses the input into a lower-dimensional representation
at the bottleneck layer, and then it reconstructs the output from the representation. Deep
learning can be applied to autoencoders. In particular, multiple hidden layers can be used
to provide depth: the resulting network is known as a deep or stacked autoencoder [32].

Figure 1. Representation of an autoencoder (three hidden layers).

In the autoencoder terminology, z is called the reconstruction of the input vector x.
The “quality” of the reconstruction is summarized by the reconstruction error (RE), which
measures the difference between the output z and the originating input x:

RE =
1
n

n

∑
i=1

(zi − xi)
2 (3)

where zi and xi (with 1≤i≤n) denote the components of the output and input vector, and n
is the dimensionality.

3.2. Autoencoder-Based IDS

An autoencoder is trained by means of a given set of points, i.e., the typical training set
of a machine learning experiment. Each point x of the training set is fed to the autoencoder,
and weight matrices and bias vectors are progressively adjusted in order to minimize
the difference between x and its reconstruction z. After training, the autoencoder will
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reconstruct accurately, i.e., low RE, future points “similar” to those used for training. Based
on this principle, in order to pursue an IDS, we train the autoencoder solely by means of
normal data points, i.e., records related to network traffic generated by the IoT devices
under regular operations, which means the autoencoder learns a latent subspace of normal
data points [33]. After training, the autoencoder—embedding a model of the “normal
profile”—can identify any instance not conforming to the model as a potential intrusion.

The reconstruction error (RE) is a viable indicator to detect intrusions. Since the
autoencoder is trained using only normal data points, it will generate (i) low RE (good
reconstructions) for future normal inputs, and (ii) high RE (bad reconstructions) for in-
trusions. In fact, when the autoencoder attempts to process a data point, i.e., an IoT
traffic record, that deviates from the norm, it will generate a high RE because it was never
trained to reconstruct intrusions. The approach adopted in this paper falls within the larger
scope of semi-supervised anomaly detection [34]. Moreover, as for any anomaly detection
technique assigning a score to data points (RE in this study), we need a cut-off detection
threshold to discriminate normal points from intrusions. In particular, intrusion detection
is based on the use of the threshold value: the data points producing RE values under the
threshold are considered normal, and those with REs above the threshold are marked as
intrusions. The value of the detection threshold is an outcome of the training phase. As
such, it is inferred from normal data points as described in the following.

3.3. Selection of the Detection Threshold

There are several practical challenges that undermine the selection of a suitable thresh-
old in a semi-supervised training setting, such as for our study. An incorrectly selected
threshold (either too low or too high) might cause misclassifications. It must be noted
that assembling a “reliable” database of normal points for training purposes is a complex
matter. For example, the normal points might be fraught with uncommon behaviors or
outliers being accidentally included within the normal points. The labeling might be
imperfect, i.e., intrusions being occasionally labeled as normal behaviors. The rationale
behind our method is to clear out as many “strange”—although normal—training points
as possible before computing the threshold: though belonging to normal data, spurious
“out-of-the-crowd” behaviors will be more similar to intrusions than to normal points.

The threshold is computed by relying on a small, i.e., 10%, disjoint subset of the
training set, which we call the threshold set. A representation of the method is in Figure 2
and consists of four steps:

1. AE training: the autoencoder undergoes the typical semi-supervised training proce-
dure described above, which allows it to learn the normal profile of the data points;

2. Outlier detection: an outlier detection algorithm is applied to the threshold set in order
to discriminate inliers from outliers;

3. RE computation: inliers and outliers are fed to the autoencoder: this step produces
two separate vectors of reconstruction errors, i.e., REIN and REOUT of inliers and
outliers, respectively;

4. Threshold selection: the detection threshold is obtained through a sensitivity analysis
performed with REIN and REOUT .

At first, the threshold is initialized with the maximum RE in REOUT ; then, the threshold
is progressively lowered until it finds an “equilibrium” between inliers and outliers, i.e.,
inliers whose RE is below the threshold against outliers characterized by an RE above the
threshold. In this study, we use the isolation forest [35], although the threshold selection
method does not mandate a specific outlier detection algorithm.
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Figure 2. Steps underlying the threshold selection method.

4. Dataset, AE Design and Implementation

The validity of the cross-device method is assessed by a twofold experimentation. First,
we pursue a “conventional” approach, which consists of training–testing the autoencoder-
based IDS with the data of one IoT device each time, which leads to one separate model
per device. It is worth pointing out that this approach is used by several related papers
presented above. Later, the autoencoder-based IDS is trained with a dataset consisting of
the normal traffic of all the IoT devices in hand—and therefore all-in-one—that leads to a
single model for all the devices. It is worth noting that the notion of all-in-one autoencoder
underlies the availability of training data pertaining to different devices. Consequently,
training is not expected to happen “in place” on single IoT devices. Rather, the proposed
approach is suited to the nodes traversed by the traffic generated from different network
devices. A typical example is the Cloud–Edge–IoT paradigm: Edge nodes—at the boundary
between two networks —implement common functions, such as routing, monitoring, and
storage of data passing between networks. In the context of the IoT, Edge nodes encompass
a broad range of devices and are eligible to host our all-in-one IDS. As a consequence
of deploying the all-in-one IDS onto Edge nodes, IoT devices are not subjected to extra
computational and energy burden; as said above, energy efficiency is among the principles
that underlie the design of our proposal. Moreover, as only passive tracing of network
traffic is required, the approach is inherently nonintrusive. In the following, we describe
the datasets, tuning and training of both separate and all-in-one autoencoding.

