
Citation: Zuo, Y.; Liu, S.; Zhou, Y.;

Liu, H. TRAL: A Tag-Aware

Recommendation Algorithm Based

on Attention Learning. Appl. Sci.

2023, 13, 814. https://doi.org/

10.3390/app13020814

Academic Editors: Giacomo Fiumara,

Pasquale De Meo, Xiaoyang Liu and

Annamaria Ficara

Received: 14 December 2022

Revised: 3 January 2023

Accepted: 4 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

TRAL: A Tag-Aware Recommendation Algorithm Based on
Attention Learning
Yi Zuo, Shengzong Liu *, Yun Zhou and Huanhua Liu

School of Information Technology and Management, Hunan University of Finance and Economics,
Changsha 410205, China
* Correspondence: lsz@hufe.edu.cn

Abstract: A social tagging system improves recommendation performance by introducing tags as
auxiliary information. These tags are text descriptions of target items provided by individual users,
which can be arbitrary words or phrases, so they can provide more abundant information about user
interests and item characteristics. However, there are many problems to be solved in tag information,
such as data sparsity, ambiguity, and redundancy. In addition, it is difficult to capture multi-aspect
user interests and item characteristics from these tags, which is essential to the recommendation
performance. In the view of these situations, we propose a tag-aware recommendation model based
on attention learning, which can capture diverse tag-based potential features for users and items.
The proposed model adopts the embedding method to produce dense tag-based feature vectors for
each user and each item. To compress these vectors into a fixed-length feature vector, we construct
an attention pooling layer that can automatically allocate different weights to different features
according to their importance. We concatenate the feature vectors of users and items as the input of a
multi-layer fully connected network to learn non-linear high-level interaction features. In addition, a
generalized linear model is also conducted to extract low-level interaction features. By integrating
these features of different types, the proposed model can provide more accurate recommendations.
We establish extensive experiments on two real-world datasets to validate the effect of the proposed
model. Comparable results show that our model perform better than several state-of-the-art tag-
aware recommendation methods in terms of HR and NDCG metrics. Further ablation studies also
demonstrate the effectiveness of attention learning.

Keywords: attention learning; tag information; tag-aware recommendation

1. Introduction

A recommendation system (RS) has been considered as an extremely effective instru-
ment to tackle the problem of information overload, because it can provide personalized
services for individual users by analyzing their interests, preferences, and needs [1]. Many
algorithms have been proposed to generate personalized recommendations. To enhance
algorithm performance, other superior side information has been incorporated into the
recommender system in recent years. In particular, tag-aware recommender systems (TRS)
allow users to mark custom tags for relevant items. In this way, TRS can build the implicit
relationship between users and items through a wide range of tags. These tags are generally
composed of concise words or phrases defined by users, providing good supplementary
information for describing user preferences and item characteristics [2]. Thus far, TRS have
successfully found applications in many online business services, such as books, movies,
music, videos, and social media.

Although the introduction of tags can advance the recommendation performance,
some new problems will inevitably arise. For example, most users may only mark a
few tags to a few items, resulting in sparse data. In addition, since users can take any
word or phrase as a tag, it is easy to cause redundancy and ambiguity in the tag latent

Appl. Sci. 2023, 13, 814. https://doi.org/10.3390/app13020814 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020814
https://doi.org/10.3390/app13020814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1718-6318
https://doi.org/10.3390/app13020814
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020814?type=check_update&version=1

Appl. Sci. 2023, 13, 814 2 of 17

space [3–5]. Since user-defined tags are the key factor in expressing user interests and item
features, whether the tag information can be effectively processed is crucial to ensure the
recommendation performance. Accordingly, the clustering techniques are introduced to
extend the traditional collaborative filtering (CF) into TRS [3,4]. The goal of clustering
is to aggregate redundant tags. However, it is hard to calculate the similarity of tags,
especially when the tag space is extremely sparse. The tool WordNet [6], known as an
online English lexical database, is also absorbed to compute the similarity for improved
tag-aware recommendation [7]. Nevertheless, manually defining a valid dictionary is
time-consuming and words in dictionaries are usually limited. More importantly, these
methods cannot generate high-quality recommendation results. The reason may be that
the used learning methods are shallow structures that are insufficient to mine the potential
meaning of tags.

To obtain more abstract latent features, researchers begin to leverage the deep network
model, which has been proved as its most powerful feature expression ability in many
fields [8]. For instance, ACF [5] adopts the deep autoencoders to extract low-dimensional
dense user features based on tags. These tag-based features are then utilized by user-based
CF to generate recommendations. Experimental results show that ACF is obviously better
than the clustering-based CF. DSPR [9] uses deep neural networks to obtain the abstract
tag-based features of users and items and maximizes similarities between users and their
associated items based on those features. TRSDL [10] employs deep neural networks
and recurrent neural networks to learn the non-linear latent features of items and users,
respectively. Then, the rating prediction is conducted based on these latent features.

In TRS, users may mark various tags to different items, indicating their diverse inter-
ests. Similarly, items are assigned multifarious tags that describe their various character-
istics. However, in most deep network-based recommendation algorithms, user-defined
tags are first transformed into multi-hot feature vectors, and then compressed into a fixed-
length representation vector for a given user or a specific item by sum or average pooling,
and finally concatenated together to feed into a multi-layer perceptron (MLP) to learn the
non-linear relations. In other words, multi-aspect user preferences or item characteristics
are compressed into a certain fixed-length feature vector. In order to represent diverse
characteristics, the dimension of the feature representation should be large enough to have
sufficient expression ability. However, this will significantly increase the scale of learning
parameters, causing computing and storage burden.

