
Citation: Zhu, X.; Huang, D.; Li, X.;

Cai, D.; Zhu, D. GPSR:

Gradient-Prior-Based Network for

Image Super-Resolution. Appl. Sci.

2023, 13, 833. https://doi.org/

10.3390/app13020833

Academic Editor: Atsushi Mase

Received: 24 November 2022

Revised: 23 December 2022

Accepted: 3 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

GPSR: Gradient-Prior-Based Network for Image
Super-Resolution
Xiancheng Zhu 1, Detian Huang 1,* , Xiaorui Li 2, Danlin Cai 3 and Daxin Zhu 3

1 College of Engineering, Huaqiao University, Quanzhou 362021, China
2 College of Fine Arts, Huaqiao University, Quanzhou 362021, China
3 School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362021, China
* Correspondence: huangdetian@hqu.edu.cn

Abstract: Recent deep learning has shown great potential in super-resolution (SR) tasks. However,
most deep learning-based SR networks are optimized via pixel-level loss (i.e., L1, L2, and MSE),
which forces the networks to output the average of all possible predictions, leading to blurred details.
Especially in SR tasks with large scaling factors (i.e., ×4, ×8), the limitation is further aggravated.
To alleviate this limitation, we propose a Gradient-Prior-based Super-Resolution network (GPSR).
Specifically, a detail-preserving Gradient Guidance Strategy is proposed to fully exploit the gradient
prior to guide the SR process from two aspects. On the one hand, an additional gradient branch is
introduced into GPSR to provide the critical structural information. On the other hand, a compact
gradient-guided loss is proposed to strengthen the constraints on the spatial structure and to prevent
the blind restoration of high-frequency details. Moreover, two residual spatial attention adaptive
aggregation modules are proposed and incorporated into the SR branch and the gradient branch,
respectively, to fully exploit the crucial intermediate features to enhance the feature representation
ability. Comprehensive experimental results demonstrate that the proposed GPSR outperforms
state-of-the-art methods regarding both subjective visual quality and objective quantitative metrics in
SR tasks with large scaling factors (i.e., ×4 and ×8).

Keywords: super-resolution; deep learning; gradient prior; feature representation; spatial attention

1. Introduction

As one of the most crucial tasks in computer vison, Single Image Super-Resolution
(SISR) aims to reconstruct a latent high-resolution (HR) image with plentiful high-frequency
details from a single available low-resolution (LR) image by learning a complex nonlinear
mapping. SISR has drawn much attention due to its wide range of practical applications,
such as satellite imaging [1,2], medical imaging [3,4], face recognition [5,6], and video
surveillance [7,8]. In recent years, deep learning has attracted increasing attention in SR
tasks due to its powerful feature representation ability.

Dong et al. [9] first applied deep learning to SISR task by proposing SRCNN, which
consists of three convolutional layers and which exhibits remarkable performance over
traditional SR methods. Since then, numerous works have focused on deeper network
structures [10], more extensive connections [11], more efficient attention mechanisms [12],
and more powerful non-local operations [13,14] to enhance the feature representation
of CNN-based SR models. Lim et al. [10] proposed EDSR with a very deep structure
by stacking massive optimized residual blocks. Impressive performance improvement
brought about by EDSR reveals that network depth plays an important role in high-quality
image SR. To explore more useful SR cues from different aspects, Zhang et al. [11] proposed
RDN to aggregate hierarchical features at different network depths adaptively. Further,
Niu et al. [12] proposed HAN to recalibrate the hierarchical features by modeling the
interdependencies among layers. In addition, Mei et al. focused on non-local operations in
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an SISR task and successfully proposed NLSN [13] and PA-EDSR [14], which fully utilize
numerous highly similar textures within the image to synthesize the high-fidelity images.

However, most deep learning-based SR methods are optimized via pixel-level loss
(i.e., L1, L2, and MSE), which guides the SR process by minimizing the pixel-to-pixel
distance between the reconstructed images and the HR reference ones. Under such a
constraint, the SR model tends to output the average of all possible predictions, resulting
in blurred details of the reconstructed images. More seriously, the limitation is further
aggravated in SR tasks with large scaling factors (i.e.,×4 and×8). Therefore, it is important
to improve the high-frequency detail reconstruction capability of the pixel-level loss-based
SR models.

Considering that the gradient map of an image can reflect the spatial distribution of the
high-frequency information, but also identify the local regions where the high-frequency
components exist, we attempt to exploit the gradient map to guide the network to restore the
appropriate edge and texture details at the suitable positions. To this end, we fully explore
the potential of the gradient prior for the SR task and then propose a detail-preserving
Gradient-Guided Strategy (GGS) to attain sharp edge and texture details, and to preserve
the geometric invariance of the reconstructed images. Specifically, on the one hand, due to
the strong correlation between the gradient information and high-frequency components,
the gradient information can be transformed into the sharp edge and texture features.
Thus, we introduce an additional gradient branch in the classical network with a single
SR branch. The introduced gradient branch works as a feature selector that adaptively
extracts structural features to provide a gradient prior for the SR branch. On the other
hand, we propose a compact Gradient-Guided (GG) loss function to avoid blindly restoring
high-frequency details by constraining the spatial structure of the reconstructed images.
The proposed GGS facilitates the suppression of undesired geometric distortions while
preventing over-smoothing or over-sharp recovery.

Furthermore, the benefit from multi-level contextual residual features, which are
hierarchical with different receptive fields, can provide valuable cues for SR task from
different perspectives. We propose two Residual Spatial Attention Adaptive Aggregation
Modules (RS3AMs) to fully utilize the hierarchical features from the original LR images
and embed them in the SR branch and the gradient branch, respectively. Specifically, on
the one hand, considering that most SR methods [10,13,15] suffer from the hierarchical
features being learned in a local way, which hinders the SR performance, we propose
a novel Contextual Residual Fusion Structure (CRFS). Our CRFS removes over-dense
connections and frequent concatenation operations from the dense block of RDN [11],
and adaptively learns global hierarchical features in a holistic way, which promotes its
feature representation ability. On the other hand, to enhance the feature representation
of CRFS, we propose an efficient Large-Receptive-field-based Spatial Attention Module
(LRSAM) to adaptively recalibrate the local spatial information of the feature map. To
the best of our knowledge, large receptive fields facilitate the network to fully exploit the
interdependence of local spatial information and significantly strengthen the sensitivity
of the SR model toward critical spatial content. Finally, we combine LRSAM with CRFS
to acquire two RS3AMs for effective feature extraction in the SR branch and the gradient
branch, respectively. It is worth mentioning that GPSR achieves better SR performance
with smaller parameters (8.18M) compared to most state-of-the-art SR methods, such as
SAN [15] (15.9M), HAN [12] (16.07M), and NLSN [13] (46.52M). Overall, our contributions
are summarized as follows.