4.1. Reference Dataset and Partitioning

The dataset considered in this paper is N-BaIoT [2]. It provides a public botnet
IoT dataset available at the University of California at Irvine (UCI) machine learning
repository. The authors deployed all of the components of two botnets in an isolated lab
and used them to infect nine commercial IoT devices listed in Table 1. All the devices
execute the attacks of two botnets—namely Mirai and BASHLITE—that have previously
infected the IoT devices.

Table 1. IoT devices in the N-BaIoT dataset.

IoT Device Category

Danmini Doorbell
Ecobee Thermostat
Ennio Doorbell
Philips B120N/10 Baby Monitor
Provision PT-737E Security Camera
Provision PT-838 Security Camera
Samsung SNH 1011 N Webcam
SimpleHome XCS7-1002-WHT Security Camera
SimpleHome XCS7-1003-WHT Security Camera

For each device, the data were obtained under both normal operations and attack
conditions. The dataset consists of fixed-length records of features computed from the



Appl. Sci. 2023, 13, 837 9 of 21

lower-level network activity. In particular, each record is identified by 115 features with
a systematic structure plus a class label (e.g., “normal” or “TCP attack”). The features
model traffic statistics over several temporal windows. Each statistic is further temporally
aggregated using a weighted sum that progressively leads to the decay of the oldest contri-
butions to the sum. It is worth pointing out that botnet infections consist of multiple steps,
such as propagation, bot infection, communication with C and C server, and performing
other types of malicious activities [36]. According to [2], it is not sufficient to determine
only the early stages of infection. The data contained in the N-BaIoT dataset pertain only
to the last stage of botnet construction, when IoT bots begin launching attacks. Interested
readers are referred to [2] for any additional information on the N-BaIoT dataset.

Our experiments are based on all the devices described in the N-BaIoT dataset. Exper-
iments are performed in a binary classification scenario. All the records produced within
different types of attacks are considered as belonging to a unique generic class named
ATTACK—encoded with the numeric label 1—whereas NORMAL records are assigned 0 as
label. It is worth remarking that the N-BaIoT dataset is organized into separate datasets, each
containing both normal and attack traffic corresponding to a single IoT device. For our
experiments, we split the original datasets into three disjoint splits: training set, validation
set and test set. While splitting the dataset corresponding to an IoT device, we preserve
the original sequence of the records because—as said above—the features of N-BaIoT are
based on the temporal windows and are aggregated using weighted sums. Moreover, each
record of the original dataset is assigned to a unique split. For each IoT device, we obtain:

• Training set. It contains 70% of the total NORMAL records; moreover, 10% of the training
set, according to the threshold selection criteria described in Section 3, is the “threshold
set”, meant for the threshold selection process;

• Validation set. It contains 15% of the total NORMAL records as for any machine learning
experiments, it is used to provide an unbiased evaluation of the model in order to find
the optimal values for the hyper-parameters;

• Test set. It contains 15% of the total NORMAL records and all ATTACK records. The records
in this set are accompanied by the corresponding labels that are used to assess the
correctness of the predictions.

Table 2 shows the cardinality of the sets for the first group of experiments, i.e., sep-
arate autoencoding. Table 3 shows the cardinality of the training, validation and test
sets for the second group of experiments, i.e., all-in-one autoencoding, where a single
training/validation set—meant to come up with one model—sum up to the cardinalities
of the training/validation sets in Table 2. It must be noted that test sets are “held-out”
from training/validation, and they will be used in Section 5 for measuring the detection
capabilities of the autoencoder-based IDSes.

Table 2. Training, validation and test set size (separate autoencoding).

IoT Device Training Set Validation Set Test Set
NORMALNORMALNORMAL NORMALNORMALNORMAL NORMALNORMALNORMAL ATTACKATTACKATTACK

Danmini 34,684 7432 7432 968,740
Ecobee 9181 1966 1966 822,753
Ennio 27,370 5865 5865 316,395
Philips B120N/10 122,668 26,286 26,286 924,327
Provision PT-737E 43,508 9323 9323 766,096
Provision PT-838 68,960 14,777 14,777 738,367
Samsung SNH 1011 N 36,506 7822 7822 323,067
SimpleHome XCS7-1002-WHT 32,611 6987 6987 816,461
SimpleHome XCS7-1003-WHT 13,670 2929 26,286 831,285
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Table 3. Training, validation and test set size (all-in-one autoencoding).

IoT Device Training Set Validation Set Test Set
NORMALNORMALNORMAL NORMALNORMALNORMAL NORMALNORMALNORMAL ATTACKATTACKATTACK

Danmini 7432 96,874
Ecobee 1966 822,753
Ennio 5865 316,395
Philips B120N/10 26,286 924,327
Provision PT-737E 389,158 83,387 9323 766,096
Provision PT-838 14,777 738,367
Samsung SNH 1011 N 7822 32,3067
SimpleHome XCS7-1002-WHT 6987 816,461
SimpleHome XCS7-1003-WHT 26,286 831,285

4.2. AE Design

The design of a deep neural network, such as the autoencoder, is based on choosing
the values of many hyperparameters—number of layers, neurons per layers, activation
functions and so forth—that are subject to fine-grain tuning. Other relevant and critical
parameters, such as the number of epochs, bath size and optimization algorithms, pertain
to the learning process. For the time being, there is no scientific rule for optimizing the
hyperparameters of an AE. In this work, the selection of the hyperparameters is driven
by our previous experience and good practices on tuning deep autoencoders in a close
IDS domain [25]. After having set a “reasonable” initial configuration of the autoencoder
(e.g., number of neurons at the bottleneck much less than the number of features, use
of the rectified linear unit activation function for the hidden layers, hyperbolic tangent
activation function at the output layer and RMSProp optimizer), additional fine tuning
was performed through manual search. To this aim, the manual search was validated by
experimental tests carried out by analyzing the outcome of the autoencoder—RE in our
study—with respect to the abovementioned validation set, i.e., the independent set of data
points purposely intended to support the selection of the hyperperameters. The use of a
validation set makes it certain that the final values of the hyperperameters are not biased
by the test sets; rather, the test sets contain “held-out” data points, i.e., not used at all for
training and hyperperameters selection.

