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Abstract: IPv6 geolocation is necessary for many location-based Internet services. However, the
accuracy of the current IPv6 geolocation methods including machine-learning-based or deep-learning-
based location algorithms are unsatisfactory for users. Strong geographic correlation is observed for
measurement path features close to the target IP, so previous methods focused more on stable paths
in the vicinity of the probe. Based on this, this paper proposes a new IPv6 geolocation algorithm,
SubvectorS_Geo, which is mainly divided into three steps: firstly, it filters geographically relevant
routing feature codes layer by layer to approximate the fine-grained trusted region of the target;
secondly, it extracts delay vectors into the trusted region; thirdly, it evaluates the vector similarity to
determine the final target geolocation information. The final experiments show that the median error
distance range is 7.025 km to 9.709 km on three real datasets (Shanghai, New York State, and Tokyo).
Compared with the advanced method, the median distance error distance is reduced by at least 6.8%
and the average error distance is reduced by at least 9.2%.

Keywords: IPv6 geolocation; network mapping; neural network

1. Introduction

As we know, IP addresses have a dual semantic meaning, representing both identity
and location [1]. IP geolocation is a technology that aims to provide high-precision geo-
graphic information, such as the country, region, latitude, longitude, and time zone of the
host [2]. Actually, IP geolocation is important to Internet users. It has accommodated many
location-based services, personalized recommendations, Whois, DNS, public databases, etc.
Furthermore, it is an important tool for back-tracing and tracking in the field of network
security [3].

Existing IP geolocation algorithms are mainly divided into two categories: (1) database-
query-based IP geolocation algorithms, as early research focused on the records provided by
public databases including WHOIS and DNS, but the database is poorly updated and main-
tained, making its geolocation performance degraded; existing research is focusing more
on improving geographic position performance by enhancing database data reliability [4];
(2) the network-measurement-based IP geolocation algorithm collects the network mea-
surement data between the probe and the target IP, constructs the measurement data
geographic distance mapping with different methods, generates distance constraints for
the target IP, and estimates the geographic location information of the target IP [5]; in
addition, it can be subdivided into rule-based IP geolocation algorithms and learning-based
IP geolocation algorithms according to the different methods; thanks to the real-time and
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realistic nature of network measurement data, network-measurement-based methods have
gradually become the main research direction in the field of IP geolocation research [6].

The rapid development of IPv6 networks has seen a rise in demand for location-based
Internet applications; the previous IPv4 location algorithms did not achieve the same
performance in IPv6. For researchers, the design of IP geolocation algorithms is based on
IP protocols and the rules of network environments where IP protocols are deployed, and
the design of IPv6 is proposed using IPv4 as a blueprint. There are differences between
them, but at the same time, there are also similarities, so there is no split between IPv4
location algorithms and IPv6 location algorithms, just because of the differences in the IP
protocols and network environment rules they face. Compared with IPv4, IPv6 has changed
differently in terms of address pools, access methods, protocols, traffic characteristics, and
AS-domain-level paths [7]. In a study related to the traditional IPv4 geolocation algorithm,
IPv6-CBG [8] shows that the geolocation error of IPv6 networks is about 30% higher than
that of IPv4 in the same experimental region due to the high latency in IPv6 networks; the
RNBG [9] algorithm relies on the delay distribution rules in IPv4 and the difference in the
delay distribution caused by the topological changes in IPv6. The Corr-SLG [10] algorithm
enhances the SLG algorithm in weakly connected networks by evaluating the positive
and negative correlations of hosts’ relative delay distances, but it cannot improve the
localization accuracy for weakly connected hosts and degraded localization performance.
In addition, Yang [11] proposed that the traditional IPv4-based network measurement
method is affected by the huge address pool of IPv6, and the measurement period becomes
longer. In IPv6, some of the traditional IP geolocation algorithms are applied with increased
time cost, storage cost, and geolocation errors, so we try to design high-performance IP
geolocation algorithms under IPv6.

Deep learning plays an important role in the field of IP localization based on network
measurements. For IPv6, we introduce deep learning based on a priori knowledge of IP
geolocation. There are three main challenges: (1) a lack of a reasonable evaluation of the true
physical distance of the target IP; (2) how to reduce the negative impact of weak connectivity,
high latency, and circuitous routing on measurement-based IP geolocation in IPv6 networks;
(3) how to interpret the IPv6 geolocation model under deep learning. To address these
issues, we designed an IPv6 geolocation algorithm called SubvectorS_Geo, which improves
the performance of IP geolocation algorithms, under the assumption of similarity in host
latency in the same region. SubvectorS_Geo is first based on a priori knowledge of IPv6
geolocation, using a rule-based approach combined with SubvectorS_Geo. It first constructs
a “layer by layer approximation” region constraint based on the a priori knowledge of
IPv6 geolocation and, then, uses a rule-based approach to combine landmark measurement
data to construct a “layer by layer approximation” region constraint. Within the trusted
region, SubvectorS_Geo evaluates the delay similarity from the delay sequences near the
target IP, effectively reducing the possibility that delayed similar hosts are not in the same
geographic location. In summary, the main contributions of this work are as follows:

• We propose a new IPv6 geolocation algorithm, which solves the problem of the low
accuracy of existing geolocation and the lack of reasonable and effective constraints
on regional delay similarity.