• We propose a Gradient-Prior-based Super-Resolution network (GPSR) for images. The
experimental results show that the proposed GPSR achieves superior performance
against state-of-the-art methods in terms of subjective visual results and objective
evaluation metrics.

• We propose a detail-preserving Gradient-Guided Strategy (GGS) to prompt the model
to focus more attention on the most critical high-frequency components, and to sup-
press undesired geometric distortions as much as possible.



Appl. Sci. 2023, 13, 833 3 of 21

• We propose two Residual Spatial Attention Adaptive Aggregation Modules (RS3AMs)
and further incorporate them in the SR branch and the gradient branch, respec-
tively, to fully explore and utilize the intermediate features to enhance feature
representation capability.

2. Related Work
2.1. Gradient Prior

Extensive studies have confirmed that using common priors, which describe nat-
ural image properties, such as sparsity [16,17], spatial smoothness [18,19], non-local
similarity [13–15,20], and gradient prior [21–23], can effectively strengthen the high-frequency
details of the reconstructed images. Among them, the gradient prior, as one of the most
critical priors, is widely used in SR tasks since it is easy to extract and can provide more
advantageous information to generate sharp edges and textures. Yang et al. [22] proposed
the first recurrent network model with residual learning for SR, which introduced the
gradient prior between the LR images and HR images into the SR process to enhance the
detail-preserving ability. To address the problem of structural distortion in GAN-based SR
methods, Ma et al. [21] proposed a structure-preserving Super-Resolution (SPSR), which
introduces additional gradient prior to guide the generator to restore straight and sharp
edges while suppressing undesired spatial distortions as much as possible. Considering
that recovering diverse low-level image elements at a single stage is not an optimal strategy
due to the different characteristics of various low-level components in natural images,
Wei et al. [23] proposed the Component Divide-and-Conquer (CDC) model, which pro-
duces attention masks corresponding to smooth, edge, and corner regions by utilizing
gradient prior, to acquire the corresponding structural components, and then merges these
three structural components as the final output. The above studies [21–23] have revealed
that gradient prior is able to effectively improve the high-frequency details of reconstructed
images. However, for SR tasks with large scaling factors (i.e., ×4 and ×8), these meth-
ods are unable to predict sharp edge and texture details, and even produce unacceptable
geometric distortions due to the inability to supplement multi-scale structural information.

2.2. Contextual Residual Feature

As the network depth increases, multi-level contextual residual features, which are
hierarchical with different receptive fields, can benefit SR from different perspectives.
However, numerous deep-learning-based SR methods, such as VDSR [24], EDSR [10],
SAN [15], PA-EDSR [14], NLSN [13], etc., constitute a deep network by simply stacking
a massive quantity of residual modules, but they do not fully utilize the complementary
contextual residual features, limiting the SR performance. To improve the information
flow, Huang et al. [25] proposed a densely connected convolutional network (DenseNet),
which uses dense connectivity to achieve a direct connection between any two layers,
significantly improving the efficiency of feature and gradient information transfer, and
reducing the training difficulty. However, DenseNet is unsuitable for the SR task. On the
one hand, the Batch-Normalization (BN) layers severely corrupt the contrast information of
the reconstructed images. On the other hand, the pooling operation may lose crucial spatial
information. To address this issue, Zhang et al. [11] designed a Residual Dense Block (RDB),
which densely connects abundant local features to generate more advanced fused features
while removing modules that negatively impact on the SR task. Nevertheless, over-dense
connections and over-frequent concatenation operations not only require a large amount
of computing resources, but they also introduce redundant feature information which
hinders the feature representation. To reduce the heavy computation burden, Liu et al. [26]
proposed a Residual Feature Aggregation framework (RFA). Compared with RDB, RFA
removes unnecessary skip connections and directly forwards the features on each local
residual branch to the end of the network, leading to a better SR performance. Additionally,
inspired by the feedback mechanism that permits the network to carry a signal of output to
correct previous states, Li et al. [27] propose an image Super-Resolution FeedBack Network
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(SRFBN) to refine low-level representations with high-level information in a top-down
manner to promote the SR performance. The above studies [11,25–27] have shown that
the rational exploration and utilization of contextual residual features can provide more
helpful information for the SR task. However, due to the lack of discriminative learning
capability, a considerable number of redundant features may be passed to the end of the
network and hinder the SR performance.

2.3. Attention-Based Networks

The visual attention mechanism is a visual information-processing mechanism unique
to the human brain, which is able to acquire crucial local regions while suppressing irrele-
vant information by swiftly scanning the global image [28]. In the field of machine vision,
the attention mechanism can be interpreted as an efficient way to manage resources by
allocating more available computational resources to critical image signals. In recent years,
numerous studies [12,15,29,30] have verified the effectiveness of attentional mechanisms.
Considering that treating channel-wise features equally hinders the feature representa-
tion ability, Zhang et al. [29] proposed a very deep residual channel attention network
(RCAN), which explores interdependencies among channels using the proposed Residual
Channel Attention Module (RCAB) to adaptively reweight channel-wise features, thus
prompting the network to focus on critical information. Dai et al. [15] proposed a Second-
Order Attention Network (SAN), which endeavors second-order feature statistics to fully
explore the dependencies of intermediate features to improve the feature representation
ability further. Mei et al. [30] proposed the first Cross-Scale Non-Local (CS-NL) attention
module, which combines the new CS-NL prior with local and in-scale non-local priors to
reconstruct high-quality images. Considering that most attention mechanisms act only
on each independent network layer and they ignore the relevance of intermediate layer
features, Niu et al. [12] proposed the holistic attention network (HAN), which models
the interdependencies between intermediate layers and adaptively highlights significant
multi-level features. The above studies [12,15,29,30] have confirmed that the attention
mechanism is able to adaptively highlight crucial features and effectively enhance the
feature representation ability. However, existing spatial attention modules [31,32] only
capture spatial information that are beneficial for SR tasks in extremely localized ways
due to the lack of a large receptive field. Although the non-local operations [13–15,30,33]
provide more global information to the network by capturing long-range dependencies,
their high computational cost is not negligible.

3. Method

Most SR methods suffer from blindly recovering high-frequency details, resulting in
their reconstructed images lacking sharp edge and texture details, along with undesired
geometric distortion and artifical artifacts [34,35]. Particularly, this problem becomes more
severe as the scaling factor increases. To address the problem, we propose a Gradient-
Prior-based Super-Resolution network (GPSR), which is able to reconstruct sharp edge and
texture details in SR tasks with large scaling factors (i.e., ×4 and ×8). In this section, we
first introduce the overall architecture of our GPSR, followed by a detailed description of
the detail-preserving Gradient-Guided Strategy (GGS) and the Residual Spatial Attention
Adaptive Aggregation Module (RS3AM).

3.1. Network Architecture

As shown in Figure 1, our GPSR is composed of two branches, including the gradient
branch and the SR branch. Among them, the gradient branch contains several gradient
modules, which are mainly responsible for inferring multi-scale spatial structural feature
maps to provide additional gradient priors for each decoding stage of the SR branch, thus
improving the edge and texture details of the reconstructed images; while the SR branch
contains several encoder–decoders, and it aims to generate the reconstructed images with
high fidelity.