4.2.1. Separate Autoencoding

We found that the configuration reported in Table 4 guarantees an effective design, i.e,
low RE on the validation set, for the separate AEs setting. The selected AE is made up of
three hidden layers and a different number of neurons depending on the configuration (A
Table 4a or B Table 4b). We ended up with two different configurations because, despite the
numerous fine tuning operations, it was not possible to find a single working configuration
for all IoT devices. In particular, the three densely connected layers include N-48-6-48-N
neurons for Configuration A and N-64-6-64-N neurons for Configuration B. In the rest of
the paper, N (i.e, the number of neurons of the input/output layer of the autoencoder)
is equal to 115, which is the dimensionality of the traffic records of the N-BaIoT dataset.
The classical rectified linear unit (ReLu) has been selected for the encode layer, the decode
layer and the bottleneck layer, while for the output layer the hyperbolic tangent (Tanh)
activation function has been used. We train an AE on NORMAL data points of each IoT
device for 100 epochs with batch size 512 using the RMSProp optimizer with learning rate
value lr = 0.0001.
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Table 4. Separate autoencoding: layering structure of the AE (all the layers are dense).

AE Design

Layer Activation Neurons

Input - N
Hidden 1 ReLU 48
Hidden 2 ReLU 6
Hidden 3 ReLU 48
Output tanh N

(a) Configuration A

AE Design

Layer Activation Neurons

Input - N
Hidden 1 ReLU 64
Hidden 2 ReLU 6
Hidden 3 ReLU 64
Output tanh N

(b) Configuration B

4.2.2. All-in-One Autoencoding

For the second set of experiments, we tested different network designs before choosing
a good configuration of the parameters. We found that adding width and depth to the AE
is beneficial. In particular, Table 5 shows the design used for the all-in-one autoencoding
experiment. The chosen AE is made up of five hidden layers. These layers are densely
connected and include N-64-24-6-24-64-N neurons, where N is the number of features of
the data points. Again, the rectified linear unit (ReLu) has been selected for the encode
layer, the decode layer and the bottleneck layer, while for the output layer the hyperbolic
tangent (Tanh) activation function has been used. We train the autoencoder on NORMAL data
points for 100 epochs with batch size 2048 using the RMSProp optimizer with learning rate
value lr = 0.0001.

Table 5. All-in-one autoencoding: layering structure of the AE (all the layers are dense).

AE Design

Layer Activation Neurons

Input - N
Hidden 1 ReLU 64
Hidden 2 ReLU 24
Hidden 3 ReLU 6
Hidden 4 ReLU 24
Hidden 5 ReLU 64
Output tanh N

4.3. Implementation and Training

We implement the autoencoders in python with Keras (https://keras.io/, accessed on
3 January 2023) (Version 2.6.0) and TensorFlow TensorFlow (https://www.tensorflow.org/,
accessed on 3 January 2023) (Version 2.6.0) libraries on a Lambda workstation provided with
an AMD Threadripper 3975WX processor with 32 cores. During the training phase, the
weights and biases of the encoder and decoder are calculated and optimized with respect to
NORMAL training data. When the training is started, the AE neurons are randomly initialized,
and input data are presented in batches (512 for the separate approach and 2048 for the
all-in-one approach) and through a given number of epochs (100 for both approaches). The

https://keras.io/
https://www.tensorflow.org/
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system tries to minimize the loss, setting aside a small ratio of reserved data to validate
the optimization actions performed—modifications of the weights in the network—so as
to signal overfitting. A solution is to compute the loss as the mean squared error at the
output units; this matches the definition of reconstruction error (RE) presented above. As
outlined in Section 3, during training the autoencoder learns the relationships among the
features in the training set; it is worth pointing out that the training phase of an AE takes
around 1 minute in the worst case. Our semi-supervised training process (no anomalies
at training time) is potentially valuable to complement current technologies that rely on
pre-established specifications of anomalies.

5. Results

We run the test sets of the devices in hand against the AE described in Section 4.
In order to evaluate our proposal, we focus on the following two points: (i) the performance
of separate AEs, individually trained with the normal traffic of each IoT device, and (ii)
the performance of the all-in-one AE (i.e., adopting all-in-one autoencoding) trained once
with the normal traffic of all devices and then applied to the test of the devices. Since the
test sets are labeled, each RE produced by the AEs in both configurations can be linked to
the label of the corresponding data point, which can be used for evaluation. It is worth
pointing out that the AE saw no attack at training time.