In addition, as is known to us, the user’s preference on a target item comes from the
fact that certain characteristics of the item exactly match some specific interests of the user.
Therefore, it is not suitable to compress all the diverse interests of a user into the same
representation vector when estimating a candidate item, as not all features are equally
useful. The useless features may even produce unnecessary noises and deteriorate the
recommendation performance. In short, ingenious approaches that can differentiate the im-
portance of different features are required to extract tag-based latent features. Furthermore,
although deep networks can automatically learn more expressive feature representations,
it is not easy to extract appropriate low-dimensional dense representations for users and
items when the potential tag space is very sparse. As discussed in [11–13], both low-level
and high-level feature interactions should play important roles for recommendation perfor-
mance, since such interactions of features behind user preferences and item features are
highly sophisticated.

To process the above-mentioned issues, we develop a tag-aware recommendation
algorithm based on attention learning (TRAL), which adopts the attention mechanism to
discriminate the importance of different features from tag space. Firstly, we utilize the tag
embedding technique to extract low-dimensional dense features from the user-tag matrix
and item-tag matrix. Secondly, to acquire more abstract and effective representation vectors
for each user or item, the attention-based pooling layer is employed to compress these
features to a single representation. In this way, different features are assigned different
weights according to their importance. Therefore, tag-based features can make different

Appl. Sci. 2023, 13, 814 3 of 17

contributions to the final prediction. More importantly, the use of the attention mechanism
means that the importance of different features can be automatically learned without any
human domain knowledge. Thirdly, the extracted representation vectors for users and items
are concatenated together to feed into a general MLP. The high-level feature interactions
are, hence, further learned for improving the recommendation performance. In addition,
to make full use of low-level feature interactions, the generalized linear model is also
introduced. Finally, we combine the representation vectors obtained from the linear model
and the depth model and input them into a common logic loss function for joint training.

To sum up, the main contributions of our work are listed as follows:

• We point out the limitation of using simple compression methods to obtain the fixed-
length tag-based vector that represents multi-aspect user preferences or item features.
To this end, we develop a new tag-aware recommendation algorithm which introduces
the attention network to adaptively learn the importance of different features.

• We combine a generalized linear model and a deep neural network so as to take
advantages of both low-level and high-level feature interactions.

• We perform extensive experiments on two real-world datasets, demonstrating the
rationality and effectiveness of the proposed TRAL.

The rest of this paper is organized as follows. Section 2 briefly summarizes the related
work. Section 3 introduces some preliminaries. We elaborate on the proposed TRAL in
Section 4 and conduct experiments in Section 5. Conclusions are given in Section 6.

2. Related Work

Naturally, many traditional recommendation algorithms are extended to TRS. For
example, Nakamoto et al. [14] proposed a tag-based contextual CF model which modifies
the user similarity computation and the item score prediction according to the tagging
information. Marinho et al. [15] projected the ternary relation of the user-item-tag to a lower-
dimensional space where CF can be applied to provide recommendations. Zhen et al. [16]
incorporated tagging information seamlessly into the model-based CF method by regular-
izing the matrix factorization procedure. Chen et al. [17] developed a tag-based CF model
that adopts topic modeling to capture the semantic information of tags for users and items,
respectively. Wang et al. [18] devised a robust and efficient probabilistic model based on
Bayesian principle for tag-aware recommendation.

To tackle the problem of ambiguity and redundancy in tag information, other kinds
of methods have been widely investigated. Shepitsen et al. [3] designed a personalized
tag-aware recommendation algorithm based on hierarchical clustering. Through the clus-
tering method, redundant tags can be aggregated, and the user’s preferences can be better
understood by measuring the importance of associated tag clusters. Symeonidis et al. [19]
developed a general tag-aware framework to model the three types of entities: user, items,
and tags. The modeled 3-dimensional data is first represented by a 3-order tensor and the
dimension reduction is then performed via a higher-order singular-value decomposition.
To address the problem of high dimension and sparsity of tagging information, Li et al. [20]
developed a novel tag-aware recommendation framework based on Bayesian personalized
ranking (BPR) with matrix factorization, where the tag mapping scheme was designed to
capture low-dimensional dense features for users and items. Different from the method
based on dimension reduction, Zhang et al. [21] developed an integrated diffusion-based
recommendation model directly based on user-item-tag tripartite graphs. In the recent
work, Pan et al. [22] designed a social tag expansion model to alleviate the tag sparsity
problem. The model can explore relations among tags and assign proper weights to the
expanded tags. By updating the user profile dynamically through the assigned weights,
better recommendation performance can be gained. In [23], the topic optimization was
introduced into CF to further enhance both the effectiveness and the efficiency of tag-aware
recommendations. In the proposed method, the tags’ topic model is established and then
used to find the latent preference of users and the latent affiliation of items on topics.

Appl. Sci. 2023, 13, 814 4 of 17

Due to its powerful ability for feature extraction, deep learning has been widely em-
ployed in TRS recently. Zuo et al. [5] developed a tag-aware deep model, where tag-based
latent features for users are learned by the deep autoencoders. Xu et al. [24] developed
a novel tag-aware recommendation model which adopts deep-semantic similarity-based
neural networks to extract tag-based representations for users and items. In addition,
negative sampling technique is applied so as to enhance the efficiency of the training
process. Based on this model, autoencoders are integrated to further accelerate the learning
process in [9]. Liang et al. [10] proposed a hybrid tag-aware model by combining deep
neural networks and recurrent neural networks for rating prediction. The task of deep
neural networks is to capture abstract representation of item characteristics, while the aim
of recurrent neural networks is to model user dynamic preferences. Huang et al. [25]
proposed a novel tag-based recommendation model that combines the attention network,
the stacked autoencoder and MLP to provide recommendations. In the proposed model, a
neural attention network is conducted to overcome the difficulty of assigning tag weights
for personalized users. Chen et al. [26] designed an attentive intersection model which
integrates the neural attention network and factorization machine. The proposed model
fully utilizes the intersection between user and item tags to learn conjunct features. Re-
cently, Ahmadian et al. [27] proposed a new tag-aware algorithm that employs deep neural
networks to model the representation of trust relationships and tag information.