Appl. Sci. 2023, 13, 833 5 of 21

C
o
n
v

Le
a
k
y
R
e
LU

C
o
n
v

C
o
n
v

Le
a
k
y
R
e
LU

C
o
n
v

R
S
A
M

S
R

P
ix
e
lS
h
u
ff
le

C
o
n
v

R
S
A
M

S
R

C
o
n
v

P
ix
e
lS
h
u
ff
le

R
S
A
M

G

P
ix
e
lS
h
u
ff
le

C
o
n
v

C
o
n
v

R
S
A
M

G

P
ix
e
lS
h
u
ff
le

C
o
n
v

SR Branch

Gradiant Branch

Features of Encoder Module

Features of Decoder Module

Features of Gradiant Module

pix

gradL

pix

SRL gg
L

C
o
n
v

R
S
A
M

S
R

R
S
A
M

S
R

Figure 1. Network architecture of our Gradient-Prior-based Super-Resolution network (GPSR). The
network consists of two branches, the gradient branch (bottom right), which is used to generate the
multi-scale spatial structure feature maps, and the SR branch (upper left), which is used to generate
the final reconstructed image. Notably, the intermediate features generated on the SR branch are
integrated into the gradient branch to provide additional beneficial structural features. In addition,
the multi-scale spatial structure feature maps generated on the gradient branch are integrated into
the SR branch to strengthen the edge and texture details.

Given a LR image ILR as the input of our GPSR, the bicubic upsampling is first used
to rescale ILR to the desired resolution, and then the shallow feature F0 is extracted from
ILR through a convolutional layer (Conv),

F0 = fconv( fup(ILR)), (1)

where fup(·) denotes the upsampling function with bicubic kernel and fconv(·) denotes the
convolution operation.

The shallow feature map F0 passes through N stacked encoders, yielding N shallow
feature maps with different scales additionally. Let Fi−1 be the input of the i-th encoder; the
corresponding output Fi can be obtained by:

Fi = Hen(Fi−1), (2)

where Hen(·) denotes the encoder function and i = 1, 2, ..., N. The goal of the encoder,
which contains two stacked Convs (with stride 2) and a Rectified Linear Unit (ReLU), is
to perform ×2 downsampling (halving the spatial dimension and doubling the channel
dimension) and shallow feature extraction operations:

Hen(·) = fconv(ρ( fsconv(·))), (3)

where fsconv(·) represents the function of the strided Conv (with stride 2), and ρ(·) repre-
sents Leaky ReLU.

To compensate for the information loss caused by forward propagation, we pass
these shallow features Fi to the decoders at each level through skip connections, where
i = 0, 1, · · · , N − 1.
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Then, the output FN of the N-th encoder passes through N decoders, yielding N deep
feature maps with different scales. Let Fj+N−1 be the input of the j-th decoder; the output
F′j of the j-th encoder can be obtained by:

F′j = Hde
(

Fj+N−1
)
, (4)

where Hde(·) denotes the decoder function, j = 1, 2, ..., N. The goal of the decoder, which
contains M stacked RS3AM-SR (Section 3.3.3) and a pixel-shuffle [36] layer followed by
a Conv, is to perform ×2 upsampling (halving the channel dimension and doubling the
spatial dimension) and deep feature extraction operations:

Hde(·) = fconv

(
fsubpix

(
f M
de

(
... f 2

de

(
f 1
de(·)

)
...
)))

, (5)

where, fsubpix(·) represents the sub-pixel convolution operation, f a
de(·) represents the func-

tion of the a-th RS3AM-SR, and a = 1, 2, ..., M. Subsequently, by concatenating the shallow
feature FN−j, the output F′j of the j-th decoder and the spatial structure feature map Fgrad

j
produced by the j-th gradient module, the advanced fused feature Fj+N is acquired,

Fj+N =
[

FN−j, F′j , Fgrad
j

]
. (6)

Then, Fj+N is treated as the input of the (j + 1)-th decoder.
Finally, the reconstructed image ISR is generated with a Conv:

ISR = fconv(F2N). (7)

where F2N denotes the final informative feature obtained through a series of decoders.

3.2. Detail-Preserving Gradient-Guided Strategy (GGS)

Considering that the gradient magnitude is able to effectively reflect the frequency
of the image signal, in other words, the gradient magnitude is higher in the edge and
texture regions corresponding to the high-frequency regions, and lower in the smooth
regions corresponding to the low-frequency regions, the gradient information is able to
highlight the high-frequency components beneficial for the SR task and filter out redundant
low-frequency components. Consequently, a detail-preserving Gradient-Guided Strategy
(GGS) is proposed to take advantage of the gradient prior from the LR images. Specifically,
we design a novel gradient branch to adaptively strengthen high-frequency details and to
provide gradient prior for the SR task. At the same time, we propose a compact Gradient-
Guided (GG) loss that leads GPSR to infer appropriate gradient information at the suitable
positions by learning the gradient space to avoid blindly recovering details.

3.2.1. Gradient Branch

In the GPSR model, the additional gradient branch is designed to achieve the spatial
distribution translation from the LR gradient images to the HR gradient images. Since the
gradient map of an image can be acquired by calculating the difference among neighboring
pixels, we perform convolution operations with specific kernels on an LR image ILR to
attain its gradient map Igrad

LR :

Igrad
LR = g(ILR) =

∥∥[ILR ∗Mx, ILR ∗My
]∥∥

2, (8)

where g(·), ∗ and ‖·‖2 denote the gradient feature extraction function, the convolution oper-
ation, and the `2 norm, respectively. Mx and My separately represent the fixed convolution
kernels for computing the horizontal and vertical gradients:
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Mx =

0 0 0
1 0 −1
0 0 0

, My =

0 1 0
0 0 0
0 −1 0

. (9)

As we know, the gradient map of an image contains a wealth of high-frequency
information that can be converted into sharp edge and texture details. Therefore, the
gradient branch is used to restore a series of multi-scale spatial structure feature maps
through learning the complex mapping relationship between the gradient maps of the LR
image and the corresponding gradient maps of the HR image. All spatial structure feature
maps are delivered to each decoder in the SR branch, as depicted in Equations (4)–(6), to
provide multi-scale gradient priors for the SR process.