The detection performance is measured by computing the typical metrics of recall (R),
precision (P), false positive rate (FPR) and F1 score. These metrics are computed as follows:

R =
TP

TP + FN
P =

TP
TP + FP

(4)

FPR =
FP

FP + TN
F1 score = 2 · P · R

P + R
(5)

where true positive (TP) and true negative (TN) represent the points that are correctly
classified, while false positives (FP) and false negatives (FN) indicate misclassifications. For
example, TP is the set of ATTACK points whose RE is higher than the threshold; similarly, TN
is the set of NORMAL points whose RE is lower than the threshold. In particular, recall is the
ratio of the number of true positives to the sum of the number of true positives and false
negatives, precision is the ratio of the number of true positives to the sum of the number of
true positives and false positives, while the false positive rate is the ratio of the number of
false positives to the total number of normal data points in the test set. Finally, F1 score is
the harmonic mean of precision and recall.

5.1. Separate Autoencoding

We process the test set of a given device after the AE is retrained for that specific device
beforehand. Table 6 provides the evaluation metrics for all the IoT devices. The results
show that the use of individual AEs leads to high detection figures. The recall values range
from 0.9995 (Samsung SNH 1011 N webcam) to 1.0 (Danmini doorbell). The minimum false
positive rate (0.0002) is obtained for the Provision PT-737E security camera. Overall, the
results are outstanding for all the IoT devices, with recall and precision close to 1.0 with a
reasonable false positive rate. Moreover, the F1 score—the harmonic mean of precision and
recall—is computed as a key metric, since precision and recall are both relevant indicators
of the model performance. From the analysis of the values in Table 6, it is possible to
note that the F1 score is within 0.9997–0.9999, i.e., close to 1.0. This result indicates a good
trade-off between precision and recall.
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Table 6. Separate autoencoding: evaluation metrics (Configuration A: N-48-6-48-N; Configuration B:
N-64-6-64-N).

IoT Device Recall Precision FPR F1 Score Configuration

Danmini 1.0 0.9999 0.0108 0.9999 A

Ecobee 0.9999 0.9999 0.0417 0.9999 A

Ennio 0.9998 0.9997 0.0114 0.9998 A

Philips B120N/10 0.9998 0.9999 0.0007 0.9999 A

Provision PT-737E 0.9998 0.9999 0.0002 0.9999 B

Provision PT-838 0.9999 0.9998 0.0088 0.9998 B

Samsung SNH 1011 N 0.9995 0.9999 0.0006 0.9997 A

SimpleHome XCS7-1002-WHT 0.9999 0.9999 0.0007 0.9999 A

SimpleHome XCS7-1003-WHT 0.9998 0.9999 0.0187 0.9998 A

It is worth pointing out that the rightmost column of Table 6 reports the network con-
figuration used for each IoT device. In particular, as highlighted in Section 4, Configuration
A refers to a N-48-6-48-N network design, while Configuration B refers to a N-64-6-64-N
network design. We emphasize that the use of multiple AE designs is almost mandatory,
since it was not trivial to find a “one fits all” configuration for all the IoT devices. As
previously explained, the selection of two “best” configurations—A and B—is guided by
experimental tests carried out by analyzing the RE figures obtained by multiple AE models.

Finding: Different from similar proposals in the area, which rely on complex cascades
and ensembles of autoencoders—possibly complemented by the use of feature selection
methods—if not other schemes, such as CNNs and LSTMs, a “minimal” and simple
autoencoder with three hidden layers is more than enough to obtain remarkable results
when train–test is performed separately for each device.

Overall, the results obtained are notable. However, the hypothesis of training an AE
for each device remains unrealistic, especially if the intrusion detection system is intended
to be deployed in time-dependent and rapidly evolving IoT environments.

5.2. All-in-One Autoencoding

The use of an all-in-one detector—applied to the devices assessed with no change to
its architecture (layers, number of units and weights)—is more suited to large-scale and
dynamic IoT environments. We evaluated the performance of the all-in-one AE, trained
with the merged normal traffic of all IoT devices. Table 7 provides the evaluation metrics.
It turns out that the detection performance of the all-in-one model with five hidden lay-
ers is in line with the figures obtained by the separate autoencoding solution. The best
results in terms of recall (R = 0.9997) are obtained with the test sets of the Danmini door-
bell, Ecobee thermostat, Philips B120N/10 baby monitor, Provision PT-838, SimpleHome
XCS7-1002-WHT and SimpleHome XCS7-1003-WHT security cameras; the FPR is reasonably
low—exactly 0.0 for the Provision PT-838 and Provision PT-737E security cameras—for
most devices. The F1 score, instead, is 0.9996 for the Ennio doorbell, 0.9997 for the Samsung
SNH 1011 N webcam, and 0.9998 for all the other devices. This confirms we reached an
acceptable trade-off between precision and recall.
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Table 7. All-in-one autoencoding: evaluation metrics (N-64-24-6-24-64-N).

IoT Device Recall Precision FPR F1 Score

Danmini 0.9997 0.9999 0.0004 0.9998

Ecobee 0.9997 0.9999 0.0071 0.9998

Ennio 0.9994 0.9999 0.0017 0.9996

Philips B120N/10 0.9997 0.9999 0.0001 0.9998

Provision PT-737E 0.9996 1.0 0.0 0.9998

Provision PT-838 0.9997 1.0 0.0 0.9998

Samsung SNH 1011 N 0.9994 0.9999 0.0006 0.9997

SimpleHome XCS7-1002-WHT 0.9997 0.9999 0.0002 0.9998

SimpleHome XCS7-1003-WHT 0.9997 0.9999 0.0058 0.9998

For the sake of completeness, we also show in Table 8 the evaluation metrics for one
“smaller” configuration, the aforementioned Configuration A, which was mostly outstanding
in the separate autoencoding experiment; however, it performs worse in the all-in-one test.
For example, the recall drops to 0.3549 for the Samsung SNH 1011 N webcam device and
to 0.3506 for the Ennio doorbell device. This indicates that with respect to the problem
addressed and the data in hand, deepening and widening the autoencoder can improve
intrusion detection in the all-in-one setting. Regarding the effects of the deeper and wider
configuration on processing times, we found that for the N-64-24-6-24-64-N, the detection
latency per record is reasonable (about 1 microsecond per record).