• We apply residual paths (measured paths in trusted regions) to IPv6 geolocation
models, and residual path features have a strong geographic correlation with the
target IP. A region constraint strategy is added based on IPv6 prefix similarity to
improve the fine-grained trusted region constraint scheme, and IPv6 prefix similarity
has a high geographic correlation. To the best of our knowledge, we are the first to
introduce residual paths and IPv6 prefix similarity in the IPv6 geolocation domain.

• The final experimental results of our method show that our method outperforms current
IPv6 geolocation algorithms in IPv6 geolocation tasks under noncollaborative conditions.

The rest of the paper is organized as follows: Section 2 introduces and analyzes existing
IP geolocation algorithms. Section 3 introduces the basic principle and main steps of the
hierarchical clustering IPv6 geolocation algorithm, SubvectorS_Geo, based on network
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features. Section 4 analyzes and discusses the performance of SubvectorS_Geo and existing
IP geolocation algorithms by comparing experimental results. Finally, Section 5 conclude
this paper.

The source code of this model has been open sourced to Github https://github.com/
Hxh1863819/SubvectorS_Geo/ (accessed on 4 January 2023).

2. Related Work

The related work is divided into two parts. The first part unfolds the research content
related to IP geolocation, and the second part is the analysis and discussion of several
state-of-the-art rule-based and learning-based IP geolocation algorithms. Its IP geolocation
idea is shown in Figure 1 following.
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Figure 1. IP geolocation algorithm analysis.

2.1. IP Geolocation Algorithm

IP geolocation techniques fall into two main categories: database-based queries [12]
and network-based measurements [13].

IP geolocation based on database query is realized by querying the corresponding
location information of the target IP recorded in the IP geolocation database [14]. The IP
geolocation database records and maintains a series of geographic information records of
IP addresses [4]. The IP geolocation database query method is faster, but its data reliability
cannot be verified [15]. On the other hand, data integrity and real-time performance are
poor because data resources are updated slowly [16]. Contemporary researchers more often
use multidatabase federated queries and learning-based methods to improve their geoloca-
tion performance [17] and databases [18]. Although having different degrees of accuracy
improvement, they still cannot be used to accomplish fine-grained IP geolocation tasks.

The network-measurement-based IP geolocation method obtains the data [19] of Inter-
net host network communication using active or passive network measurement methods.

https://github.com/Hxh1863819/SubvectorS_Geo/
https://github.com/Hxh1863819/SubvectorS_Geo/


Appl. Sci. 2023, 13, 754 4 of 18

The measurement data are analyzed and processed to establish the mapping relationship
with the geographic location to achieve IP geolocation. According to the differences in
research methods that are divided into two categories: (1) There are the rule-based IP
geolocation algorithms such as SLG [20], Corr-SLG [10], RNBG [9], and Geo-PoP [21];
network characteristics combined with the analysis of the real geographic location are used
to discover the corresponding rules. The core rule of SLG is to filter the landmarks with
the smallest relative delay to the target IP, based on the assumption that the relative delay
size is proportional to the distance. However, this rule has poor performance in weak
connections. RNBG is based on the assumption that the delay size is proportional to the
real physical distance. The core rule is to screen the largest one-hop delay on the path
and use the neighboring router with the largest delay as the city-level boundary route,
which circumvents the impact of network connectivity on IP geolocation accuracy, but
cannot complete the fine-grained IP geolocation task. Rule-based IP geolocation algorithms
have good performance in the networks to which their rules apply, but the rules cannot be
applied to all networks, Therefore, the generalization ability of this type of algorithm is
poor. (2) The learning-based IP geolocation algorithms include LBG [22], TNN [23], MLP-
Geo [24], GeoCET [25], etc. LBG creatively introduces regional demographic factor features
and uses machine learning methods to statistically analyze network measurement data to
complete city-level IP geolocation tasks. GeoCET completes IP geolocation tasks by com-
bining elliptical trajectory constraints with machine learning techniques. Learning-based
IP geolocation algorithms can better improve the generalization ability of IP geolocation
algorithms. However, we need to pay attention to the interpretability of IP geolocation
models in deep learning.