3. Preliminaries

Generally, users are allowed to assign certain items with personalized tags in TRS.
These different tags can indicate user interests and item characteristics from several angles.
By fully exploring the rich tagging information, TRS can further capture the connotation
of tags, abstract features of items and predict preferences of users, thereby improving
the quality of recommendations. Suppose the size of user set U, item set I, and tag set
T are |U|,|I|, and |T|, respectively. The user tagging behavior can be formally defined
as a tuple F = (U, T, I, Y), in which Y indicates the internal relations between users,
items and tags. More specifically, we can use the following 3-order tensor to represent Y:
Y = y(u,i,t) ∈ R|U|×|I|×|T|. If a given user u labels an item i with tag t, the corresponding
y(u,i,t) = 1, otherwise y(u,i,t) = 0.

Given a user u and a tag t, we can compute the number of times that u has marked
items with t. Analogously, the number of times that the item i has been labeled with tag t
is also calculated. In this way, the user–item–tag tensor is decomposed into two adjacent
matrices: user–tag matrix and item–tag matrix, as shown in Figure 1. Each row of the
user–tag matrix represents the tag-based feature for one user, while each row of the item–
tag matrix indicates the tag-based feature for one item. Note that each user often utilizes
many tags, and each item is usually annotated by several tags. Consequently, tag-based
multi-valued discrete vectors are obtained for users and items, respectively. The aim of the
proposed model is to generate the personalized ranked item list for each user based on
these tag-based features, also known as the top-n recommendation.

Appl. Sci. 2023, 13, 814 5 of 17

user-item-tag tensor

user-tag matrix

item-tag matrix

Figure 1. An example of obtaining the user–tag matrix and the item–tag matrix by decomposing the
user–item–tag tensor.

4. Method

In this section, we describe the proposed TRAL in detail, the overall structure of
which is presented in Figure 2. There are three main modules in the framework: (1) the
deep component that integrates a neural attention network and fully connected layers
to capture higher-order tag-based features for users and items; (2) the wide component
that conducts the generalized linear model to learn low-order features; and (3) the predict
layer that combines high-order and low-order features and leverages joint optimization for
generating personalized recommendations. More specifically, we first obtain the tag-based
representation vectors for users and items from the user–item–tag tensor. These vectors are
then used as the input of the deep component and the wide component, respectively, to
capture high-order and low-order interaction features. Finally, we integrate these features
of different types in the predict layer to provide high-quality tag-aware recommendation.

4.1. The Deep Component

In TRS, user interests and item characteristics are hidden in tagging behavior data. It
is remarkable to capture latent tag-based features for users and items, which is the key to
advance the performance of recommendations. Consequently, we design a deep component
to make the best of deep learning in representation and combination. As presented in
Figure 2, the deep component is composed of three main layers: embedding layer, attention
layer, and interaction layer.

Appl. Sci. 2023, 13, 814 6 of 17

Figure 2. The overall structure of the proposed model. The upper right corner illustrates the difference
between average pooling and attention pooling. The weights of different feature vectors are set to the
same value in average pooling, while these weights will be automatically learned according to their
importance in attention pooling.

4.1.1. Embedding Layer

In order to transform the high-dimensional sparse binary features into low-dimensional
dense vectors, we introduce the widely used embedding method, which is inspired by
representations for words and phrases [28]. Concretely, we first construct a tag-based
embedding dictionary for users:

Eu = [eu
1 , · · · , eu

j , · · · , eu
|T|] ∈ Rd×|T| (1)

where eu
j ∈ Rd represents the embedding vector for tag j that is relative to users and d is the

embedding size. Then, for a given user, we extract the corresponding row of the user-tag
matrix to produce its user-tag vector uT , which is apparently a multi-valued discrete vector.
Assuming that uT [x] >= 1 for x ∈ {j1, j2, · · · , jk}, we can acquire the tag-based embedding
representation according to the table lookup mechanism, which is a list of embedding
vectors: hU

t = {eU
j1

, eU
j2

, · · · , eU
jk
}. In particular, in order to capture more accurate potential

features based on tags, we also embed tag frequencies, since they can reveal the degree of
user preference and item properties [29]. Finally, the resulting embedding list is as follows:

hU
t = {eU

j1 ||e
F
j1 , eU

j2 ||e
F
j2 , · · · , eU

jk
||eF

jk} (2)

where || denotes the concatenation operation and eF
j1

represents the embedding of tag
frequency which is divided into discrete buckets in the pre-processing. For a target item, a
similar method can be conducted to generate its embedding representation hI

t . Although
tags describing users and items belong to the same set, the latent feature of users and items
are obviously different. For this reason, we use two different embedding dictionaries for
users and items, respectively.

4.1.2. Attention Layer

In a real-life scenario, there are obvious differences in users’ behavior habits and
cultural backgrounds. Therefore, the number and the content of tags for the same item

Appl. Sci. 2023, 13, 814 7 of 17

marked by different users will be significantly different. Note that the input dimensions
of full connected neural networks are required to be consistent. Additional operators
should be taken to convert the variable list of embedding vectors to a fixed-length vector.
A common approach is to construct a pooling layer, where the list of embedding vectors
is compressed by a weighted sum operator. Suppose that the list of embedding vectors
for a given user is hU

t = {e1, e2, · · · , eL}, the compressed feature vector is obtained by the
following weighted sum operation:

vU
t =

L

∑
j=1

ajej (3)

where aj is the weight indicating the importance of the corresponding tag-based embedding
vector ej. Two widely adopted strategies are sum pooling and average pooling, which treat
each embedding vector equally and set all weights to the same value.