Finding: The cross-device training method assures remarkable detection figures when
compared to the separate autoencoders. Although the best all-in-one AE is a wider and
deeper network than separate autoencoding, its training time and detection latency per
record are acceptable.

Our results show that it is possible to train a single model with normal traffic col-
lected from different devices. While the findings of this paper should be contextualized
with respect to the attacks and devices of N-BaIoT, we believe there is room to conceive
more scalable and centralized intrusion detection solutions in the context of IoT, based
on the notion of all-in-one models. An AE model trained ”once and for all“ represents a
lightweight and device-independent solution. This is a considerable advantage in terms of
transferability and adaptability.

Table 8. All-in-one autoencoding: evaluation metrics (AE configuration A: N-48-6-48-N).

IoT Device Recall Precision FPR F1 Score

Danmini 0.7955 1.0 0.0 0.8861

Ecobee 0.7568 0.9999 0.0040 0.8616

Ennio 0.3506 1.0 0.0 0.5192

Philips B120N/10 0.7851 0.9999 0.0006 0.8796

Provision PT-737E 0.7276 1.0 0.0 0.8423

Provision PT-838 0.7371 0.9999 0.0001 0.8486

Samsung SNH 1011 N 0.3549 1.0 0.0 0.5239

SimpleHome XCS7-1002-WHT 0.7639 1.0 0.0 0.8661

SimpleHome XCS7-1003-WHT 0.7577 0.9999 0.0068 0.8621
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5.3. Discussion of the Results

In the following, we complement the results presented above by a visual analysis and
a discussion on the operation of the two considered approaches.

Figure 3 shows the reconstruction error (RE) obtained on the test set of the Danmini
doorbell and the Provision PT-838 security camera devices by considering the separate au-
toencoding approach (Figure 3a,c) and the all-in-one autoencoding approach (Figure 3b,d).
We limit the visual analysis to these two devices because all the remaining cases lead to
similar findings. The REs of normal and attack points of the test sets refer to the separate
and all-in-one experiment, respectively. Each data point is marked by either •—normal
data point— or H—attack data point—for better visualization; the x-axis is the id of the
point in the test set; the y-axis is the corresponding RE. A semi-logarithmic scale (x-axis
in linear scale and y-axis in log scale) is used to better visualize the REs. The horizontal
dashed line shows the anomaly threshold (a by-product of the training phase).

(a) (b)

(c) (d)
Figure 3. RE of the test sets for the Danmini doorbell and Provision PT-838 security camera devices:
(a) Danmini–Separate autoencoding; (b) Danmini–All-in-one autoencoding; (c) Provision PT-838–
Separate autoencoding; (d) Provision PT-838–All-in-one autoencoding.

In general, according to Figure 3, it can be noted that both autoencoding
approaches—separate and all-in-one—return a low RE for almost all the normal points,
which are thus below the detection threshold; on the other hand, most of the attack points
lead to high RE and are well above the threshold. Overall, Figure 3 is useful to gain a
visual understanding of true negatives (NORMAL points below the threshold), false positives
(NORMAL points above the threshold), false negatives (ATTACK points below the threshold)
and true positives (ATTACK points above the threshold) of both autoencoding approaches.

It is easy to link the visual results and the AE performance figures by analyzing the
recall and FPR values—Danmini and Provision PT-838 devices—reported in Table 6 (sep-
arate autoencoding) and Table 7 (all-in-one autoencoding). In particular, for the Danmini
doorbell device, Figure 3a (separate autoencoding) shows a higher number of NORMAL points
above the threshold—false positives—if compared with Figure 3b (all-in-one autoencod-
ing); in fact, the FPR values for this device are 0.0108 (separate autoencoding) and 0.0004
(all-in-one autoencoding). On the other hand, Figure 3a (separate autoencoding) shows no
attack points under the threshold—false negatives—if compared with Figure 3b (all-in-one
autoencoding). Again, this visual finding is confirmed by the performance figures. As a
matter of fact, the recall values for this device are 1.0 (separate autoencoding) and 0.9997
(all-in-one autoenconding). The same considerations can be extended to the Provision
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PT-838 security camera device (Figure 3c,d). It is worth pointing out that this trend—lower
FPR at the expense of lower recall for the all-in-one approach—is preserved on almost all
devices (as shown in Tables 6 and 7).

Overall, we believe that the all-in-one approach has remarkable strengths. Although
the recall values obtained with this approach are slightly lower than the separate approach
ones, they are surely acceptable (in the range 0.9994 to 0.9997). Moreover, the FPR is always
close—or even equal—to 0; on the other hand, the FPR values obtained with the separate
autoencoding are worse, and they range from 0.0002 to 0.0417. In real-life environments,
false positives can be cumbersome to deal with for network administrators. A high number
of false positives leads to lost confidence in the alerts and to lower defense levels. Therefore,
in addition to the advantages related to the scalability and the portability (a single network
topology for all the devices), the all-in-one approach might also be beneficial to mitigate
the false positive problem.

