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Abstract: Petroselinum crispum is native to the Mediterranean region and has been reported to contain
several phenolic compounds in addition to the highest quantity of apigenin among several natural raw
materials. The aim of the present study was to establish an extraction method for the most abundant
phenolic compounds of Petroselinum crispum leaves by using response surface methodology. A Box–
Behnken design was applied to optimize the extraction conditions with regards to the extraction
time, temperature, solvent mixture, and sample to solvent ratio with the use of ultrasound-assisted
extraction. An analytical HPLC-PDA methodology was developed to accurately quantify the phenolic
compounds in the extracts. Identification of the most abundant phenolic compounds (luteolin, caffeic
acid, and apigenin) was also performed with an UPLC-Q-TOF MS methodology. The predicted
optimal conditions of the statistical model were identified, and the predicted values confirmed.
Actual values of 23.92 ± 1.86 with 100 mL/g, 40% ethanol, 70 ◦C and 40 min, 19.10 ± 0.75 with
20 mL/g, 0% ethanol, 70 ◦C and 40 min, and 25.29 ± 1.82 µg/g dry parsley with and 100 mL/g,
0% ethanol, 25 ◦C and 40 min of luteolin, caffeic acid, and apigenin respectively, were estimated.
Total phenolic content and antioxidant activities by DPPH, ABTS, FRAP, and CUPRAC assays were
performed for the extracts. The extracts acquired under the optimum conditions contain an adequate
quantity of phenolic compounds that could be used in the production of functional foods by food
enrichment prcedure.

Keywords: Petroselinum crispum; Box–Behnken; phenolics; antioxidants; HPLC-PDA analysis;
UPLC-Q-TOF MS

1. Introduction

Petroselinum crispum, also known as parsley, is an aromatic herb that belongs in the
Apiaceae family and has been used for almost 500 years in food (parsley may be one of the
oldest herbs used as condiment in food) as well as pharmaceutical, perfume and cosmetic
industries [1–3]. It is native to the central and eastern Mediterranean region, but in the mod-
ern world, it is cultivated on all continents. Previous studies on the chemical composition
of parsley have revealed the presence of phenolic acids and flavonoids. These compounds
can significantly prevent the oxidating stress. High antioxidant capacity is considered to
be an important factor for the delay or the prevention of several diseases, such as heart
diseases, neurodegenerative diseases, cancer, and of the aging prcess [2,4–8]. Additionally,
parsley has been reported to contain the highest quantity of apigenin among several natural

Appl. Sci. 2023, 13, 798. https://doi.org/10.3390/app13020798 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020798
https://doi.org/10.3390/app13020798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8959-7784
https://orcid.org/0000-0003-1134-7811
https://orcid.org/0000-0002-4673-2982
https://orcid.org/0000-0002-4624-4735
https://orcid.org/0000-0002-0853-4547
https://doi.org/10.3390/app13020798
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020798?type=check_update&version=2


Appl. Sci. 2023, 13, 798 2 of 17

raw materials [9,10], as well as potential benefits on the immune system, sleep, testosterone
production, blood sugar levels, and several types of cancer [11]. Furthermore, parsley has
been reported to contain a high quantity of luteolin and caffeic acid which, along with their
anti-oxidativeand anti-inflammatory properties, have also been reported to have potential
anticancer properties [12–14]. In addition, parsley and its extracts are used to treat various
illnesses, such as Alzheimer’s and cardiovascular diseases, and are also are employed to
help people with thrombosis problems and strokes [15,16].

Taking into consideration the health benefits of specific parsley constituents, there is
significant interest in evaluating and optimizing a procedure that will properly extract the
relevant compounds and further utilize the extracts. Since the extraction step is of highest
importance to obtain the compounds of interest, more attention is being paid to evaluating
the proper extraction techniques and optimizing the respective process parameters.

Some new extraction techniques have been developed in the frame of green extraction,
such as microwave extraction (ME), supercritical fluid extraction (SFE), and ultrasonic-
assisted extraction (UAE). Special interest has been given to ultrasound assisted extraction
because of its positive impact on the bioactive compounds extraction process, such as higher
product yields, shorter extraction time, and lower costs in contrast with other extraction
techniques [17,18].

During preliminary experiments, along with apigenin, luteolin, and caffeic acid; gallic
acid, ferulic acid, quercetin, and kaempferol were also extracted from parsley. However,
apigenin, luteolin, and caffeic acid were obtained in higher quantities, so the experimental
design was conducted for these three compounds.

Thus, the aim of the study was to identify the existence of apigenin, caffeic acid, and
luteolin in Petroselinum crispum by HPLC-PDA and HPLC-QTOF-MS methodology and
then determine (a) the optimum extraction conditions of these phenolic compounds by
using a response surface methodology and (b) the antioxidant activities of the extracts
obtained under optimized conditions.

2. Materials and Methods
2.1. Chemicals and Reagents

Fresh Petroselinum crispum (1 kg) used in the experiments were obtained in the island
of Lemnos, located in the Aegean Sea of Greece. Only the Petroselinum crispum (parsley)
leaves were used for the experiment.

The reagents Folin–Ciocalteau, Trolox (6-hydroxy-2,5,7,8-tetremethychroman-2-carboxylic
acid), and anhydrous sodium carbonate were purchased from SDS (Peypin, France). DPPH
(1, 1-Diphenyl-2-picryl-hydrazyl), caffeic acid, luteolin, and apigenin were purchased from
Sigma–Aldrich (St. Louis, MO, USA). Methanol, acetic acid HPLC water, and acetoni-
trile were purchased from Thermo-Fisher scientific (Nepean, ON, Canada). Neocuproine
was purchased from Acros Organics (Fair Lawn, NJ, USA). Ammonium acetate, sodium
chloride, sodium dihydrogen phosphate dehydrate, and copper chloride dihydrate were
all purchased from Penta (CZ Ltd., Chrudim, Czech Republic). ABTS (2,2’ -azinobis
(3-ethylbezothiazoline-6-sulphonic acid)) was purchased from Applichem (Darmstadt,
Germany). Potassium persulfate was purchased from Chem-Lab (Zedel-gem, Belgium).