Clearly, user tagging behaviors play critical role in modeling user preferences in TRS.
For a certain user, the compressed fix-length feature vector by sum or average pooling
remains constant no matter what the predicted item is. It requires that the tag-based
feature vector is capable to express multiple interests of users. To this end, the embedding
size should be expanded to large enough, resulting in the increase in computation burden.
Moreover, we argue that not all user tagging information are equally important and effective
when predicting a target item. Those tag-based features that are less useful should naturally
be given a lower weight, which is the main limitation of sum or average pooling.

Based on the above considerations, we resort to the attention mechanism, which allows
the weight to be calculated automatically from data. The rationale is that the contributions
of different embedding vectors should be taken into consideration when compressing them
into a single representation vector. In this work, we construct a two-layer neural network
to realize the attention mechanism. Specifically, the weight of each tagging feature vector is
first calculated by:

âj = qT ReLU(Waej + b) (4)

where Wa ∈ Rm×d, b ∈ Rm, q ∈ Rm are learnable parameters, and m represents the number
of hidden layer neurons in the attention network, which is called attention factor. The final
attention weights are then normalized by a softmax function:

aj =
exp(âj)

∑L
j=1 exp(âj)

(5)

In this way, a fixed-length user representation vU
t can be adaptively derived by dis-

criminating the importance of different embedding feature vectors. An attention network
with similar structures is created so as to generate a fixed-length item representation vI

t .

4.1.3. Interaction Layer

To capture the high-order interaction features, the obtained tag-based user and item
representations from the attention layer are concatenated and further fed into a fully con-
nected neural network with multiple layers. In this way, we can enhance the flexibility and
non-linearity of our model to learn the interactions between user vU

t and item vI
t , compared

with the simple element-wise product operations. Formally, given the concatenated fea-
ture vector Z0 = [vU

t ||vI
t], the update rule of the neural network in the k-th layer can be

defined as:

Zk = σk(WkZk−1 + bk) (6)

where Wk, bk and σk represent the weight matrix, the bias vector, and the activation function
for the k-th layer, respectively. For the activation function, we apply ReLU (Rectifier), which
is proved to be non-saturated and well-suited for sparse data [30]. It is worth mentioning

Appl. Sci. 2023, 13, 814 8 of 17

that the network is established by using a classic tower structure, in which the number
of neurons in each layer gradually decreases from bottom to top. Consequently, after
performing the computation layer by layer, we can obtain more abstract representation
from the tag-based user-item interactions.

4.2. The Wide Component

Low-order feature interactions are beneficial to the recommendation results and can
be used as an effective supplement to high-order features. Therefore, the wide component
adopts a generalized matrix factorization method [11]. Suppose the latent vectors for user
u and item i are vu and vi, respectively. The representation vector for low order feature
interactions is calculated by:

Zw = vu � vi (7)

where � means the element-wise product of two vectors. To obtain the tag-based latent
vectors for users and items, we adopt a similar approach as used in the embedded layer of
the deep component. Specifically, two embedding dictionaries for users and items are first
established, respectively. Then, a list of embedding vectors representing a given user or
item is obtained by extracting the corresponding rows from the embedding dictionary. To
obtain a fixed-length latent vector, we finally perform a simple average pooling. It should
be noted that we do not use the attention network in the wide component. The reason for
this lies in two aspects. On the one hand, the wide component focuses on learning low
order features by making full use of the generalized linear model, so the attention network
is unnecessary. On the other hand, it will bring more parameters, making training more
difficult, and increase the possibility of over-fitting. Specifically, in order to further improve
the training efficiency, we share the tag embeddings used in the deep component.

4.3. Joint Optimization

In our work, two different components are established for capturing high-order and
low-order feature interactions, respectively. To further combine the advantages of both, we
perform the joint optimization. More specifically, the outputs of the two components are
concatenated and then input into the predict layer for joint training. Let Zw and Zd denote
the tag-based interaction feature from the wide and deep component, respectively. The
prediction of the combined model is formally defined as:

ˆyu,i = σ(WT [Zw||Zd] + b) (8)

where σ(·) is the sigmoid function, W is the weight matrix, b is the bias term, and ˆyu,i is the
predicted score that measures how much users u like item i.

The commonly used negative log-likelihood function is taken as the loss function,
which can be defined as:

L = − ∑
(u,i)∈S+∪S−

(yu,i log ˆyu,i + (1− yu,i) log(1− ˆyu,i)) (9)

where S+ and S− denote the positive and negative sample set, respectively. If the sample
(u, i) ∈ S+, yu,i is set to 1. Otherwise, yu,i is set to 0. For a given user u, the positive sample
(u, i+) can be easily obtained from the observed interactions, while the negative sample
(u, i−) is selected from the non-interacted items. If all unobserved interactions are treated as
negative samples, the amount of calculation will inevitably increase dramatically. To cope
with this problem, we adopt the negative sampling technique [11,24,31], which generates
negative instances by randomly sampling from the unobserved interactions based on a
uniform distribution. More concretely, for each positive sample, we randomly select a
certain number of negative samples.