Given an LR image ILR as the input of the gradient branch, we firstly convert ILR into
the gradient map fo the LR image by utilizing the gradient extraction function g(·), and
then we extract its shallow gradient feature Fgrad

0 with convolution operation:

Fgrad
0 = fconv(g(ILR)). (10)

To restore beneficial spatial structure feature maps, it is common practice to stack a large
number of basic blocks to form a very deep neural network for SR [35]. However, such
an approach severely increases the number of parameters and leads to a bloated network.
Considering that the intermediate features generated on the SR branch involve abundant
high-frequency information, which are significant for structure preservation, we integrate
these features into the gradient branch to recover more spatial structure feature maps with
fewer parameters and better reconstruction accuracy. As shown in Figure 2, the output
Fgrad

k−1 of the (k− 1)-th gradient module and the intermediate features Fm
de,k produced by the

m-th RS3AM-SR module in the k-th decoder on the SR branch are fed into the k-th gradient
module to attain the spatial structure feature map Fgrad

k :

Fgrad
k = fconv

(
fsubpix

(
HGE

(
Fgrad

k−1 , F1
de,k, ..., FM

de,k

)))
, (11)

where HGE(·) denotes the function of RS3AM-G module (Section 3.3.3), and Fm
de,k de-

notes the output of the m-th RS3AM-SR of the k-th decoder in SR branch, m = 1, 2, ..., M,
k = 1, 2, ..., N. Then, Fgrad

k is transferred to the encoder instantly, supplementing the SR
process with the essential structural information, as depicted in Equations (4)–(6). The
proposed gradient branch contains N gradient modules, which generate N spatial structure
feature maps at different scales to provide multi-scale gradient priors for restoring more
sharp edge and texture details.
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Figure 2. Architecture of the k-th gradient module of the gradient branch.
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3.2.2. Gradient-Guided (GG) Loss

To avoid blindly restoring high-frequency details, we propose a compact GG loss that
drives the network to generate appropriate gradient information at the suitable position.
The proposed GG loss includes two items that affect the gradient branch and the SR
branch, respectively.

On the one hand, inspired by ProSR [37] and LapSRN [38], we impose the deep multi-
scale supervision strategy on the proposed gradient branch to provide accurate spatial
structure information for the SR process. Specifically, the spatial structure feature map Fs

grad
generated by the s-th gradient module passes through a Conv, yielding the corresponding
gradient map Gs:

Gs = fconv

(
Fs

grad

)
, (12)

where s = 1, 2, · · · , N. Each Gs has its own loss and corresponding label G′s, which is
obtained via downsampling and gradient feature extraction operations on HR images IHR:

G′s = g( fdown(IHR)), (13)

where fdown(·) represents the downsampling function with bicubic kernel. Since each Gs

and corresponding G′s have the same shape, the gradient branch can be optimized by Lpix
SR :

Lpix
grad =

N

∑
s=1

E
∥∥Gs − G′s

∥∥
1, (14)

where ‖·‖1 denotes the `1 norm.
On the other hand, we impose a gradient restriction on the reconstructed images,

which enables the network to intensively learn the image gradient space. Such a scheme
cannot only enhance the structure preservation capacity, but also alleviate over-smoothing
or over-sharpening restoration. Specifically, we restrain the reconstructed image ISR by min-
imizing the distance of the gradient map between the HR image IHR and the reconstructed
image ISR,

Lpix
SG = E‖g(ISR)− g(IHR)‖1. (15)

Then, a compact GG loss Lgg is formed by combining Lpix
grad and Lpix

SG :

Lgg = αLpix
grad + βLpix

SG , (16)

where α and β are the parameters to balance the Lpix
grad item and the Lpix

SG item, respectively.
Empirically, α and β were set to 0.1 and 0.001, respectively. Consequently, an overall loss
LGP is proposed by combining pixel-wise and gradient-wise errors:

LGP = Lpix
SR + Lgg, (17)

where Lpix
SR is the L1 loss that minimizes the pixel-wise distance between the HR image IHR

and its reconstructed image ISR, and can be formulated as:

Lpix
SR = E‖ISR − IHR‖1. (18)

Ultimately, the proposed GPSR is able to effectively recover gradient information and
produce the reconstructed images with sharp edges and textures by minimizing LGP.

3.3. Residual Spatial Attention Adaptive Aggregation Module

The fact that the hierarchical residual features available along the network depth
are able to guide the SR process from different perspectives is ignored by most SR
methods [10,11,13]. To address this issue, we propose a novel Contextual Residual Fusion
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Structure (CRFS) to fuse complementary contextual residual features. Further, to enhance
the feature learning capability of the CRFS, we propose an efficient Large-Receptive-field-
based Spatial Attention Module (LRSAM) to adaptively recalibrate the spatial feature
responses toward the most crucial of the input. The large receptive field is required for the
attention block to work well for exploiting the interdependence of local information. Finally,
we propose two residual spatial attention adaptive aggregation modules (i.e., RS3AM-G
and RS3AM-SR), consisting of CRFS and a set of LRSAMs, for powerful feature extraction
in the gradient branch and the SR branch, respectively.

3.3.1. Contextual Residual Fusion Structure (CRFS)

To take full advantage of the complementary contextual residual features, we pro-
pose a novel Contextual Residual Fusion Structure (CRFS). Different to the conventional
single-path feed-forward framework, we redesign the arrangement of the stacked resid-
ual blocks [10], and then we add three residual blocks on the residual branch of CRFS
to adaptively preserve the hierarchical features in a global way, as shown in Figure 3.
Specifically, all contextual residual features are passed to a gating unit, which concatenates
these multi-level features and adaptively learns the weights of different residual features
through convolution operations. Let Ri,d denote the i-th residual feature of the d-th CRFS,
where i = 1, 2, 3, 4, then the corresponding fused feature Fcon,d is computed by:

Fcon,d = Hgate([R1,d, R2,d, R3,d, R4,d]) (19)

where Hgate(·) denotes the function of the gate unit. To improve the information flow
and to compensate for the information loss during forward propagation, global residual
learning is then employed to produce the output Fd of the d-th CRFS:

Fd = Fd−1 + Fcon,d (20)

where Fd−1 denotes the output of the (d− 1)-th CRFS.
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Figure 3. Architecture of the Contextual Residual Fusion Structure (CRFS).

3.3.2. Large-Receptive-Field-Based Spatial Attention Module

To promote the feature learning capability of CRFS, introducing a spatial attention
mechanism is a reasonable solution. However, some spatial attention modules [32,33] are
unable to effectively capture spatial location information that is helpful for SR task, due to
the lack of large receptive fields. Non-local operations [13–15,30,33] serves as a promising
solution to implement a spatial attention mechanism that explores correlations between
any positions in a global way by capturing long-range dependencies. However, the large
computational overhead is an insurmountable drawback. Considering that large receptive
fields are able to fully exploit the interdependencies of local positional information, we
propose an efficient Large-Receptive-field-based Spatial Attention Module (LRSAM) to
enhance the sensitivity of the SR model to critical spatial content. Compared to non-local
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operations, LRSAM has a lower computational complexity and can be easily embedded in
different network positions.