5.4. Comparison with the Related Proposals Using N-BaIoT

It is worth noting that N-BaIoT is a widely used dataset in the IoT-based anomaly
detection field. Consequently, we can compare the metrics obtained in our study with other
similar proposals in the literature. Authors in [2,3,24], as mentioned in Section 2, assess
different state-of-the-art anomaly detection methods on the same N-BaIoT dataset used
in our paper. However, different from our study, which shows the performance metrics
per IoT device, the authors report the performance figures per attack. For example, in [3],
the authors obtain a recall of 0.99 for the gafgyt combo attack and of 1 for the mirai_ack
attack. Again, the authors of the detector proposed in [26] show only the ROC curves—and
AUC values—as performance figures; therefore, they cannot be directly compared with
our results. As for the use of the autoencoder, this type of neural network is leveraged to
perform automatic feature extraction with the aim of reducing the dimensions of the data
being processed. Therefore, differently from our study, the autoencoder is simply a building
block of a more complex detection architecture. As for the federated-based approach
proposed in [27], the recall values are below 0.75 under the 50 epoch range; the score jumps
up to 0.99 from 60 epochs onward and remains at that high level while using the federated
learning approach, for all experiments. These results are in line with our recall values.
The performance obtained in DeL-IoT [28], instead, is comparable to the ones obtained in
our study. However, the authors use the autoencoder to perform feature extraction and
not anomaly detection (as intended in our study). As for the approach described in [30]
mentioned in Section 2, tested using the N-BaIoT dataset, the best recall—0.999—is found
for the Samsung SNH 1011 N webcam device. We also obtained a recall equal to 0.9994
for this device. Similar values of recall are preserved for all the IoT devices in our study,
different from the results shown in [30]. Moreover, according to the figures reported in [30],
the best FPR—0.009—is obtained for the Ecobee thermostat device. For the other devices,
the FPR ranges from 0.016 to 0.098. The FPR obtained with our approach, instead, ranges
from 0.0 to 0.0071.

The results obtained with our cross-device method are inline—if not even better—with
those obtained by other anomaly detection techniques assessed through the N-BaIoT
dataset. Besides the inherent benefits of deep learning, the improvement over existing
methods is explained by the interplay of two factors, which are the novel contributions of
this work. The former is the cross-device notion: learning a single model atop the normal
traffic related to different IoT devices allows for the recognition of a greater number of
nominal behavioral patterns and related variants. This makes our approach valuable in
terms of adaptability and transferability across the devices, and it leads to better perfor-
mance. The latter is the proposed outlier-based threshold selection method. In this respect,
there exist several “fixed” criteria, such as mean, median, mean plus standard deviation and nth

percentile, that can be found in the related literature to determine a threshold from normal
data. For example, the authors in [2] consider the mean and the standard deviation to select
the threshold. It should be noted that a “fixed” criteria approach may not be the best fit for
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all the datasets in hand. In order to overcome this limitation, we proposed a data-driven
method that can adapt to potential outliers. Our method improves the results over tradi-
tional techniques because it allows mitigating the inherent imperfections of the training
data and occasional inconsistencies of the autoencoders at providing good reconstructions
also for outliers, which are well-known in the literature [37].

6. Limitations and Threats to Validity

The evaluation of an IDS is a complex subject, and it depends on many factors
including—but not limited to—the underlying network devices, topology and speed,
the nature of the attacks and the quality of the legitimate traffic being used to infer the “nor-
mal profile” of the devices. For example, the normal traffic might be fraught with spurious,
out-of-the-crowd behaviors and by imperfect labels. The proposed outlier-based threshold
selection method mitigates the effect of the imperfections of the normative traffic. As much
related work in the area, the findings of this paper must be contextualized with respect to
the attacks and data of the adopted dataset. In this respect, many public security datasets
have been proposed over the years; some of them have gained significant popularity and
become widely consolidated benchmarks for intrusion detection algorithms and tools, such
as N-BaIoT. We are aware that a “lab-made” dataset, such as N-BaIoT and many others,
might be a simplification of real-life production networks; however, adopting a reference
benchmark makes it possible to compare the results obtained with those of the related
proposals (as discussed in Section 2). As for the application of the autoencoder and outlier-
based method to a further dataset, we used the 2021 version of the CICIDS2017 dataset
(https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html, accessed on
3 January 2023) in a previous paper that investigates the issues of training effective IDS
models by a single autoencoder [25]. Besides the use of a synthetic dataset, another simpli-
fication is in the format of data addressed by our study. N-BaIoT is based on a network
made of different IoT devices, which range from a thermostat, to doorbells and security
cameras—possibly from different vendors—and network equipment (e.g., WiFi access
point, switch and router); the “nature” of the IoT devices in real-life network environments
is even more exacerbated when compared to a synthetic dataset. The model proposed in
this paper can detect threats in a network made of different devices under the assumption
that all the traffic is transformed into a standard data format consisting of fixed-length
records irrespective of the device. Nowadays, there exist many products for capturing
network traffic and generating fixed-length records suited for machine and deep learning
purposes. The availability of a standard data format simplifies the use of typical IDS
approaches applied to common networks. As a final remark, the proposed model is not
meant to cover the entire life cycle of an infection; rather, our work focuses on the last stage
of botnet detection that pertains to IoT bots launching the attacks. As for any data-driven,
as those involving deep learning methods, there may be concerns regarding the validity
and generalizability of the results. We discuss them based on four aspects of validity
listed in [38].