Moreover, we utilize the L2 regularization to avoid over-fitting. The final objective
function can be defined as:

Appl. Sci. 2023, 13, 814 9 of 17

L = − ∑
(u,i)∈S+∪S−

(yu,i log ˆyu,i + (1− yu,i) log(1− ˆyu,i)) + λ‖W‖2 (10)

where λ indicates the strength of regularization. Joint optimization is finally achieved by
back-propagating the gradients from the output to the wide and deep components of the
proposed model simultaneously with the help of mini-batch stochastic optimization. To fur-
ther reduce the computational load, we introduce the mini-batch aware regularization [32],
which only computes the L2 norm on the parameters of non-zero sparse features in the
current mini-batch.

5. Experiments

In this section, we elaborate on our experiments, including datasets, evaluation metrics,
baselines, parameter settings, comparison results, and related analysis.

5.1. Dataset Description and Evaluation Metrics

To measure the proposed tag-aware model, we conduct a series of experiments on
the following two public datasets: Delicious and LastFM, which are both published on the
website of HetRec [33].

• Delicious is a dataset obtained from the Delicious social bookmarking system, which
allows users to annotate web bookmarks with various tags. In this dataset, bookmarks
are regarded as items to be recommended.

• LastFM is a dataset collected from Last.fm online music system, where users are
encouraged to tag music artists they have listened. In this dataset, artists are treated
as items to be recommended.

Note that user–item interactions are established by the tagging behaviors. Following
the same assumption as in [5,24], we consider that an item is liked by those users which
have tagged this item. In addition, those infrequent tags used less than 5 times in Last.Fm
and 15 times in Delicious are eliminated to alleviate sparsity of tagging information [5].
Specific statistics of the two processed datasets are summarized in Table 1. The task of
the proposed model is to provide recommendations based on user–item interactions and
tagging information.

Table 1. Statistics of the two datasets.

Dataset #Users #Items #Tags #Assignments

Delicious 1843 65,877 3508 339,744
LastFM 1808 12,212 2305 175,641

To measure the results of the recommendation, we perform the common leave-one-out
evaluation [11,34]. More specifically, for each user, we take the last interacted item as
the positive test instance and leave the remaining interactions for training. Moreover, we
sample 99 items as negative instances for each user randomly from the item set that are
not interacted by this user. Adding the positive instance, a test set of 100 items is obtained.
Instead of using all the non-interactive items as negative instances, the random sampling
strategy can dramatically reduce the amount of calculation [35,36]. After predicting the
relevant scores of each item in the test set, the recommendation model will provide a top-n
ranked list for each user. The performance of the ranked list is finally estimated by Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) [37]. HR considers
whether the positive item appears in the top-n list, while NDCG measures the quality of
ranking by computing the position of the positive item in the list. The higher score of HR
and NDCG indicate better recommendation results.

Appl. Sci. 2023, 13, 814 10 of 17

5.2. Baselines and Parameter Settings

To show the effectiveness of the proposed TRAL, we compare the recommendation
performance with the following baselines.

• CCF: CCF uses hierarchical clustering to obtain different tag clusters, each of which
can be viewed as the representation of a certain topic area [3]. Cluster-based feature
vectors for users and items are generated and the relevance relation between them can
be estimated.

• ACF: ACF introduces the deep autoencoders to derive tag-based user latent features,
on which user-based CF is performed to provide recommendations [5].

• NCF: It is a general framework to employ neural network architectures for CF [11].
By replacing the inner product with a MLP, NCF can learn non-linear interactions
between users and items.

• DSPR: DSPR adopts MLPs with shared parameters to extract latent features for users
and items based on tagging information [24]. Deep-semantic similarities between
target users and their relative items can be computed to generate the ranked recom-
mendation list.

• TRSDL: It is a tag-aware recommendation method, which introduces pre-trained word
embeddings to represent tag information and learns latent features of users and items
via deep structures [10].

• BPR-T: It is a ranking-based collaborative filtering model which incorporates the tag
mapping scheme and the Bayesian ranking optimization [20].

• STEM: STEM establishes a new social tag expansion model to tackle the problem of
tag sparsity, thereby improving the recommendation accuracy [22].

To guarantee the recommendation performance, we randomly select one interaction
for each user as the validate set to determine hyper-parameters of each model. For the
sake of fairness, each model is optimized by the mini-batch Adam [38]. The learning rate
of each model is tuned in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}, while the batch size is
searched from {128, 256, 512, 1024}. The number of negative samples is search from 1 to
10. The maximum number of iterations for optimization is fixed to 300 for all the models.
Early stopping strategy is also applied in the light of the performance on the validation
set. For the proposed TRAL, the embedding dimension of tags and the attention factor
are set as 32 and 16, respectively. The embedding dimension of tag frequency is fixed
to 8. In addition, we construct a tower network architecture with three layers. The c is
searched from {1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1}. The specific parameters
of our model are listed in Table 2. The proposed model is implemented with Pytorch and
all experiments are conducted on a PC configured with an Intel Core I9-10900X @3.40GHz
CPU with 32 GB memory, and an Nvidia GeForce RTX 3080 Ti GPU with 12 GB memory.

Table 2. Specific parameters of the proposed TRAL used in experiment.

MLP and Attention Learning

embedding size of tags 32
embedding size of tag

frequency 8

size of hidden layers [80, 40, 20]
attention factor 16

Training Process

optimizer Adam
learning rate 0.001

maximum number
of iterations 300

batch size 256
regularization L2 norm

number of negative samples 4

Appl. Sci. 2023, 13, 814 11 of 17

5.3. Performance Comparison

Experimental results of eight recommendation models on two public datasets are
presented in Table 3, where we show the best results in boldface and best baseline results
in underline. Additionally, we calculate the improvement (imp.) of the proposed model
compared to the best baseline. It is clear that the proposed TRAL consistently surpasses
other approaches in all evaluation metrics. For example, the performance of TRAL achieves
5.9% and 2.6% improvement over the best baseline in the light of HR@10 and NDCG@10
on Delicious.