2.2. Preparation of the Samples

For the preparation of the parsley samples, the fresh parsley that was cultivated in
Lemnos Island and had been purchased from a local shop was transferred to oven at 40 ◦C
for 48 h. Then the dried parsley was further processed for one minute in a laboratory grinder
IKA A 10 basic (IKA Works, Wilmington, NC, USA) to achieve a sample of fine powder.
The water activity (aw) was measured at 0.36, using a water activity meter (Novasina Lab
Touch-aw meter, Novasina AG, Zurich, Switzerland).
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2.3. Ultrasound-Assisted Extraction (UAE)

The phenolic compounds extraction from parsley samples was performed with the use
of a cup-horn of 750-Watt ultrasonic processor VCX-750 equipped with a sealed converter
(Sonics & Materials, Inc., Newtown, CT, USA). A one-to-one pulse in seconds was applied
combined with a 60% amplitude while several temperatures were applied, from 25 ◦C
to 70 ◦C, for the preliminary experiments. With regards to the sample preparation, 0.6 g
of dried samples were weighed in a 10-mL tube. The tube was filled up to 6.0 mL with
purified water, ethanol, or ethanol/water in various ratios. After extraction, samples were
centrifuged for 5 min at 3000× g and supernatants were filtered in HPLC vials through
0.20-µm RC (regenerated cellulose) filters before the analysis.

2.4. Experimental Design

The Box–Behnken design (BBD), a standard RSM design, is highly suited to fitting a
quadratic surface, which is often used for process optimization. It was selected to identify
the optimum extraction conditions for luteolin, caffeic acid, and apigenin from the dried
parsley sample. The four independent factors were temperature (X1), time (X2), liquid to
solid sample ratio (X3), and ethanol concentration (X4).

Each factor was coded at three levels: −1, 0, and +1. The factors and their correspond-
ing levels, both coded and actual, chosen in the four-factor-three-level BBD were based
on preliminary one-factor-at-a-time experiments, literature research, and instrumental
specifications, and are presented in Table 1.

Table 1. Independent factors and their levels in the Box–Behnken Experimental Design.

Factor Levels and Range

Factors Codes −1 0 1

Temperature (◦C) X1 25 47.5 70
Time (min) X2 10 25 40

1 LS ratio (mL/g) X3 20 60 100
Ethanol (%, v/v) X4 0 20 40

1 LS ratio: Liquid of solvent to Solid of dried parsley sample ratio.

RSM was used to fit a complete second-order polynomial equation to the design points
and experiment data. The following quadratic response surface model Equation (1) for four
components was fitted:

Y = β0 +
4

∑
i=1

βiXi +
4

∑
i

βiiX2
i +

3

∑
i=1

4

∑
j=i+1

βijXiXj + ε (1)

In Equation (1), Y corresponds to the response variable (µg/g DM), for each phenolic
under evaluation (luteolin, caffeic acid, and apigenin) that was obtained via HPLC-DAD.
Xi and Xj are the independent factors affecting the response (Table 1). The terms β0, βi,
βii, and βij are the regression coefficients of the model (intercept, linear, quadratic, and
interaction term) and ε corresponds to the random error term.

Analysis of variance (ANOVA) was used to estimate the fitting of the entire quadratic
approximation of the BBD response surface model. The significance of each source of
terms (linear, two-factor interaction, and quadratic), as well as the regression coefficients of
the fitted model, were examined using the F-values and pertinent p-values. Statistically
significant terms were those whose probability (p-value) at the 95% confidence level fell
below 0.05.

2.5. Verification of the Statistical Model

Optimum extraction conditions of the phenolic compounds under question, that is
luteolin, caffeic acid, and apigenin from parsley samples, were based on the evaluation
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of sample to solvent ratio, extraction temperature and time, and solvent composition
and were obtained using the predictive equations of RSM. The concentration of luteolin,
apigenin, and caffeic acid was determined after extraction of phenolic compounds under
optimal conditions. The experimental and predicted values were compared to determine
the validity of the model.

2.6. Determination of Phenolic Compounds with HPLC-PDA

For the determination of phenolic compounds during preliminary experiments as
well as during the analysis of extracts produced in the frame of experimental design, a
Shimadzu HPLC 2030C prominence-i system equipped with a binary pump, a degasser, an
autosampler, a column heater, and a PDA detector was used. A Phenomenex Luna C18(2)
analytical column (4.6 mm × 250 mm, particle size 5.0 µm) was used for the separation
of the phenolic compounds under evaluation. The elution was performed using water
acidified with 0.2% formic acid (mobile phase A) and methanol (mobile phase B). The
adopted elution gradient was applied as follows: 0 min, 5% mobile phase B; 2 min, 5%
mobile phase B; 20 min, 95% mobile phase B; 25 min, 95% mobile phase B; 25.01 min,
5% mobile phase B; 28 min, 5% mobile phase B. The injection volume was 20 µL, UV–vis
spectra were recorded from 190 to 800 nm while the chromatograms were registered at 280
and 320 nm. The analytical methodology was successfully validated in terms of linearity,
accuracy, stability, limit of quantitation, and precision (system precision, reproducibility)
for each phenolic compound under evaluation [19].

2.7. Identification of Phenolic Compounds with HPLC-QTOF-MS

An UHPLC system with an HPG-3400 pump (Dionex UltiMate 3000 RSLC, Thermo
Fisher Scientific, Germany) coupled to a QTOF mass spectrometer (Maxis Impact, Bruker
Daltonics, Bremen, Germany) was used for the analysis. Negative electrospray ionization
mode was applied. Separation was carried out using an Acclaim RSLC C18 column
(2.1 × 100 mm, 2.2 µm) purchased from Thermo Fisher Scientific (Driesch, Germany) with
a pre-column of ACQUITY UPLC BEH C18 (1.7 µm, VanGuard Pre-Column, Waters (Waters
Corporation®, Wexford, Ireland). Column temperature was set at 30 ◦C. The solvents used
consisted of (A) 90% H2O, 10% methanol, and 5 mM CH3COONH4 (Mobile phase A)
and 100% methanol and 5 mM CH3COONH4 (Mobile phase B). The adopted elution
gradient started with 1% of organic phase B with flow rate 0.2 mL min−1 during 1 min,
gradually increasing to 39% for the next 2 min and then increasing to 99.9% and flow
rate 0.4 mL min−1 for the following 11 min. These almost pure organic conditions were
kept constant for 2 min (flow rate 0.48 mL min−1), and then initial conditions (1% B–99% A)
were restored within 0.1 min (flow rate decreased to 0.2 mL min−1) to re-equilibrate the
column for the next injection.