Construct validity. The study builds around the intuition that it is possible to learn a
cross-device IDS model only on top of normative training traffic records related to several
IoT devices. Our study, based on deep autoencoders, has the potential to drive scalable
and maintainable IDS solutions that can cope with the ever-growing complexity of IoT
networks. This construct has been investigated with normal and attack traffic from a widely
accepted benchmark by the related IoT literature. Experiments are based on the ubiquitous
Keras-tensorflow deep learning framework. Overall, the study is supported by well-
founded theory and practice, and the typical evaluation metrics of recall, precision, false
positive rate and F1 score for comparative purposes.

Internal validity. Our study implements several countermeasures aiming to mitigate
internal validity threats. For example, we made sure to test our autoencoder-based IDS by
means of held-out data, i.e., not used at all for training and hyperperameters optimization.
The reference dataset used to conduct the experiments contains attacks that follow up

https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html
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BASHLITE and Mirai botnet infections. Overall, the attacks are well-established in the
literature and have been used to validate many existing IDS proposals. The traffic is
based on several devices; more importantly, the training of both separate and all-in-one
autoencoders—semi-supervised—is not biased by the specific attack types. The use of
such a diverse mixture of controlled conditions and techniques aims to mitigate internal
validity threats.

Conclusion validity. Conclusions have been inferred through a careful design of the
experiments. The conclusions of the study are consistent along the different dimensions
of our experiments, which makes our finding perfectly reasonable and technically sound.
For example, we assess the sensitivity of the IDS performance with respect to different
configurations of the autoencoders, i.e., in terms of the number of hidden layers and
neurons. We present an extensive discussion of the results. The key findings of the study
are consistent across the devices. The proposed approach detects the attacks at hand
irrespective of devices, which means the results are not biased by a specific attack or device.
More importantly, the IDS performance achieved is in line with the related literature, which
provides a reasonable level of confidence in our analysis.

External validity. The cross-device model can be applied to other similar systems,
types of neural networks and attacks. Nowadays, there exist many public datasets and
attack tools, which make our approach definitively feasible in practice. Our approach does
not interfere with system operations: as only passive tracing is required, the approach
is inherently nonintrusive. More importantly, there exist many products for capturing
network packets and generating fixed-length records, which allow porting our method to
other systems. In fact, in this paper we successfully applied the method to the network
traffic—transformed into a data format suited for machine learning experiments—related
to several IoT devices and attack types to mitigate external validity threats. We are confident
that the experimental details provided in the paper would support the replication of our
study by future researchers and practitioners.

7. Conclusions

Nowadays, the IoT paradigm is enabling new application scenarios. However, simul-
taneously to the advances in new technologies, the number and variety of cyberattacks
have grown. Ongoing projects for enhancing IoT security include methods for providing
data confidentiality and authentication, access control within the IoT network, privacy
and trust among users and things and the enforcement of security and privacy policies.
Nevertheless, even with these mechanisms, IoT networks are vulnerable to multiple attacks,
such as botnets, aimed to disrupt the network. For this reason, another line of defense, de-
signed for detecting attackers is needed. IDS is designed to fulfill this purpose. Traditional
machine learning techniques have been widely applied in the literature to detect attacks
in IoT scenarios. Frequently, IoT intrusion detectors are implemented by means of deep
learning techniques with individual models per IoT devices or per attack. However, these
assumptions might be not suited to high-scalable and dynamic IoT environments.

This paper proposes a novel cross-device method, which allows learning a single
IDS model atop the traffic of different IoT devices included in the widely used N-BaIoT
dataset. In particular, the proposed approach—based on the use of an all-in-one deep
autoencoder—differs from the other contributions proposed in this area, which use the
training data to learn a separate IDS model per IoT device or per attack. Our results show
that it is relatively easy to achieve remarkable detection results by training–testing a model
on the top of individual devices. The all-in-one deep autoencoding approach, instead,
proves that it is possible to preserve the overall performance within 0.9994–0.9997 recall,
0.9999–1.0 precision, 0.0–0.0071 FPR and 0.9996–0.9998 F1 score, depending on the device,
by training a single model with the normal traffic collected from different devices. The
method paves the way for more scalable intrusion detection solutions in the context of IoT;
moreover, it is suited to the Cloud–Edge–IoT paradigm.
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In the future, we will extend our analysis to further datasets and devices in order to
discover potential limitations of the approach. In this respect, we believe that transferability
of the models is a primary concern. Although the IoT devices might belong to the same
category (e.g., doorbells or security cameras) with common physical characteristics, these
can be released by different manufacturers. The model may not necessarily be transferable
to all the devices of the same category but of different manufacturers. Therefore, we will test
and tune our approach with a wide set of devices of the same category but from different
manufacturers in order to develop both a device-independent and manufacturer-independent,
all-in-one, model. With data privacy and integrity becoming a major concern, in recent
years new technologies such as federated learning have emerged. They allow training
machine learning models with decentralized data while preserving its privacy by design.
Federated learning is a collaborative learning approach where the devices interact with a
centralized entity but without the need to share their data. In the future, we will also extend
our approach in the context of federated learning, which can be used for intrusion detection.
Furthermore, the continuing increase of new unknown attacks requires corresponding
improvements to the performance of the IDS solutions to identify zero-day attacks. Future
research will also investigate to discover and mitigate the actions attackers might take to
evade detection.
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18. Zavrak, S.; İskefiyeli, M. Anomaly-Based Intrusion Detection From Network Flow Features Using Variational Autoencoder. IEEE
Access 2020, 8, 108346–108358. [CrossRef]

19. Catillo, M.; Rak, M.; Villano, U. Auto-scaling in the Cloud: Current Status and Perspectives. In Proceedings of the Advances
on P2P, Parallel, Grid, Cloud and Internet Computing, Antwerp, Belgium, 7-9 November, 2019; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 616–625. .