Table 3. Overall performance comparison on two datasets in terms of HR and NDCG metrics.
Boldface represents the highest score and underline denotes the best result of the baselines. The
improvement (imp.) of the proposed model compared to the best baseline is calculated.

Dataset Delicious LastFM

Metrics HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

CCF 0.6103 0.3851 0.6346 0.4123 0.5420 0.2548 0.5618 0.2652
ACF 0.6524 0.4216 0.6812 0.4520 0.5624 0.2651 0.5816 0.2764
NCF 0.6836 0.4435 0.6970 0.4712 0.5961 0.2872 0.6108 0.3056
DSPR 0.8041 0.6182 0.8166 0.6315 0.6854 0.3125 0.7012 0.3204

TRSDL 0.7925 0.6012 0.8104 0.6214 0.7052 0.3356 0.7126 0.3468
BPR-T 0.7123 0.5556 0.7492 0.5725 0.6532 0.3173 0.6750 0.3325
STEM 0.7458 0.5423 0.7643 0.5680 0.6726 0.3027 0.6953 0.3252
TRAL 0.8518 0.6345 0.8618 0.6505 0.7336 0.3621 0.7582 0.3820

Imp. 5.9% 2.6% 5.5% 3.0% 4.0% 7.9% 6.4% 10.2%

It is worth noting that CCF performs worst in most metrics among these baselines,
which adequately reveals that the clustering method is insufficient to capture accurate
abstract representation for users or items compared to deep learning strategies. In addition,
the performance of DSPR, TRSDL, and TRAL are significantly better than ACF. The reason is
that ACF only employs the autoencoder to capture low dimensional feature representations
of users by constantly optimizing the reconstruction error. In contrast, other deep learning
models directly optimize the correlation between users and items so as to extract more
accurate feature representation. Furthermore, we can see that NCF behaves marginally
better than ACF, but it is obviously worse than other deep learning recommendation
methods with the help of tagging information. This convincingly proves the important
role of tags as auxiliary information in improving the recommendation performance. The
performance of BPR-T and STEM is obviously better than that of NCF, but worse than the
proposed TRAL, which indicates that the deep learning model should be well designed for
current problems to bring competitive results.

To summarize, the main reasons why the proposed model is superior to other baselines
are as follows: (1) constructing the deep architecture to capture effective tag-based features;
(2) exploiting the attention mechanism to distinguish the importance of different tag-based
features adaptively; and (3) combining the deep and the wide component to learn the
high-order and low-order interactions between user and item latent features.

5.4. Ablation Studies

In this section, we carry out several ablation studies on the proposed components or
strategies in our model, including the effect of the attention network and the combination
of the two components.

5.4.1. Effect of the Attention Network

To investigate the effect of the attention network, we replace it with average pooling to
generate a variant method called TRAL-no-A. Figure 3 presents the recommendation results
on two datasets in terms of HR and NDCG metrics. It can be observed that TRAL performs

Appl. Sci. 2023, 13, 814 12 of 17

significantly better than TRAL-no-A on both metrics, indicating that the recommendation
performance will be seriously degraded without the attention network. Benefiting from
the attention mechanism, different tag-based features are automatically compressed into
a fixed-length vector with different weights. More accurate representations of users and
items are thus derived to facilitate subsequent recommendations.

(c)

(a) (b)

(d)

Figure 3. Performance comparison in terms of HR@n and NDCG@n on the two datasets. (a) HR@n
on Delicious. (b) NDCG@n on Delicious. (c) HR@n on LastFM. (d) NDCG@n on LastFM.

As the model capability of the attention network is affected by the attention factor,
we conducted several experiments to further study the impact of the attention mechanism.
Figure 4 displays the results of different attention factors on the two datasets in terms of
NDCG@10. Note that for Delicious and LastFM, the range of NDCG values under different
attention factors falls within [0.62, 0.64] and [0.35, 0.37], respectively. The results show
that the performance of TRAL is relatively stable across different attention factors on both
datasets. It demonstrates that the design of attention network can make the model have
strong robustness while improving the algorithm performance.

Appl. Sci. 2023, 13, 814 13 of 17

(a) (b)

Figure 4. Recommendation results of different attention factors. (a) NDCG@10 on Delicious.
(b) NDCG@10 on LastFM.

5.4.2. Effect of Combining the Two Components

To verify the effectiveness of combining the wide and the deep component, we com-
pare the performance of the proposed model with that of its two variants, in which only
the wide or the deep component is employed, named TRS-w and TRS-d, respectively. In
addition, we also compare the results with the model using the wide component and the
attention network, termed it as TRS-w-a. Table 4 presents the comparison results. It is clear
that removing either the wide or the deep component will lead to a significant decline in al-
gorithm performance, revealing the rationality of combining the two components. Among
the three variants, TRS-d achieve the best results, which is due to the better expression
ability of deep learning. Note that TRS-w performs slightly worse than TRS-w-a, indicating
the positive effect of the attention mechanism.

Table 4. Ablation results on the two datasets.

Dataset Delicious LastFM

Metrics HR@10 NDCG@10 HR@10 NDCG@10

TRS-w 0.6125 0.3420 0.5671 0.2683
TRS-d 0.8093 0.5052 0.6924 0.3458

TRS-w-a 0.6340 0.3654 0.6021 0.2735
TRAL 0.8518 0.6345 0.7336 0.3621

5.5. Parameter Analysis
5.5.1. Number of Negative Samples

To examine the influence of the number of negative samples on recommendation
performance, we search the number ranging from 1 to 10. Figure 5 displays the experiment
results on Delicious and LastFM in terms of NDCG@10. In addition, the results of NCF
and DSPR are also plotted. We can see that the performance of the proposed TRAL is
significantly better than NCF and DSPR for different numbers of negative samples. It is
worth noting that there is no fixed optimal value for all datasets or all models. When only
one negative sample is used for each positive sample, the recommended performance is
obviously not good enough, while too many samples will lead to performance degradation.
A suitable number of negative samples is around 3 to 6. In our work, we set the number to
4, which is also used in the previous experiments [11].