LRSAM consists of two sub-modules, including the squeeze module and the excitation
module, as shown in Figure 4. The squeeze module starts with a Conv to reduce the
channel number of the input feature Y0, then yielding a large receptive field by a stride
Conv (with stride 3) and the max-pooling operation with a large window (e.g., 7 × 7) for
enhancing the sensitivity of critical spatial content. To generate the spatial attention map,
the squeeze module firstly applies a set of Convs followed by ReLU on the output Y1 of the
squeeze module. In the excitation module, Y1 is passed through an upsampling layer of
pixel-shuffle [36] and sigmoid activation to produce a spatial attention map Ymask, and then
Ymask is used to rescale Y0 for highlighting beneficial feature information and to obtain Y∗0 .

Figure 4. Architecture of the Large-Receptive-field-based Spatial Attention Module (LRSAM).

3.3.3. RS3AM-SR and RS3AM-G

To further improve the performance of CRFS, LRSAM is incorporated into the CRFS to
construct two Residual Spatial Attention Adaptive Aggregation Modules (i.e., RS3AM-SR,
RS3AM-G), which are embedded in the SR branch and the gradient branch, respectively,
for efficient feature extraction. RS3AM-SR and RS3AM-G differ in their structural designs,
depending on the characteristics of the different branches.

The architecture of RS3AM-SR that acts on the SR branch is depicted in Figure 5a.
We embed a series of LRSAMs at the tails of residual branches at each level of CRFS.
These LRSAMs are able to highlight spatial features that are useful for the SR task, and
these highlighted features are passed through the gate unit to produce more beneficial
features. Specifically, let Rsr

c,d denotes the c-th residual feature of the d-th RS3AM-SR, which
is enhanced by LRSAMs, where c = 1, 2, ..., M, then the corresponding fused feature Fsr

con,d
is computed by:

Fsr
con,d = Hgate([R1,d, R2,d, ..., RM,d]). (21)

To compensate for the information loss during forward propagation and to improve the
information flow, global residual learning is then employed to obtain output Fsr

d of the d-th
RS3AM-SR:

Fsr
d = Fsr

con,d + x, (22)

where x denotes the input of the d-th RS3AM-SR.
The architecture of RS3AM-G that acts on the gradient branch is depicted in Figure 5b.

As the intermediate features of the SR branch carry a wealth of high-frequency information,
RS3AM-G utilizes them as an essential complement to inferring sharp spatial structure
features. Specifically, the feature map that is concatenated by the output Fm

de,k of the m-th
RS3AM-SR of the k-th decoder and the local residual feature Flocal

m,k on m-th residual branch

of the k-th RS3AM-G passes through an LRSAM and a Conv, yielding a fused feature Rgrad
m,k :

Rgrad
m,k = fconv

(
fLRSA

([
Fm

de,k, Flocal
m,k

]))
, (23)



Appl. Sci. 2023, 13, 833 11 of 21

where fLRSA denotes the function of the LRSAM, m = 1, 2, ..., M, k = 1, 2, ..., N. It should
be noted that the function of Conv here is to halve the channel dimension.

Subsequently, local feature fusion [39] is applied to adaptively fuse all intermediate
features Rgrad

m,k in the current RS3AM-G, and then local residual learning is introduced in
RS3AM-G to introduce the input x of the k-th RS3AM-G to further improve the information
flow. Thus, the output FG

k of the k-th RS3AM-G can be obtained by:

FG
k = Hgate

([
Rgrad

1,k , Rgrad
2,k , ..., Rgrad

M,k

])
+ x. (24)

In contrast to dense block [25] and its variants [11], our RS3AM removes modules that
have negative impacts on the SR performance, such as batch normalization (BN) layers,
while simplifying excessive dense connections and frequent concatenating operations,
and reinforces the spatial distribution of residual features at all levels by using LRSAM.
Hence, the proposed RS3AMs are sufficiently efficient and lightweight. Finally, we used
both RS3AM-SR and RS3AM-G to construct GPSR. Compared to most state-of-the-art SR
methods, such as SAN (15.9M), HAN (16.07M), PA-EDSR (45.53M), NLSN (46.52M), etc.,
GPSR achieves a better super-resolution with fewer parameters (8.18M).
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Figure 5. Two kinds of residual space attention adaptive aggregation module architectures (i.e.,
RS3AM-SR and RS3AM-G). (a) Architecture of the d-th RS3AM-SR that acts on the SR branch.
(b) Architecture of the k-th RS3AM-G that acts on the gradient branch. For convenience, we only
show the architectures of these two models separately when M = 4.

4. Experiments

In this section, we first present the experimental settings regarding datasets, degra-
dation models, quantitative metrics, and training settings, then we visually validate the
effectiveness of the Gradient-Guided Strategy (GGS), and comprehensively analyze the
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contributions of the proposed three modules, including Large-Receptive-field-based Spa-
tial Attention Module (LRSAM), Contextual Residual Fusion Structure (CRFS), and GGS.
Finally, we compare the proposed Gradient-Prior-based Super-Resolution network (GPSR)
with the state-of-the-art methods in terms of both quantitative metrics and visual quality.

4.1. Settings
4.1.1. Datasets and Degradation Models

Following [29,40], DIV2K [41] were selected as training sets to train the proposed
GPSR, while five commonly benchmark datasets were used for testing, including set5 [42],
set14 [43], BSD100 [44], Urban100 [45], and Manga109. Table 1 reports the characteristics
of each dataset. Our experiments are separately conducted with bicubic (BI) and blur-
downscale (BD) degradation models. In each training batch, 8 LR color patches with the
size of 48 × 48 are extracted as the input of our GPSR.

Table 1. Characteristics of the dataset used for experiments.

Dataset Number of Images Size Main Content Function

DIV2K [41] 900 5.8 GB Humans, animals, and landscapes Training
Set5 [42] 5 1.30 MB Humans and animals Testing
Set14 [43] 14 7.44 MB Humans and animals Testing

BSD100 [44] 100 38.87 MB Landscapes and animals Testing
Urban100 [45] 100 194 MB Buildings Testing

Manga109 109 219 MB Manga Testing

4.1.2. Quantitative Metrics

To evaluate the quality of the reconstructed images, we first convert the obtained
reconstructed images into YCbCr space and then calculate the corresponding Peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) metrics on the Y channel. This is
because it is more efficient to calculate the metrics on the Y channel of the converted YCbCr
space than on the three channels of the original RGB color space. It is worth noting that the
high metric means a better super-resolution performance.

4.1.3. Training Settings

For training, we apply the Adam optimizer [46] with β1 = 0.9, β2 = 0.999, ε = 10−8.
This is because the Adam optimizer has the advantages of fewer hyperparameters, efficient
computation, and fast convergence. The learning rate is initialized to 10−4 and decreased
to 10−7 with a cosine annealing out of 106 iterations in total. Furthermore, in an experiment
with scaling factor S (i.e., ×4, ×8), the numbers of encoders, decoders, and gradient
modules are set to N = logS

2 ; the number of RS3AM-SR and the number of residual branch
of RS3AM-G are set to M = 4. Our GPSR has been executed on the PyTorch framework
and on an Nvidia GeForce RTX 3090 24GB GPU.