The QTOF-MS system was equipped with an electrospray ionization interface (ESI),
operating in negative mode with the following settings: capillary voltage of 3500 V, end
plate off-set of 500 V, nebulizer pressure of 2 bar (N2), drying gas of 8 L min−1 (N2), and
drying temperature of 200 ◦C. A QTOF external calibration was daily performed with
sodium formate (cluster solution), and a segment (0.1–0.25 min) in every chromatogram
was used for internal calibration, using calibrant injection at the beginning of each run.
The sodium formate calibration mixture consisted of 10 mM sodium formate in a mix-
ture of H2O/isopropanol (1:1). Full scan mass spectra were recorded over the range of
50–1000 m/z, with a scan rate of 2 Hz. MS/MS experiments were conducted using AutoMS
data-dependent acquisition mode based on the fragmentation of the five most abundant
precursor ions per scan. The instrument provided a typical resolving power (FWHM)
between 36,000 and 40,000 at m/z 226.1593, 430.9137, and 702.8636.

2.8. Evaluation of Antioxidant Activity

The antioxidant activities of the extracts, obtained at optimized conditions, were
evaluated by the DPPH, ABTS, FRAP, and CUPRAC assays. Each sample was examined in
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triplicate. Trolox solutions were prepared in appropriate concentrations for quantitation
purposes, and the results were expressed as Trolox equivalents in nmol per g of dry parsley
for all the antioxidant tests performed.

The capacity of extracts to scavenge the free radical of DPPH was evaluated using the
method from Miller et al. [20] with minor modifications. An aliquot of the extract (25 to
100 µL) or appropriate standard solution of Trolox was diluted with methanol up to 0.9 mL.
Then, 0.1 mL of 0.6 mM DPPH reagent in methanol was added, followed by vigorous
stirring. After 15.0 min in the dark, the absorbance was measured at 515 nm against a
reference sample containing methanol.

Determination of ABTS radical scavenging activity of samples was performed using
the method from Brand-Williams et al. [21] with minor modifications. ABTS radical cation
(ABTS•+) was produced by the oxidation of ABTS with potassium persulfate (K2S2O8).
The ABTS•+ was generated by reacting 7 mmol/L stock solution of ABTS with potassium
persulphate in a final concentration equal to 2.45 mmol/L. The ABTS•+ working solution
was prepared by dilution of the stock solution using distilled water to give an absorbance
of 0.700 at 734 nm. Aliquots of parsley extracts (25 to 100 µL) or appropriate amounts
of Trolox standards were diluted to 1.0 mL with working ABTS•+ solution and were
vigorously stirred. Samples remained for 15.0 min in the dark at ambient temperature and
the absorbance was measured at 734 nm. The ability of the extracts to scavenge the ABTS•+

was evaluated relative to a reference sample that did not contain any quantity of extract.
The reducing potential of the samples was determined using the FRAP assay as

described by Benzie and Strain [22]. The method is based on the reduction of the Fe3+—
tripyridyl triazine complex to its ferrous-colored form at low pH in the presence of antioxi-
dants. The FRAP reagent was freshly prepared and contained 0.2 mL of a 10 mM TPTZ
(2,4,6-tripyridy-s-triazine) solution in 40 mM HCl plus 0.2 mL of 20 mM FeCl3•6H2O plus
0.2 mL of 3.0 M acetate buffer, pH 3.6. Aliquots of extracts (10 to 50 µL) were transferred in
test tubes and dissolved up of 900 µL with distilled water, followed by addition of 300 µL
of FRAP solution and vigorous stirring. The samples were incubated for 10 min in a 37 ◦C
water bath, and the absorbance was measured at 593 nm.

The reducing capacity of the samples was also determined using the CUPRAC assay
according to Özyürek et al. [23]. Aliquots of parsley extracts (10 to 50 µL) were transferred
in test tubes and diluted with 300 µL of 10 mM CuCl2•2H2O, 7.5 mM neocuproine, and
1 mM CH3COONH4 buffer solution with pH = 7.0, followed by the addition of distilled
water up to the volume of 1200 µL. The samples were well stirred and remained at room
temperature for 30 min. The absorbance of the samples was then measured at 450 nm.

2.9. Determination of Phenolic Compounds

The total content of phenolics in parsley extracts, obtained at optimized conditions,
was measured in triplicate by using a modified version of Singleton and Rossi’s technique
and was determined using the Folin–Ciocalteu’s method according to Singleton, Orthofer,
and Lamuela-Raventos with some modifications [24]. The experiment was carried out by
combining 5 to 20 µL of parsley extracts with 1.8 mL of distilled water and 0.1 mL of Folin-
Ciocalteu reagent. The materials were then rapidly mixed and incubated in the dark for two
minutes. After adding 0.3 mL of 20% (w/v) aqueous Na2CO3, the samples were rapidly
agitated and incubated at 40 ◦C in a water bath for 30 min. Absorbance was measured
spectrophotometrically at 765 nm, by a Spectrophotometer Lambda 25 (Perkin Elmer, Norwalk,
CT, USA). Gallic acid was used to develop a standard curve. The final findings were expressed
as equivalent concentrations of gallic acid (mg GAE per g dry parsley).

2.10. Statistical Analysis

Data presented as mean ± standard deviation (m ± SD). The response values of the
RSM model were analyzed by Minitab® trial version statistical software (Minitab Ltd.,
Coventry, UK). SPSS V 28.0.10 software (IBM Corp., Armonk, NY, USA) was used for
one-way analysis of variance (ANOVA) coupled with post hoc Tukey’s test for comparison
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of means of more than two samples and one-sample t-test analysis for the verification of
the model. Statistical significance was defined at <0.05.

3. Results and Discussion
3.1. Determination and Identification of Phenolic Compounds in Parsley Samples by HPLC-PDA
and UHPLC-QTOF-MS

Identification and determination of apigenin, luteolin, and caffeic acid was performed
in parsley ultrasound assisted extract obtained with ethanol/water 30/70 (v/v) as a solvent
and a ratio of solvent to dry parsley (LS ratio) equal to 20 mL/g. Extraction was performed
for 20 min at 25 ◦C.

Determination of phenolic compounds was performed with the validated analytical
method of HPLC-PDA (methodology is referred at Section 2.6). Figures 1 and 2 show the
profile of the phenolic compounds under evaluation for the sample and standard solution
at 340 nm, respectively. Apigenin, luteolin, and caffeic acid were quantitively determined
at 6.3 ± 0.2, 6.7 ± 0.2, and 1.8 ± 0.1 µg/g dry parsley, respectively.
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apigenin at 340 nm.