20. Almiani, M.; AbuGhazleh, A.; Al-Rahayfeh, A.; Atiewi, S.; Razaque, A. Deep recurrent neural network for IoT intrusion detection
system. Simul. Model. Pract. Theory 2020, 101, 102031. [CrossRef]

21. Catillo, M.; Del Vecchio, A.; Pecchia, A.; Villano, U. Transferability of machine learning models learned from public intrusion
detection datasets: The CICIDS2017 case study. Softw. Qual. J. 2022, 30, 955–981. [CrossRef]

22. Taheri, R.; Shojafar, M.; Alazab, M.; Tafazolli, R. Fed-IIoT: A Robust Federated Malware Detection Architecture in Industrial IoT.
IEEE Trans. Ind. Inf. 2021, 17, 8442–8452. [CrossRef]

23. Liu, Y.; Kumar, N.; Xiong, Z.; Lim, W.Y.B.; Kang, J.; Niyato, D. Communication-Efficient Federated Learning for Anomaly Detection
in Industrial Internet of Things. In Proceedings of the IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020;
pp. 1–6.

24. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection.
In Proceedings of the International Conference of Network and Distributed System Security Symposium, San Diego, CA, USA,
18–21 February 2018.

25. Catillo, M.; Pecchia, A.; Villano, U. Simpler Is Better: On the Use of Autoencoders for Intrusion Detection. In Quality of Information
and Communications Technology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 223–238.

26. Snoussi, R.; Youssef, H. VAE-Based Latent Representations Learning for Botnet Detection in IoT Networks. IEEE Access 2022, 31, 4.
[CrossRef]

27. Regan, C.; Nasajpour, M.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Choo, K.R. Federated IoT attack detection using
decentralized edge data. Mach. Learn. Appl. 2022, 8, 100263. [CrossRef]

28. Tsogbaatar, E.; Bhuyan, M.; Taenaka, Y.; Fall, D.; Gonchigsumlaa, K.; Elmroth, E.; Kadobayashi, Y. DeL-IoT: A deep ensemble
learning approach to uncover anomalies in IoT. Internet Things 2021, 14, 100391. [CrossRef]

29. Khajenezhad, A.; Bashiri, M.A.; Beigy, H. A distributed density estimation algorithm and its application to naive Bayes
classification. Appl. Soft Comput. 2021, 98, 106837. [CrossRef]

30. Al Shorman, A.; Faris, H.; Aljarah, I. Unsupervised intelligent system based on one class support vector machine and Grey Wolf
optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2809–2825. [CrossRef]

31. Kan, X.; Fan, Y.; Fang, Z.; Cao, L.; Xiong, N.N.; Yang, D.; Li, X. A novel IoT network intrusion detection approach based on
Adaptive Particle Swarm Optimization Convolutional Neural Network. Inf. Sci. 2021, 568, 147–162. [CrossRef]

32. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

33. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2021, 54, 38.
[CrossRef]

34. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
35. Liu, F.T.; Ting, K.M.; Zhou, Z. Isolation Forest. In Proceedings of the IEEE International Conference on Data Mining, Pisa, Italy,

15–19 December 2008; pp. 413–422.
36. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2022.103363
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.3390/s17091967
http://dx.doi.org/10.1016/j.comnet.2020.107784
http://dx.doi.org/10.3390/app12105015
http://dx.doi.org/10.3390/app11157050
http://dx.doi.org/10.1109/ACCESS.2020.3001350
http://dx.doi.org/10.1016/j.simpat.2019.102031
http://dx.doi.org/10.1007/s11219-022-09587-0
http://dx.doi.org/10.1109/TII.2020.3043458
http://dx.doi.org/10.1007/s10922-022-09690-4
http://dx.doi.org/10.1016/j.mlwa.2022.100263
http://dx.doi.org/10.1016/j.iot.2021.100391
http://dx.doi.org/10.1016/j.asoc.2020.106837
http://dx.doi.org/10.1007/s12652-019-01387-y
http://dx.doi.org/10.1016/j.ins.2021.03.060
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/MC.2017.201


Appl. Sci. 2023, 13, 837 21 of 21

37. Wan, F.; Guo, G.; Zhang, C.; Guo, Q.; Liu, J. Outlier Detection for Monitoring Data Using Stacked Autoencoder. IEEE Access 2019,
7, 173827–173837. [CrossRef]

38. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering: An Introduction;
Kluwer Academic: Norwell, MA, USA, 2000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2956494

	Introduction
	Related Work
	IDS with IoT, Machine and Deep Learning
	Work on N-BaIoT Dataset

	Anomaly Detection Method
	Background on Deep Autoencoders
	Autoencoder-Based IDS
	Selection of the Detection Threshold

	Dataset, AE Design and Implementation
	Reference Dataset and Partitioning
	AE Design
	Separate Autoencoding
	All-in-One Autoencoding

	Implementation and Training

	Results
	Separate Autoencoding
	All-in-One Autoencoding
	Discussion of the Results
	Comparison with the Related Proposals Using N-BaIoT

	Limitations and Threats to Validity
	Conclusions
	References