4.2. Ablation Experiments

We analyze the effectiveness of the proposed modules, including GGS, LRSAM, and
CRFS, via ablation experiments. The baseline model is built upon the proposed GPSR
by removing the GB and replacing the RS3AM-SR modules, which consist of CRFS and
LRSAM, of the SR branch with the plain residual modules [10].

Analysis on the gradient branch: To verify the effectiveness of the GB, we visualize
the output of the GB. Figure 6 illustrates the visual results of the GB. As can be seen from
Figure 6a,d, the gradient maps of the HR images, which not only contain the sharp edge,
but also effectively reflect the spatial structure relationship, are obtained by performing
gradient feature extraction on the original HR images. This motivates us to design a
detail-preserving GB to generates the gradient maps of the reconstructed images containing
sharp geometric structures, and provides the essential gradient guidance for the SR process.
Specifically, through the introduced GB, the gradient maps of the LR images (shown in
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Figure 6b,e) were converted to the gradient maps of the reconstructed images (shown in
Figure 6c,f). It can be observed that the gradient maps of the LR images are blurred and
smooth in general, while the spatial structure details contained in the gradient maps of the
reconstructed images (shown in Figure 6c,f) are significantly sharper and highly similar
to the gradient maps of the HR images (shown in Figure 6a,d). This experimental result
shows that the proposed GB possesses the ability to restore high-fidelity edge and texture
information. This is because the proposed GB is able to generate the gradient maps at
different scales and simultaneously transmit them as gradient priors for each upsampling
stage on the SR branch to complement the multi-scale spatial structure features.

(a) 

(b) 

(c) (d) 

(e) 

(f) 

Figure 6. Results of gradient branch. Among them, (a,d) are the gradient maps of the reference HR
images, (b,e) are the gradient maps of the corresponding LR images, and (c,f) are the gradient maps
of the reconstructed images generated by the gradient branch.

Analysis on gradient-guided loss: We analyze the effectiveness of gradient-guided
(GG) loss by removing Lpix

grad or Lpix
SG from the baseline model with the GGS, and report

the results in Table 2. Here, Lpix
grad is used to supervise the outputs of the GB to ensure

the accuracy of the multi-scale gradient maps. Additionally, Lpix
SG is used to supervise the

gradient map of the final SR image. When Lpix
grad is removed, the GB of the corresponding

model cannot be optimized, and it outputs unreliable multi-scale gradient maps, resulting
in SR performance degrading from 32.61 dB to 32.31 dB. When Lpix

SG is removed, the SR
performance of the corresponding model is reduced from 32.61 dB to 32.54 dB. It is because
Lpix

grad can effectively avoid the SR model from blindly restoring high-frequency information.

From the above analysis, optimizing Lpix
grad and Lpix

SG jointly is essential. Consequently,
the proposed gradient-guided loss can guide the network to reconstruct accurate high-
frequency details by taking full advantage of Lpix

grad and Lpix
SG .

Table 2. Ablation experiments on gradient-guided loss, including Lpix
grad and Lpix

SG . The average PSNR
values are evaluated on Set5 dataset with scaling factor ×4.

Lpix
grad

X X

Lpix
SG

X X

PSNR 32.54 32.31 32.61

Analysis on gradient guidance strategy: We visually compared the baseline with and
without the GGS, including the GB and the GG loss. Specifically, the LR images (shown
in Figure 7a,d) as the network input, the reconstructed images, and the corresponding
absolute gradient intensity maps (shown in Figure 7b,e) obtained using the model without
GGS, and the reconstructed images and the corresponding absolute gradient intensity
maps (shown in Figure 7c,f) obtained using the model with GGS, are depicted in Figure 7.
Notably, the absolute gradient intensity maps directly reflect the quality of edge and texture
details of the reconstructed images by using the brightness of color. The brighter the color
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is, the sharper the structure details are. From Figure 7b,c, it can be seen that the sharpness
of the whiskers in the reconstructed image is significantly improved by adopting GGS.
Additionally, compared with Figure 7e, the wire on the window in Figure 7f appears sharper,
which is more evident in the absolute gradient intensity map in Figure 7f. Additionally,
the PSNR of the reconstructed images (i.e., Figure 7c,f) obtained by the model with GGS is
significantly improved by 0.09 dB and 0.38 dB, respectively, compared to the baseline. It
indicates that the proposed GGS not only strengthens the edge and texture details, but also
alleviates the geometric distortion well.

(a) PSNR / SSIM    (d)  PSNR / SSIM

(b) 23.06 / 0.5391 (e) 27.42 / 0.8429

(f) 27.80 / 0.853(c) 23.15 / 0.5494

Figure 7. Visual comparison of the baseline with and without the Gradient-Guided Strategy (GGS).
We present the LR images, the reconstructed images, and the absolute gradient intensity maps
corresponding to the reconstructed images. Among them, (a,d) are input LR images, (b,e) are recon-
structed results of baseline without GGS, and (c,f) are reconstructed results of baseline with GGS. The
proposed GGS is able to effectively preserve the structure and acquire sharper high-frequency details.

Analysis on effects of CRFS, CRFS, and GGS: We conduct ablation experiments to
analyze the effectiveness of CRFS, CRFS, GGS and their combinations, and report the
results in Table 3. Compared with the baseline, the models with only CRFS or LRSAM
achieve better results by up to 0.06 dB and 0.06 dB in terms of the PSNR metric, respectively.
These results demonstrate that fusing the contextual residual feature can provide more
advanced features for SR task, and spatial attention mechanisms with large-sized receptive
fields can effectively explore valuable spatial content. At the same time, compared with the
baseline, the PSNR obtained by the model with only GGS improves by 0.15 dB. It can be
seen that our GGS possesses the highest contribution to performance improvement. This
is because GGS provides the beneficial gradient prior for the SR process, which facilitates
the guidance of the GPSR model to restore sharp high-frequency details. Furthermore,
the improvement of the model with both CRFS and LRSAM is significant, with a PSNR
improvement of 0.17 dB over the one with only CRFS, which indicates that LRSAM is able
to effectively promote the feature representation ability of CRFS. Finally, we obtained the
highest gain (0.28 dB) by the model with LRSAM, CRFS, and GGS simultaneously, which is
the GPSR model.

Table 3. Investigations of LRSAM, CRFS, and GGS. We observe that the proposed GPSR, that is,
the model that uses LRSAM, CRFS, and GGS simultaneously, achieves the best super-resolution
performance on Set5 dataset with scaling factor ×4.

LRSAM X X X X
CRFS X X X X
GGS X X X X

PSNR 32.46 32.52 32.52 32.61 32.63 32.70 32.67 32.74
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4.3. Results with Bicubic (BI) Degradation

We compare the proposed GPSR with the nine state-of-the-art methods, including
LapSRN [38], HAN [12], DBPN [34], RDN [11], EDSR [10], SAN [15], PA-EDSR [14],
DRN [40], and NLSN [13] in terms of quantitative results and visual quality. Following [10,29],
we also propose a self-ensemble model and denote it as GPSR+.