The parsley extracts were also analyzed using UHLPC-QTOF-MS (methodology is
referred to in Section 2.7) for confirmatory purposes, and the respective mass spectrums
are presented at Figure 3. Precursor ions were obtained, and the identification was per-
formed with validated methodology along with the software library for the three phenolic
compounds. Identification of apigenin, luteolin, and caffeic acid was based on the accurate
mass measurements of the molecular ion [M-H]−, the UV–Vis data and the comparison
with the commercial standards that were available for these specific phenolic compounds.
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Figure 3. Mass spectrum of parsley extract samples at negative ionization were the precursor ion of
apigenin—m/z 269 (a), caffeic acid—m/z 185 (b), and luteolin—m/z 285 (c) are obtained.

3.2. Model Fitting

The optimization of the extraction procedure by ultrasound assisted extraction (UAE)
of luteolin, caffeic acid, and apigenin from parsley was carried out by response surface
methodology. More specifically, a Box–Behnken design was used to find out the combined
effect between the factors of extraction temperature (25, 47.5, and 70 ◦C) (X1), extraction
time (10, 25, and 40 min) (X2), ethanol concentration (0, 20, and 40% v/v) (X3) and solvent
to dry parsley ratio (20, 60, 100 mL/g) (X4) on the extractability of luteolin, caffeic acid and
apigenin as quantified with the use of a HPLC PDA methodology.

The experimental design matrix produced was based on BBD consisted of 27 combina-
tions, including three center points, and was carried out in triplicate, resulting in a total of
81 runs that were conducted in a randomizing run order to reduce impact of variation on
response values owing to the external factors. Results obtained from the USE of parsley are
shown in Table 2. The experimental values varied from 7.8 to 24.8 µg luteolin/g dry parsley,
0.42 to 16.1 µg caffeic acid/g dry parsley, and 4.3 to 21.0 µg apigenin/g dry parsley (Table 2).

The fitting of the full quadratic approximation of the BBD response surface model was
estimated by the analysis of variance (ANOVA). The F-values and relevant p-values were
used to examine the significance of each source of terms, that is, linear, two-factor interaction,
and quadratic, and the regression coefficients of the fitted models. Terms with p-value lower
than 0.05 at the 95% confidence interval were identified as statistically significant.

A multiple regression analysis was employed to fit the response value and the experi-
ment data. Model reduction was carried out to further refine the full quadratic response
surface model by clicking off the insignificant terms with a significance level greater than
5% (p > 0.05). To further refine the full quadratic response surface model, because of the
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existence of non-significance effect of factors, transformation of the data and backward
elimination of terms was performed.

Table 2. Coded and actual values of BBD design, along with the experimental results of of quantifica-
tion for luteolin, caffeic acid, and apigenin from parsley.

Run

Independent Factors

Luteolin
(µg/g) 2

Caffeic Acid
(µg/g) Apigenin/(µg/g)X1

Temperature (◦C)
X2

Time (min)
X3

Ethanol (% v/v)

X4
1 LS Ratio

mL/g Parsley

1 47.5 (0) 10 (−1) 20 (0) 20 12.2 2.2 7.1
2 25 (−1) 40 (+1) 20 (0) 60 18.3 0.46 9.3
3 47.5 (0) 25 (0) 20 (0) 60 8.8 0.92 5.5
4 47.5 (0) 10 (−1) 20 (0) 20 13.2 0.95 7.3
5 47.5 (0) 40 (+1) 0 (−1) 60 19.5 14.8 9.6
6 25 (−1) 25 (0) 20 (0) 100 21.2 3.4 10.8
7 47.5 (0) 10 (−1) 20 (0) 100 15.6 2.2 9.8
8 47.5 (0) 40 (+1) 20 (0) 100 21.7 1.9 10.1
9 70 (+1) 25 (0) 20 (0) 20 19.9 8.4 10.1

10 47.5 (0) 40 (+1) 20 (0) 100 22.4 3.5 9.9
11 47.5 (0) 25 (0) 20 (0) 60 8.0 1.1 5.2
12 70 (+1) 10 (−1) 20 (0) 60 21.3 3.8 9.8
13 25 (−1) 10 (−1) 20 (0) 60 16.9 0.8 9.0
14 47.5 (0) 25 (0) 0 (−1) 20 14.0 10.5 4.5
15 47.5 (0) 10 (−1) 40 (+1) 60 19.8 2.3 10.1
16 70 (+1) 25 (0) 20 (0) 20 19.3 7.9 10.2
17 70 (+1) 25 (0) 20 (0) 100 24.8 1.6 12.0
18 47.5 (0) 40 (+1) 0 (−1) 60 18.0 14.3 12.4
19 70 (+1) 25 (0) 40 (+1) 60 21.1 1.7 10.5
20 47.5 (0) 25 (0) 20 (0) 60 7.8 1.0 5.1
21 47.5 (0) 25 (0) 20 (0) 60 8.0 1.1 5.1
22 25 (−1) 10 (−1) 20 (0) 60 17.0 1.0 9.6
23 47.5 (0) 40 (+1) 20 (0) 20 12.2 1.0 7.5
24 47.5 (0) 10 (−1) 20 (0) 20 14.4 1.1 7.3
25 47.5 (0) 25 (0) 0 (−1) 100 21.0 15.7 17.1
26 47.5 (0) 25 (0) 40 (+1) 20 14.2 1.7 7.8
27 70 (+1) 25 (0) 20 (0) 20 20.1 7.3 10.2
28 47.5 (0) 10 (−1) 0 (−1) 60 19.3 10.9 8.9
29 47.5 (0) 25 (0) 40 (+1) 100 22.4 2.4 13.4
30 25 (−1) 25 (0) 40 (+1) 60 19.5 1.4 9.6
31 47.5 (0) 25 (0) 20 (0) 60 18.6 1.2 7.6
32 70 (+1) 25 (0) 0 (−1) 60 11.5 11.3 4.7
33 47.5 (0) 25 (0) 40 (+1) 20 15.1 1.7 8.0
34 70 (+1) 25 (0) 20 (0) 100 24.2 1.3 11.6
35 47.5 (0) 25 (0) 0 (−1) 100 22.5 16.1 18.6
36 70 (+1) 25 (0) 20 (0) 100 24.6 1.9 12.1
37 47.5 (0) 10 (−1) 0 (−1) 60 19.3 10.6 11.2
38 25 (−1) 40 (+1) 20 (0) 60 18.1 0.44 9.7
39 25 (−1) 25 (0) 20 (0) 20 14.8 0.78 7.8
40 25 (−1) 25 (0) 20 (0) 20 14.2 0.90 8.1
41 47.5 (0) 25 (0) 0 (−1) 20 14.4 10.6 5.8
42 47.5 (0) 25 (0) 40 (+1) 100 22.5 2.5 13.2
43 47.5 (0) 40 (+1) 20 (0) 20 15.3 3.4 7.3
44 25 (−1) 25 (0) 20 (0) 100 21.5 3.1 11.0
45 70 (+1) 25 (0) 0 (−1) 60 11.4 14.1 4.1
46 47.5 (0) 25 (0) 20 (0) 60 23.3 3.3 11.2
47 70 (+1) 40 (+1) 20 (0) 60 22.5 2.4 10.5
48 70 (+1) 25 (0) 40 (+1) 60 21.6 1.4 10.6
49 25 (−1) 25 (0) 40 (+1) 60 19.5 1.5 9.5
50 47.5 (0) 10 (−1) 40 (+1) 60 19.9 2.4 9.9
51 70 (+1) 40 (+1) 20 (0) 60 20.6 1.7 10.1
52 25 (−1) 10 (−1) 20 (0) 60 17.4 0.5 9.4
53 47.5 (0) 10 (−1) 20 (0) 100 15.3 2.1 10.0
54 25 (−1) 25 (0) 0 (−1) 60 19.6 9.2 18.6
55 25 (−1) 40 (+1) 20 (0) 60 17.8 0.42 9.9
56 47.5 (0) 25 (0) 0 (−1) 100 23.4 15.4 19.3
57 70 (+1) 10 (−1) 20 (0) 60 21.1 2.5 10.0
58 47.5 (0) 25 (0) 0 (−1) 20 14.7 10.0 5.9
59 47.5 (0) 40 (+1) 20 (0) 20 16.3 1.4 8.5
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Table 2. Cont.