Appl. Sci. 2023, 13, 814 14 of 17

(a) (b)

Figure 5. Recommendation results of different number of negative samples. (a) NDCG@10 on
Delicious. (b) NDCG@10 on LastFM.

5.5.2. Embedding Size

To investigate the impact of the embedding size, we establish experiments by varying
its value in the range of {8, 16, 32, 64, and 128}. Experimental results are summarized
in Figure 6. From the results, we can given several observations. When the embedded
dimension is relatively small, the expression ability is insufficient to model the interactions
between users and items. With the increase in the embedding size, the performance of
the proposed model is gradually improved. However, after the dimension increases to a
certain value, the model cannot achieve significant improvement. In particular, we even
find slight performance degradation on LastFM when using a large value of embedding
size. To balance the performance and the computational cost, we set the embedding size to
32 in our work.

(a) (b)

Figure 6. Recommendation results of different embedding sizes. (a) NDCG@10 on Delicious.
(b) NDCG@10 on LastFM.

6. Conclusions

In social tagging systems, a great variety of tags are utilized to describe item char-
acteristics and user preferences. In order to effectively handle tagging information, we
propose a novel tag-aware recommendation model based on attention learning. The pro-
posed model constructs a deep component to extract high-level interaction features by
integrating an attention network and a multi-layer fully connected network. The aim of
the attention network is to make different features contribute differently according to their

Appl. Sci. 2023, 13, 814 15 of 17

importance. Furthermore, we establish a wide component to capture low-level interaction
features. By combining these different features, we can obtain more accurate representation
for users and items, thus improving the recommendation performance. Experimental
results demonstrated that the proposed model performs significantly better than other
comparison algorithms.

However, there may be some limitations. Firstly, the proposed model is capable of
addressing tagging information effectively when these tags are sufficient to express the
accurate user interests and item characteristics. Unfortunately, the tagging behavior data in
the real recommendation scenario is rather sparse. Secondly, the proposed model cannot
deal with the cold-start problem, which refers to how to provide recommendations for new
users or fresh items. The obvious reason is that these new users or items have no tagging
information at all. Thirdly, the proposed model ignores the sequence information of users,
which can indicate the drift of user interests.

To further improve the proposed model, future research directions thus focus on
the following aspects. (1) We will investigate some new techniques achieve appropriate
data augmentation, such as tag expansion [22] and graph data augmentation [39]. (2) To
solve the cold-start problem, we can combine other side information, including images,
texts and social relations. Moreover, the introduction of additional information will boost
the recommendation performance if the hybrid algorithm is well designed. (3) In order
to accurately capture the changes of users’ interests over time, we need to design new
component which can extract sequence information.

Author Contributions: The overall study supervised by S.L.; Methodology, hardware, software, and
preparing the original draft by Y.Z. (Yi Zuo); Review and editing by Y.Z. (Yun Zhou) and H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (Grant no.
61902117 and Grant no. 72073041), the National Natural Science Foundation of Hunan Province
(Grant No. 2020JJ5010), and Scientific research project of Hunan Provincial Department of Education
(Grant no. 22A0667).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132.

[CrossRef]
2. Zhang, Z.K.; Zhou, T.; Zhang, Y.C. Tag-aware recommender systems: A state-of-the-art survey. J. Comput. Sci. Technol. 2011,

26, 767–777. [CrossRef]
3. Shepitsen, A.; Gemmell, J.; Mobasher, B.; Burke, R. Personalized recommendation in social tagging systems using hierarchical

clustering. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008;
pp. 259–266.

4. Tso-Sutter, K.H.; Marinho, L.B.; Schmidt-Thieme, L. Tag-aware recommender systems by fusion of collaborative filtering
algorithms. In Proceedings of the 2008 ACM Symposium on Applied Computing, Fortaleza, Brazil, 16–20 March 2008;
pp. 1995–1999.

5. Zuo, Y.; Zeng, J.; Gong, M.; Jiao, L. Tag-aware recommender systems based on deep neural networks. Neurocomputing 2016,
204, 51–60. [CrossRef]

6. Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
7. Zhao, S.; Du, N.; Nauerz, A.; Zhang, X.; Yuan, Q.; Fu, R. Improved recommendation based on collaborative tagging behaviors.

In Proceedings of the 13th International Conference on Intelligent User Interfaces, Gran Canaria, Spain, 13–16 January 2008;
pp. 413–416.

8. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117.

http://doi.org/10.1016/j.knosys.2013.03.012
http://dx.doi.org/10.1007/s11390-011-0176-1
http://dx.doi.org/10.1016/j.neucom.2015.10.134
http://dx.doi.org/10.1145/219717.219748

Appl. Sci. 2023, 13, 814 16 of 17

9. Xu, Z.; Lukasiewicz, T.; Chen, C.; Miao, Y.; Meng, X. Tag-aware personalized recommendation using a hybrid deep model. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017.

10. Liang, N.; Zheng, H.T.; Chen, J.Y.; Sangaiah, A.K.; Zhao, C.Z. Trsdl: Tag-aware recommender system based on deep learning–
intelligent computing systems. Appl. Sci. 2018, 8, 799. [CrossRef]

11. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

12. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide
& deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
Boston, MA, USA, 15 September 2016; pp. 7–10.

13. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. arXiv 2017,
arXiv:1703.04247.

14. Nakamoto, R.; Nakajima, S.; Miyazaki, J.; Uemura, S. Tag-based contextual collaborative filtering. IAENG Int. J. Comput. Sci.
2007, 34, 2.

15. Marinho, L.B.; Schmidt-Thieme, L. Collaborative tag recommendations. In Data Analysis, Machine Learning and Applications;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 533–540.

16. Zhen, Y.; Li, W.J.; Yeung, D.Y. TagiCoFi: Tag informed collaborative filtering. In Proceedings of the Third ACM Conference on
Recommender Systems, New York, NY, USA, 23–25 October 2009; pp. 69–76.

17. Chen, C.; Zheng, X.; Wang, Y.; Hong, F.; Chen, D. Capturing semantic correlation for item recommendation in tagging systems.
In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016; Volume 30.

18. Wang, Z.; Deng, Z. Tag recommendation based on bayesian principle. In Proceedings of the International Conference on
Advanced Data Mining and Applications, Chongqing, China, 19–21 November 2010; Springer: Berlin/Heidelberg, Germany,
2010; pp. 191–201.

19. Symeonidis, P.; Nanopoulos, A.; Manolopoulos, Y. Tag recommendations based on tensor dimensionality reduction. In
Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 43–50.

20. Li, H.; Diao, X.; Cao, J.; Zhang, L.; Feng, Q. Tag-aware recommendation based on Bayesian personalized ranking and feature
mapping. Intell. Data Anal. 2019, 23, 641–659. [CrossRef]

21. Zhang, Z.K.; Zhou, T.; Zhang, Y.C. Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs.
Phys. A Stat. Mech. Its Appl. 2010, 389, 179–186. [CrossRef]

22. Pan, Y.; Huo, Y.; Tang, J.; Zeng, Y.; Chen, B. Exploiting relational tag expansion for dynamic user profile in a tag-aware ranking
recommender system. Inf. Sci. 2021, 545, 448–464. [CrossRef]

23. Pan, X.; Zeng, X.; Ding, L. Topic optimization–incorporated collaborative recommendation for social tagging. Data Technol. Appl.
2022, 1–20. [CrossRef]

24. Xu, Z.; Chen, C.; Lukasiewicz, T.; Miao, Y.; Meng, X. Tag-aware personalized recommendation using a deep-semantic similarity
model with negative sampling. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 1921–1924.

25. Huang, R.; Wang, N.; Han, C.; Yu, F.; Cui, L. TNAM: A tag-aware neural attention model for Top-N recommendation.
Neurocomputing 2020, 385, 1–12. [CrossRef]

26. Chen, B.; Ding, Y.; Xin, X.; Li, Y.; Wang, Y.; Wang, D. AIRec: Attentive intersection model for tag-aware recommendation.
Neurocomputing 2021, 421, 105–114. [CrossRef]

27. Ahmadian, S.; Ahmadian, M.; Jalili, M. A deep learning based trust-and tag-aware recommender system. Neurocomputing 2022,
488, 557–571. [CrossRef]

28. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. arXiv 2013, arXiv:1310.4546. https://doi.org/10.48550/arXiv.1310.4546.

29. Liu, H. Resource recommendation via user tagging behavior analysis. Clust. Comput. 2019, 22, 885–894. [CrossRef]
30. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

31. Xiao, J.; Ye, H.; He, X.; Zhang, H.; Wu, F.; Chua, T.S. Attentional factorization machines: Learning the weight of feature interactions
via attention networks. arXiv 2017, arXiv:1708.04617.

32. Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan, Y.; Jin, J.; Li, H.; Gai, K. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 1059–1068.

33. Cantador, I.; Brusilovsky, P.; Kuflik, T. Second workshop on information heterogeneity and fusion in recommender systems
(HetRec2011). In Proceedings of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011;
pp. 387–388.

34. Bayer, I.; He, X.; Kanagal, B.; Rendle, S. A generic coordinate descent framework for learning from implicit feedback. In
Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 1341–1350.

35. Elkahky, A.M.; Song, Y.; He, X. A multi-view deep learning approach for cross domain user modeling in recommendation
systems. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 278–288.

http://dx.doi.org/10.3390/app8050799
http://dx.doi.org/10.3233/IDA-193982
http://dx.doi.org/10.1016/j.physa.2009.08.036
http://dx.doi.org/10.1016/j.ins.2020.09.001
http://dx.doi.org/10.1108/DTA-11-2021-0332
http://dx.doi.org/10.1016/j.neucom.2019.11.095
http://dx.doi.org/10.1016/j.neucom.2020.08.018
http://dx.doi.org/10.1016/j.neucom.2021.11.064
http://dx.doi.org/10.1007/s10586-017-1459-2

Appl. Sci. 2023, 13, 814 17 of 17

36. Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 426–434.

37. Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation systems: Algorithms, challenges, metrics, and
business opportunities. Appl. Sci. 2020, 10, 7748. [CrossRef]

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Han, X.; Jiang, Z.; Liu, N.; Hu, X. G-Mixup: Graph Data Augmentation for Graph Classification. arXiv 2022, arXiv:2202.07179.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app10217748

	Introduction
	Related Work
	Preliminaries
	Method
	The Deep Component
	Embedding Layer
	Attention Layer
	Interaction Layer

	The Wide Component
	Joint Optimization

	Experiments
	Dataset Description and Evaluation Metrics
	Baselines and Parameter Settings
	Performance Comparison
	Ablation Studies
	Effect of the Attention Network
	Effect of Combining the Two Components

	Parameter Analysis
	Number of Negative Samples
	Embedding Size

	Conclusions
	References