4.3.1. Quantitative Metrics

For quantitative comparison, we compare the PSNR and SSIM metrics of different
methods for the SR task with scaling factors ×4 and ×8. Table 4 lists the comparison of
×4 and ×8 quantitative results on the five commonly benchmark datasets, including Set5,
Set14, BSD100, Urban100, and Manga109, where the optimal and suboptimal metrics are
highlighted in red and blue, respectively, and where ‘–’ means that the result is not available.
Params and FLOPs denote the total number of parameters and floating-point operations,
respectively. Noted that each the efficiency proxy FLOPs is measured under the setting
of upscaling reconstructed images to the size of 1280 × 720 on the scaling factors ×4 and
×8. It should be noted that we derive the results of the methods used for comparison from
their pre-trained models, released code, or their original paper. It is worth noting that some
comparison methods, including HAN, RDN, EDSR, PA-EDSR, and NLSN, do not offer
experimental results for ×8 SR. Therefore, we retrained these models on the ×8 scaling
factor with their official source codes. In addition, for a fair comparison, we retrained DRN
on the DIV2K dataset, as it originally used the DF2K dataset as the training set.

For convenience to quantitative comparisons, we take Set5 (×4) as an example. From
Table 4, we observe that SR models #1 with deeper network structures and more extensive
connections, including DBPN, RDN, and EDSR, obtain approximately 0.9 dB of PSNR gains
compared to LapSRN. Further, SR models #2 with attention mechanisms, including HAN,
SAN, PA-EDSR, and NLSN, can adaptively emphasize useful feature information for more
accurate image reconstruction. The PSNR gains of models #2 over #1 range from 0.12 dB to
0.19 dB. However, the above models ignore the potential of the gradient prior for image
SR. In contrast, the proposed GPSR makes full use of the gradient map to restore sharp
high-frequency details, and obtains the highest quantitative metrics. It is worth noting that
the proposed GPSR achieves a performance advantage of 0.09 dB with fewer parameters
(18% parameters of PA-EDSR) and FLOPs (34% Flops of PA-EDSR) compared to PA-EDSR,
which obtains sub-optimal SR results.This indicates that the proposed GPSR takes into
account the computational efficiency while pursuing performance.

From Table 4, we can see that GPSR shows superior performance for both ×4 and
×8 SR tasks. GPSR+ achieves the optimal results on all test datasets. Compared with
the nine state-of-the-art methods, the PSNR and SSIM metrics obtained by our GPSR are
optimal in most test datasets. Specifically, our GPSR performs optimally on all datasets
for both ×4 and ×8 SR tasks, except for the suboptimal SSIM metric on BSD100 for the
×4 SR task. Consequently, Table 4 provides adequate evidence that the proposed GPSR
achieves the optimal super-resolution performance in the SR tasks with large scaling factors.
Furthermore, Table 4 also presents the number of parameters and FLOPs for different SR
methods. Overall, the proposed GPSR achieves a better tradeoff between computational
efficiency and the super-resolution performance.

We also present an illustrated comparison in terms of the PSNR metric and the number
of parameters for both the ×4 and ×8 SR tasks in Figure 8. As can be seen from Figure 8,
compared with other SR models used for comparison, the proposed GPSR achieves the
highest PSNR with a small number of parameters on the Set5 dataset for both the ×4 and
×8 SR tasks, indicating its optimal super-resolution performance.
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Table 4. Quantitative metrics obtained by various models for SR task with BI degradation model.
The optimal and suboptimal metrics are highlighted in red and blue.

Set5 Set14 BSD100 Urban100 Manga109Method Params FLOPs Scale PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LapSRN [38] 0.9M - 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
HAN [12] 16.07M 944G 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177
DBPN [34] 10.4M 1106G 32.47/0.8983 28.75/0.7859 27.67/0.7396 26.38/0.7947 30.90/0.9134
RDN [11] 22.42M 1309G 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
EDSR [10] 43.1M 2894G 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.03/0.9149
SAN [15] 15.9M 936G 32.64/0.9003 28.92/0.7888 27.79/0.7436 26.79/0.8068 31.18/0.9169

PA-EDSR [14] 45.53M 3214G 32.65/0.9006 28.87/0.7891 27.76/0.7445 27.01/0.8140 31.29/0.9194
DRN [40] 4.8M 685G 32.61/0.8974 28.89/0.7876 27.74/0.7389 26.71/0.8038 31.33/0.9150

NLSN [13] 46.52M 2955G 32.59/0.9000 28.87/0.7891 27.78/0.7444 26.96/0.8109 31.27/0.9184
GPSR 8.18M 1098G 32.74/0.9010 28.98/0.7901 27.81/0.7441 26.96/0.8116 31.50/0.9200

GPSR+ 8.18M -

4

32.82/0.9022 29.06/0.7913 27.86/0.7451 27.14/0.8150 31.80/0.9223

LapSRN [38] 1.3M - 26.15/0.7380 24.35/0.6200 24.54/0.5860 21.81/0.5810 23.39/0.7350
HAN [12] 16.22M 271G 27.33/0.7884 25.24/0.6510 24.98/0.6059 22.98/0.6437 25.20/0.8011
DBPN [34] 23.2M 236G 27.21/0.7844 25.13/0.6489 24.88/0.6010 22.72/0.6315 25.50/0.7984
RDN [11] 22.42M 327G 26.91/0.7717 24.92/0.6405 24.85/0.5993 22.52/0.6211 24.60/0.7768
EDSR [10] 45.5M 1271G 27.22/0.7840 25.14/0.6476 24.88/0.6010 22.70/0.6314 24.85/0.7906
SAN [15] 16M 269G 27.22/0.7840 25.14/0.6476 24.88/0.6010 22.70/0.6314 24.85/0.7906

PA-EDSR [14] 45.53M 872G 27.05/0.7796 25.05/0.6456 24.93/0.6034 22.85/0.6393 24.97/0.7915
DRN [40] 5.4M 171G 27.27/0.7873 25.21/0.6500 24.96/0.6040 22.93/0.6385 25.21/0.8016

NLSN [13] 46.52M 738G 26.57/0.7586 24.60/0.6299 24.66/0.5920 22.14/0.6011 24.00/0.7546
GPSR 14.42M 382G 27.45/0.7935 25.29/0.6536 25.00/0.6059 23.08/0.6474 25.40/0.8078

GPSR+ 14.42M -

8

27.52/0.7956 25.38/0.6555 25.05/0.6070 23.23/0.6518 25.64/0.8116

Figure 8. Comparisons of the PSNR metric and the number of parameters among different SR models
on the Set5 dataset.