Run

Independent Factors

Luteolin
(µg/g) 2

Caffeic Acid
(µg/g) Apigenin/(µg/g)X1

Temperature (◦C)
X2

Time (min)
X3

Ethanol (% v/v)

X4
1 LS Ratio

mL/g Parsley

60 47.5 (0) 10 (−1) 40 (+1) 60 19.4 2.2 10.1
61 70 (+1) 10 (−1) 20 (0) 60 21.0 2.4 10.0
62 70 (+1) 25 (0) 0 (−1) 60 11.4 13.6 4.3
63 47.5 (0) 25 (0) 20 (0) 60 20.4 3.3 10.3
64 47.5 (0) 10 (−1) 20 (0) 100 15.3 2.1 10.0
65 25 (−1) 25 (0) 0 (−1) 60 18.9 10.9 21.0
66 47.5 (0) 40 (+1) 40 (+1) 60 19.3 2.0 9.7
67 47.5 (0) 40 (+1) 40 (+1) 60 19.0 1.7 9.9
68 47.5 (0) 25 (0) 20 (0) 60 19.8 1.2 8.3
69 70 (+1) 25 (0) 40 (+1) 60 21.0 1.4 9.1
70 47.5 (0) 40 (+1) 20 (0) 100 19.9 2.5 9.6
71 25 (−1) 25 (0) 20 (0) 20 15.3 1.2 7.5
72 47.5 (0) 25 (0) 20 (0) 60 17.6 2.6 8.5
73 70 (+1) 40 (+1) 20 (0) 60 21.3 2.4 10.3
74 25 (−1) 25 (0) 0 (−1) 60 19.1 10.3 20.1
75 25 (−1) 25 (0) 40 (+1) 60 18.9 1.1 9.7
76 47.5 (0) 40 (+1) 0 (−1) 60 20.6 16.0 13.1
77 47.5 (0) 40 (+1) 40 (+1) 60 19.0 1.9 9.7
78 47.5 (0) 25 (0) 40 (+1) 100 22.6 2.3 13.5
79 25 (−1) 25 (0) 20 (0) 100 20.5 2.4 11.2
80 47.5 (0) 10 (−1) 0 (−1) 60 19.2 11.2 11.8
81 47.5 (0) 25 (0) 40 (+1) 20 14.9 1.2 7.3

1 LS ratio: Liquid of solvent to Solid of dried parsley sample ratio; 2: µg of lutein of caffeic acid or apigenin per g
of dried parsley.

Results of the analysis of variance (ANOVA), after data transformation and model
reduction, were used to determine the degree to which the quadratic approximation of the
BBD response surface reduced models fitted the data are presented in Table 3.

The ANOVA results (Table 3) suggested that the refined second-order models were
statistically significant for apigenin, caffeic acid, and luteolin, since the F-values of 14.56,
105.45, and 15.77 have a zero percent chance to occur due to noise.

Table 3 also indicates the linear, quadratic, and interaction terms that are significant
for the models concerning the studied phenolic molecules. The linear terms temperature
(X1) showed significant effects in all three models for apigenin, caffeic acid and luteolin.
Time (X2) did not show significant effect in any model (p > 0.05). Ratio of solvent to dry
parsley (X3) showed significant effect only in the models of apigenin and luteolin (p < 0.05).
Finally, the linear term of ethanol showed significant effect only in the model of caffeic acid
(p < 0.05). Temperature, time, ratio of solvent to sample, and ethanol as solvent have been
previously shown to be factors of interest when optimization of phenolic compound green
extraction is studied [25,26].

Other than the linear source, quadratic terms indicated statistically significant effects on
the extraction of the studied specific phenolic compounds. Quadratic term of temperature
(X1

2) indicated statistically significant effects on the models of apigenin and luteolin (p < 0.05).
Ratio of solvent to dry parsley (X3

2) indicated statistically significant effects on the model of
caffeic acid (p < 0.05), and quadratic term of ethanol concentration (X4

2) indicated statistically
significant effects on the models of apigenin and caffeic acid (p < 0.05).
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Table 3. Results of the analysis of the variance (ANOVA) for transformed data concerning the fitting
of reduced response surface model for USE extraction of apigenin, caffeic acid, and luteolin.

1 Apigenin 1 Caffeic Acid 1 Luteolin

Source 2 DF F-Value p-Value DF F-Value p-Value DF F-Value p-Value

Model 7 14.56 0.000 8 105.45 0.000 5 15.77 0.000
Linear 3 15.40 0.000 4 132.21 0.000 3 21.54 0.000

T (◦C) (X1) 1 4.95 0.029 1 37.98 0.000 1 8.54 0.005
Time (min) (X2) - - - 1 0.16 0.688 - - -

LS ratio (mL/g) (X3) 1 40.36 0.000 1 2.13 0.148 1 53.01 0.000
Ethanol (%) (X4) 1 0.90 0.345 1 488.56 0.000 1 3.06 0.084

Square 2 6.01 0.004 2 130.70 0.000 1 6.82 0.011
T (◦C)*T (◦C) (X1

2) 1 4.41 0.039 - - - 1 6.82 0.011
LSr (mL/g)*LSr (mL/g) (X3

2) - - - 1 12.29 0.001 - - -
Ethanol (%)*Ethanol (%) (X4

2) 1 9.76 0.003 1 261.31 0.000 - - -
2-Way Interaction 2 21.83 0.000 2 26.70 0.000 1 7.44 0.008

T (◦C)*Ethanol (%) (X1X4) 1 36.56 0.000 - - - 1 7.44 0.008
LSr (mL/g)*Ethanol (%) (X3X4) 1 7.11 0.009 - - - - - -

T (◦C)*LSr (mL/g) (X1X3) - - - 1 49.01 0.000 - - -
Time (min)*Ethanol (%) (X2X4) - - - 1 4.39 0.040 - - -

Error 73 72 75
Lack-of-Fit 67 1.03 0.550 66 0.74 0.756 69 0.45 0.947
Pure Error 6 6 6

Total 80 80 80

1: Box–Cox data transformation was performed using optimal λ = 0.38 for apigenin, λ = 0.43 for caffeic acid, and
λ = 2.89 for luteolin. Reduction of the models was performed backward p > 0.05 for eliminating terms, while the
term in the final step was added to produce a hierarchical model. 2: DF stands for Degree of freedom.

Moreover, concerning the interaction coefficient that exert statistically significant
effects on the models, the interaction of temperature and ethanol concentration (X1X4)
showed a statistically significant effect on the model of apigenin and luteolin, the interaction
of ratio of solvent to dry parsley with ethanol concentration showed a statistically significant
effect on the model of apigenin (p < 0.05) while the interaction of temperature with ratio of
solvent to dry parsley (X1X3) and that of time with ethanol concentration (X2X4) showed a
statistically significant effect on the model of caffeic acid (p < 0.05).

The viscosity of the mixture of solvents and studied sample during extraction is
affected by the solvent to sample ratio (LSr), which alters the effectiveness of ultrasound
assisted extraction. This mixture has a high viscosity when LSr is low, which could prevent
the cavitation effect because the negative pressure in the region of rarefaction needs to be
greater than the strong cohesiveness between particles. In contrast, when the LSr is high,
the medium’s decreased viscosity might boost cavitation, resulting in improved extraction
up to a point at which a more significant cavitation may cause the extracted molecules to
disintegrate [26,27].

Depending on the substance and the molecules extracted, variations in ethanol may
alter solution polarity, which could be extremely important for extraction as it impacts
phenolic solubility. On the other hand, high ethanol concentrations can result in pectin
dehydration and protein denaturation, which prevent phenolics from diffusing through
the matrix of plant material into the solution. Additionally, the right amount of water in
the solution may cause the dry matter of plants to swell, expanding the contact surface
between the solvent and the solute, thereby having a positive effect on the extraction [28].

To increase the mass transfer rate and cavitation effect, and to increase the solubility of
phenolic compounds, solvent extraction is often carried out at relatively high temperatures,
but high temperatures may also cause phenolic deterioration [26,27].

Increased temperature improves the extraction efficiency of phenolics because it
increases their solubility and diffusivity, which in turn improves the mass transfer. However,
heat may be able to lessen the severity of collapsing in cavitation bubbles by reducing the
variations in vapor pressure between the interior and exterior of the bubbles. When the
temperature of the extracted material is raised, the surface tension decreases, reducing the
shear force of the popping bubbles [29].
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Extracting at the lowest possible cost is largely dependent on how quickly the proce-
dure can be completed [26]. Typically, better extraction efficiency may be seen during the
first time periods owing to the steep gradient solvent slope, which gradually diminishes
with time. In addition, short extraction times are achieved as a result of cavitation, thermal,
and physical phenomena induced at the extracted material’s surface [29].

Lack of fit was also not significant (p > 0.05) for the models of apigenin, caffeic acid, and
luteolin, implying that the models fit the data and each model may give accurate predictions.

Significant linear, quadratic, and interaction terms lead to the predictive equations
(Equations (2)–(4)) as presented in Table 4. Positive and negative signs of its coefficient in
its equation of the quadratic models indicate respectively positive or negative effects on the
extraction efficiency of the studied phenolics.

Table 4. Quadratic models of polynomial predictive equations of response surface for apigenin,
caffeic acid, and luteolin UAE from parsley.

Phenolic 1 Predictive Equations

Apigenin (2) Y λa = 3.21 − 0.04X1 + 0.01X3 − 0.04X4 + 0.0002 X1
2 + 0.0004X4

2 + 0.0008 X1X4 − 0.0002 X3X4
Caffeic acid (3) Yλca = 1.02 + 0.04 X1 + 0.01X2 + 0.01X3 − 0.11X4 + 0.0001 X3

2 + 0.0021 X4
2 − 0.0005 X1X3 − 0.0005 X2X4

Luteolin (4) (Y(λl−1))/(λl × gˆ(λ
l
−1)) =

9.80 − 0.34 X1 + 0.08 X3 − 0.19 X4 + 0.0032 X1
2 + 0.0048 X2X4

1: Apigenin, caffeic acid, and luteolin are predicted in µg/g of dried parsley. λa = 0.38; λca = 0.43; λl = 2.89;
g = 17.59 is the geometric mean of luteolin in µg/g DM. X1: Temperature (T) in ◦C; X2: Time in min, X3: ratio of
solvent to dry parsley (LS ratio) in mL/g, X4: Ethanol concentration (%, v/v).

3.3. Optimization of the Extraction Conditions

Response surface methodology was employed to evaluate the combined effect of the
four factors to maximize the extraction of the specific phenolic compounds under question,
namely apigenin, caffeic acid, and luteolin. Figures 4–6 present the three-dimensional
response surface plots that describe the interactive effect of the independent factors on the
quantity of each studied phenolic that was extracted by UAE for the two more significant
factors in each case.
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Figure 5. 3D response surface plot of the caffeic acid (response variable) in µg/g of dry matter (DM)
of parsley as a function of Temperature (X1) in Celsius degrees (◦C) and ethanol concentration in
% v/v while holding time at 35 min and ratio of solvent to dry parsley (LSr) at 100.
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Figure 6. 3D response surface plot of luteolin (response variable) in µg/g of dry matter (DM) of
parsley as a function of Temperature (X1) in Celsius degrees (◦C) and ratio of solvent to dry parsley
(LSr) in ml/g while holding ethanol at 0% (v/v).