4.3.2. Visual Quality

Figure 9 illustrates the visual comparisons of ×4 and ×8 SR tasks, respectively, which
offer the reconstructed results obtained using different methods in the same patches, and
the corresponding original HR patches are given as references. From Figure 9, we can
see that most of the methods used for comparison are weak in reconstructing sharp edge
and texture details, and even produce severe geometric distortions and artificial artifacts.
Compared with these methods, our GPSR is able to reconstruct a clearer image with sharp
edge and texture details. Remarkably, GPSR suppresses the undesired geometric distortions
well, and this advantage becomes increasingly important as the scaling factor increases in
SR tasks.
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‘barbara’ from Set14 (×4)

LapSRN HAN EDSR DBPN RDN

GPSRPA-EDSR NLSN DRNSAN

LapSRN HAN EDSR DBPN RDN

GPSRPA-EDSR NLSN DRNSAN‘253027’ from BSD100 (×4)

LapSRN HAN EDSR DBPN RDN

GPSRPA-EDSR NLSN DRNSAN

‘Img040’ from Urban100  (×8)

LapSRN DBPN RDNHAN EDSR

SAN PA-EDSR

‘butterfly’ from Set5  (×8)

NLSN DRN GPSR

(a) 

(b) 
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LR
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HR
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Figure 9. Visual comparisons for SR tasks. (a) Visual comparison for ×4 SR task with BI model
on Set14 and BSD100 datasets. (b) Visual comparison for ×8 SR task with BI model on Set14 and
Urban100 datasets.

In Figure 9a, we show visual comparisons of the ×4 SR task. For the image “barbara”
from the Set14 dataset, we observe that most of the compared methods, such as LapSRN,
EDSR, RDN, and DRN fail to recover the edge details of the book effectively, making their
reconstructed images appear blurred and smooth. Compared with the previous methods,
SAN and NLSN show better detail recovery ability, but their reconstructed images are still
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unsatisfactory. Compared with the compared methods, the proposed GPSR shows better
structure preservation and detail recovery performance, which is reflected in sharper and
more complete edge details. From the image “253027” in the BSD100 dataset, the zebra
stripes produced by most of the compared methods are blurred and confused, and there
exist different degrees of information loss in the local regions. However, DRN, SAN, and
NLSN retain more texture than LapSRN. However, they are still inferior to our GPSR. This
is due to the fact that benefits from our GGS, the proposed GPSR, are able to effectively local
gradient information to reconstruct high-frequency details while avoiding the problem of
blindly restoring details that exist in most comparative models.

Figure 9b presents visual comparisons of the ×8 SR task. For the image “butterfly”
from Set5, we observe that most of the compared methods fail to restore the spots and suffer
from blurred artifacts. In contrast, our GPSR is able to alleviate the blurred artifacts better,
and reconstruct sharp edge and texture details. For the image “img040” from Urban100, the
reconstructed images produced by most comparative methods have significant geometric
distortions, such as significant errors in the extension directions of the edges. Although
HAN, RDN, and DBPN are able to suppress geometric distortions to a certain extent
effectively, this deficiency still exists in local regions caused by blind detail restoration. The
optimal reconstructed image is generated by the proposed GPSR, which again proves the
effectiveness of the proposed GGS.

4.4. Results with Blur-Downscale (BD) Degradation

Following [29], we also test the effectiveness of the proposed GPSR on the LR images
with the blur-down (BD) degradation model. We selected the five state-of-the-art methods,
including RCAN [29], DRN [40], HAN [12], PA-EDSR [14], and NLSN [11], to compare
with our GPSR in objective quantitative metrics. Table 5 depicts the results of different
SR models for the ×8 SR task. It can be seen from Table 5 that our GPSR also consistently
outperforms other compared methods, even without self-ensemble in the SR task with
large scaling factor. Specifically, the PSNR gain of our GPSR over NLSN is up to 1.05 dB
and 1.25 dB on the Urban100 and Manga109 datasets, respectively.

Table 5. Quantitative metrics obtained using various models for ×8 SR task with BD degradation
model. The optimal and suboptimal metrics are highlighted in red and blue.

Method Params FLOPs Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DRN [40] 5.4M 171G 26.17/0.7704 24.43/0.6394 24.26/0.5916 22.22/0.6315 23.70/0.7782
RCAN [29] 15.74M 264G 26.22/0.7713 24.51/0.6415 24.28/0.5933 22.34/0.6402 23.87/0.7806
HAN [12] 16.22M 271G 26.20/0.7612 24.43/0.6346 24.28/0.5888 22.33/0.6286 23.71/0.7629

PA-EDSR [14] 45.53M 1271G 26.26/0.7727 24.51/0.6401 24.29/0.5935 22.57/0.6460 23.85/0.7780
NLSN [11] 46.52M 738G 25.91/0.7544 24.04/0.6245 24.10/0.5840 21.80/0.6062 23.00/0.7465

GPSR 14.42M 382G 26.32/0.7788 24.60/0.6464 24.36/0.5974 22.85/0.6607 24.25/0.7950
GPSR+ 14.42M -

8

26.42/0.7809 24.72/0.6491 24.42/0.5987 23.05/0.6656 24.50/0.7993

5. Conclusions

In this paper, we fully explore the potential of the gradient prior for SR task. Specifi-
cally, to restore sharp high-frequency details, we introduce an additional gradient branch
in the classical SR network to provide the beneficial structural features for each upsam-
pling stage of the SR process. Meanwhile, we propose a compact Gradient-Guided (GG)
loss to strengthen the constraints on the spatial structure of the reconstructed images,
so as to guide the model to restore the appropriate gradient information at the suitable
position and to avoid blindly restoring high-frequency details. Additionally, we propose
a novel Contextual Residual Fusion Structure (CRFS), which is capable of fully fusing
complementary contextual residual features to produce more advanced features; further,
to promote the feature representation ability of CRFS as much as possible, we propose an
efficient Large-Receptive-field-based Spatial Attention Module (LRSAM) to highlight the
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critical residual features; finally, we incorporate LRSAM into CRFS and further propose
two Residual Spatial Attention Adaptive Aggregation Modules (RS3AMs) used for image
feature extraction and gradient feature extraction, respectively. Extensive experiments
indicate that the superiority of our Gradient-Prior-based Super-Resolution network (GPSR)
for images over state-of-the-art methods for SR tasks with large scaling factors (×4 and ×8).
However, there are two limitations to our method, as follows: (1) Although our GPSR
achieves better results with fewer parameters and FLOPs than most existing SR methods,
its computational efficiency still needs to be further improved to satisfy the requirements
of real applications, such as the deployment of the technique in embedded devices. (2) Like
most existing SR methods, the proposed GPSR only considers known degradation models
(e.g., BI and BD degradation kernels), and it is still struggling with SR tasks with unknown
degradation kernels. To address these two limitations, we will focus on compressing the
model to improve computational efficiency while retaining SR performance in our future
work. Moreover, we will explore the introduction of the adversarial generative network into
the SR task to estimate the unknown degradation kernels, which facilitates the real-world
image SR.
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