Response surface methodology holds an important role in the exploration of the
optimum conditions of independent variables that can contribute in order to achieve a
maximum response [30,31]. Response surface plots are useful for establishing the response
values and operation conditions as required. They can also provide a method to visualize
the results and help in processing the experimental levels of each variable and the types of
interactions between them [32].

The 3D response surface plot in Figure 4 shows that extraction of apigenin is favored in
high values of solvent to dry parsley ratio (LSr; X3) and low values of temperature (T; X1).
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During the extraction of caffeic acid, as shown in Figure 5, high values of ratio of
solvent to dry parley (LSr; X3) exert a positive effect while high values of temperature
(T; X1) show a negative effect.

Through the 3D response surface plot, Figure 6 indicates that higher luteolin ex-
tractability is achieved with high values of ratio of solvent to dry parley (LSr; X3) and low
values of temperature (T; X1).

Based on the experimental results of the luteolin, caffeic acid, and apigenin extracted
amounts shown in Table 2, specific combination of the four factors lead to maximum
extraction of the three studied phenolics. Temperature of 25 ◦C, time of 25 min, ethanol
of zero concentration (% v/v) and solvent to dry parley ratio of 60 mL/g results in a
maximum apigenin extraction of 21.0 µg/g DM. Temperature of 47.5 ◦C, time of 25 min,
ethanol of zero concentration (% v/v), and solvent to dry parley ratio of 100 mL/g results
in a maximum caffeic acid extraction of 16.1 µg/g DM. Finally, temperature of 70 ◦C, time
of 25 min, ethanol of 20% (v/v) concentration and solvent to dry parley ratio of 100 mL/g
results in a maximum luteolin extraction of 24.8 µg/g DM.

The optimal conditions were calculated with the response optimizer of the Minitab®

statistical software and the results are presented in Table 5.

Table 5. Solution for maximum extraction of luteolin, caffeic acid, and apigenin from dried parsley sample.

1 Independent Factors Predicted Values Experimental Values Desirability

Luteolin (µg/gDM) 24.54 a 23.92 ± 1.86 a 0.98223
Caffeic acid (µg/gDM) 18.48 a 19.10 ± 0.75 a 1.0000

Apigenin (µg/gDM) 23.53 a 25.29 ± 1.82 a 1.0000
1: Independent factors were set at 70 ◦C (X1), 100 mL/g DM (X3) and 40% (v/v) (X4) for luteolin; 70 ◦C (X1),
40 min (X2), 20 mL/g DM (X3) and 0% (v/v) (X4) for caffeic acid; 25 ◦C (X1), 100 mL/g DM (X3) and 0% (v/v) (X4)
for apigenin. Same letters in rows denote values of no statistical difference.

3.4. Verification of the Models

The validity of the predictive model was confirmed by comparing the predicted and the
experimental values at optimal conditions. The values predicted by the model at optimal
conditions were 24.54, 18.48, and 23.53 µg per g of dry parsley for luteolin, caffeic acid, and
apigenin, respectively, and the actual experimental values were 23.92 ± 1.86, 19.10 ± 0.75 and
25.29 ± 1.82 µg/g dry parsley. No significant differences were found between the predicted
and the actual values (p > 0.05), indicating a high accuracy of response optimization.

The desirability value may define the ideal solution’s degree of precision. The closer
the desirability value is to 1, the greater the optimization precision. Therefore, the model
validation and response values are not substantially different from the predictions under
ideal circumstances [29].

3.5. Antioxidan Activity Evaluation and Total Phenolic Determination

The antioxidant activity evaluation by the DPPH, ABTS, FRAP, and CUPRAC assays
and total phenolic content (TPC) of parsley optimized extracts are reported in Table 6.

There was no statistical difference between optimized extract for apigenin and luteolin
on antioxidant activities and total phenolics. On the other hand, the optimized extract for
caffeic acid exerted lower antioxidant activities based on DPPH and ABTS assays compared
to the optimized extracts for apigenin and luteolin (p < 0.05). Since the results concern
mixtures of different compounds, this effect may be explained by the different composi-
tion of each optimized extract in combination with different antioxidant mechanisms for
each assay. This is in agreement with reports that refer to synergism between phenolic
compounds during the conduct of antioxidant experiments [33].

Both ABTS and DPPH tests measure the ability of compounds to scavenge free radicals.
Small differences between the DPPH and ABTS values of the optimized extract indicated
that the phenolic compounds contributing to the free radical scavenging activity were
compounds with comparable hydrophilicity, as the ABTS assay is applicable to both
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hydrophilic and lipophilic antioxidant systems, whereas the DPPH assay is only applicable
to hydrophobic antioxidant systems [34].

Table 6. Antioxidant activities of parsley optimized extract.

1 Parameters
Apigenin

Optimized Extract
Caffeic Acid

Optimized Extract
Luteolin

Optimized Extract

DPPH (nmol TE) 638.5 ± 21.3 a 510.5 ± 19.4 b 638.3 ± 24.4 a

ABTS (nmol TE) 687.7 ± 20.3 a 550.4 ± 18.1 b 687.8 ± 22.3 a

FRAP (nmol TE) 114.4 ± 3.1 a 115.4 ± 3.2 a 118.8 ± 2.9 a

CUPRAC (nmol TE) 13.2 ± 0.6 a 13.3 ± 0.4 a 14.5 ± 0.8 a

TPC (mg GAE) 39.4 ± 0.8 a 38.8 ± 0.5 a 39.9 ± 0.7 a

1 DPPH, ABTS, FRAP, CUPRAC: Results are presented as nmol of Trolox equivalents (TE) per g of dry parsley;
TPC: Total phenolic content presented as mg of gallic acid equivalents per g of dry parsley, different letters in
rows denote values of statistically significant difference. Results are expressed as mean ± SD in final reported
results between the 3 replicates of the optimized extracts acquired for apigenin, caffeic acid, and luteolin.

The FRAP and CUPRAC tests assess the sample’s capacity to reduce using ferric and
cupric ions, respectively. Non-statistically significant differences between the optimized
extracts indicated that the chemicals contained in the optimized extracts may decrease
ferric and cupric ions equally. In contrast, the lower DPPH and ABTS values (P0.05) for
the optimized caffeic acid extract compared to those for luteolin and apigenin suggest
that a fraction of the reductive chemicals in this extract had reduced radical-scavenging
capabilities [35,36].

The results are promising since a higher amount of total phenolic compounds were
extracted compared to studies that have been performed in the past. More specifically,
the amounts reported were 9.63 ± 2.60 for aqueous solutions and 24.77 ± 1.2 mg GAE
per g of dry parsley for methanolic extracts, but the amount of total phenolic compounds
that were extracted with the optimized procedure ranged from 38.8 to 39.9 mg GAE
per g of dry parsley. Other studies have reported 42.31 ± 0.50 mg GAE per g of dry
parsley, but for dichloromethane extracts. Dichloromethane extracts cannot be used in food
enrichment Prcedures without any sample pretreatment; this study’s results are considered
satisfactory since they offer an advantage from the green extraction perspective that was
employed [37,38].

Antioxidants are used in foods to delay or prevent the oxidation of molecules. Two
types of antioxidants can be used, either natural or synthetic. Butylated hydroxyanisole
(BHA) and butylated hydroxytoluene (BHT) are examples of synthetic antioxidants which
have been prohibited because of their carcinogenicity. Thus, there is a growing interest in
natural antioxidants, such as phenolic compounds, that can be used in food enrichment
Prcedures. Thus, the development of natural antioxidants from plant matrices for nutri-
tional purposes, along with the improvement of the nutritional profile of the products, is of
great interest [39].

More specifically, in view of these results, an adequate quantity of phenolic compounds
under evaluation were extracted from Petroselinum crispum, especially apigenin and luteolin,
while using ultrasound-assisted extraction and green solvents (the ethanol/water mixture
was selected as the extracting solution rather than other solvents because both ethanol and
water are considered green solvents). The health benefits of apigenin and luteolin are well
studied [40,41] and thus it would be of great interest to enrich foods with extracts that will
contain an adequate quantity of these phenolics and further evaluate their properties. The
use of human friendly solvents allows for these extracts to be used during food enrichment
to upgrade their nutritional profile. However, there are several factors that must be
considered before Prceeding to food enrichment with parsley extracts. One important
parameter is the stability of the extracts and the evaluation of methodologies to improve
the stability, such as the encapsulation of the compounds of interest in the extracts [42].
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4. Conclusions

In this study, luteolin, caffeic acid, and apigenin were determined by HPLC-DAD
and identified by UHPLC-Q-TOF-MS after UAE of a dry parsley sample. Then, a Box–
Behnken design (BBD) was developed to optimize the extraction of these three phenolic
compounds from Petroselinum crispum (parley) by applying Box–Cox transformation of the
data and model reduction. Determination of luteolin, caffeic acid, and apigenin in each set
of experimental conditions was performed by HPLC-DAD.

After data Box–Cox transformation and model reduction, the adequacy of the predic-
tive model and the verification of the model were confirmed. Optimal conditions were
calculated for each of the three phenolic compounds: 100 mL/g, 0% ethanol, 25 ◦C and
40 min for apigenin with predictive and actual values equal to 23.53 and 25.29 ± 1.82 and
value for desirability equal to 1.000; 20 mL/g, 0% ethanol, 70 ◦C and 40 min for caffeic acid
with predictive and actual values equal to 18.48 and 19.10 ± 0.75 and value for desirability
equal to 1.000; and 100 mL/g, 40% ethanol, 70 ◦C and 40 min for luteolin with predictive
and actual values equal to 24.54 and 23.92 ± 1.86 and value for desirability equal to 0.9822.

The three extracts acquired under the optimized conditions indicated for each com-
pound of interest, namely caffeic acid, luteolin, and apigenin, presented similar behavior
with respect to the total phenolic content and antioxidant activities based on FRAP and
CUPRAC assays. Different composition of optimized extracts led to lower antioxidant
activity of optimized extract for caffeic acid compared to those for luteolin and apigenin
based on DPPH and ABTS assays. Satisfactory amounts of phenolic compounds (ranged
from 38.8 to 39.9 mg GAE per g of dry parsley) were extracted and high antioxidant capaci-
ties (ranged from 13.2 to 687.8 nmol Trolox equivalent per g of dry parsley with respect to
DPPH, ABTS, FRAP and CUPRAC assays) were obtained (Table 6).

The results of the study highlight the nutraceutical potential of the parsley extracts.
Parsley is an aromatic herb with widespread cultivation, and a considerable amount is
easily accessible for the creation of novel functional foods or the refinement of current
traditional products with shown superiority in consumer health protection.
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Roots of Apium Graveolens and Petroselinum crispum—Insight into Phenolic Status against Toxicity Level of Trace Elements.
Plants 2021, 10, 1785. [CrossRef]

8. Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med.
Plant Res. 2011, 5, 6697–6703. [CrossRef]

9. Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the
Therapeutic Potential of Apigenin against Cancer. Life Sci. 2021, 267, 118814. [CrossRef]

10. Głowacki, R.; Furmaniak, P.; Kubalczyk, P.; Borowczyk, K. Determination of Total Apigenin in Herbs by Micellar Electrokinetic
Chromatography with UV Detection. J. Anal. Methods Chem. 2016, 2016, 3827832. [CrossRef]
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L. Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars.
Molecules 2020, 25, 5606. [CrossRef]

38. Tang, E.L.-H.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M.S. Petroselinum crispum Has Antioxidant Properties, Protects against
DNA Damage and Inhibits Proliferation and Migration of Cancer Cells. J. Sci. Food Agric. 2015, 95, 2763–2771. [CrossRef]

39. Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of Polyphenolics from Plant Material for Functional
Foods-Engineering and Technology. Food Rev. Int. 2005, 21, 139–166. [CrossRef]

40. Ali, F.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health Functionality of Apigenin: A Review. Int. J. Food Prop. 2017, 20, 1197–1238.
[CrossRef]

41. Taheri, Y.; Sharifi-Rad, J.; Antika, G.; Yilmaz, Y.B.; Tumer, T.B.; Abuhamdah, S.; Chandra, S.; Saklani, S.; Kiliç, C.S.; Sestito, S.; et al.
Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on in Vivo Pharmacological Effects
and Bioavailability Traits. Oxid. Med. Cell. Longev. 2021, 2021, 1987588. [CrossRef] [PubMed]
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