As more local servers are deployed in cloud-based solutions, the number of landmarks
available for collection becomes smaller, posing new challenges for measurement-based
IP geolocation [10]. The combination of IPv6 and the Internet of Things (IoT) [26] has
given birth to many new IPv6 application scenarios [27]. There are also studies on IP
geolocation algorithms based on the application scenarios of IoT devices. For example,
GeoCAM [28] select cameras as landmarks in IoT application scenarios to design fine-
grained IP geolocation algorithms. Ding [10] proposed a new landmark collection technique
that uses mobile devices to collect WiFi [29] landmarks in public places such as hotels,
banks, and supermarkets. Rye [30] proposed an IPv6 geolocation algorithm based on
home routing devices, which first collects MAC addresses that are embedded in IPv6
addresses and, then, queries the target IP geolocation by WiFi BSSIDs [31]. The algorithm
has high accuracy; however, not all MAC addresses are embedded in IPv6 addresses, and
the algorithm has poor generalization ability. The robustness of geographic information
from detectable IoT devices meets the requirements of landmarks while providing a finer
granularity of geographic information.

2.2. Analysis of Existing Advanced IP Geolocation Algorithms

The existing IP geolocation idea is shown in Figure 1. IPv6-CBG [8] is an early IPv6-
based geolocation study, and the algorithm improves the accuracy of IPv6 geolocation
algorithms by constructing a delay distance mapping function to evaluate IPv6 geolocation
tasks. Although the algorithm is an IPv6 geolocation study based on the delay value, the
delay value itself is affected by the network congestion, which makes it impossible to
represent the real physical distance. In addition, the high delays in IPv6 environments
increase the actual geolocation errors of the algorithm. Corr-SLG [10] is an advanced rule-
based IP geolocation algorithm that evaluates the positive and negative strong correlations
of landmarks relative to the delay distance and classifies landmarks into positive strong
correlation, negative strong correlation, and weak correlation, enhancing the application
of SLG in weakly connected networks at the expanse of hosts in the weak correlation
class unable to be accurately located. The performance of the rule-based approach relies
on host partitioning, which follows a preassumed linear rule. In weakly connected IPv6,
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the presence of a large number of hosts in the weakly correlated class increases the true
geolocation error of the algorithm.

The TNN algorithm [23] and the MLP-Geo algorithm [24] give up observing the
relationship between delay values and physical distances. The TNN algorithm evaluates
the geolocation information of the target IP by training the neural network to learn the
mapping function of delay similarity markers, which has excellent geolocation performance.
However, dynamic updating routes can affect the evaluation of delayed similarity. There
exist delay similar hosts with a real physical distance that is far, ignoring the need for
regional delay similarity for fine-grained reasonable region constraints. The MLP-Geo
algorithm adds a region constraint to the region delay similarity assumption by adding
stable paths, which makes up for the lack of the region constraint in the TNN algorithm and
enhances the application of region delay similarity in IP geolocation algorithms. However,
it is worth noting that the stable path is a set of paths composed of stable routing device
connections, which can effectively represent the coarse granularity of packet traces in the
network. However, the stable path tends to focus on the side of the measurement path near
the probe, and there are fewer stable routes on the side near the target IP. The stable path
ignores the features of the measurement path near the target host and, likewise, cannot
constrain the path after the stable path direction. In other words, the stable path cannot
constrain the fine-grained region and path direction of the target IP.

Delay similarity [23] helps us in the task of geolocating IPv6 hosts. Since different
regions in the real world may also have similar host delay, delay similarity cannot be
a decisive factor, and it requires a fine-grained geographic constraint. The difference
between our work and existing methods is that we focus on the regions that cannot be
covered by stable paths, extract geographically constrained routing features hierarchically
from landmark measurement paths, approximate the target IP to a fine-grained trusted
region, and focus on host delay similarity within this region for accurate and robust
IPv6 geolocation.

3. The SubvectorS_Geo Algorithm

The algorithm is implemented through four modules: the preprocessor module, the
encoder module, the preclassifier module, and the neural network module. The preproces-
sor module is used to collect and collate network measurement data. The encoder module
is used to encode information about network edge path features close to the target IP. The
preclassifier module performs street-level landmark clustering to reduce model complexity.
The neural network module learns delayed similarity in large-scale data.

3.1. Algorithm Overview

Through a large amount of measurement data, the hypothesis that hosts in the same
region have a similar delay distribution and similar IP address prefixes, while the closest
common router near the edge end of the network on the path can determine the path direc-
tion can be verified. Based on this fact, the following hypothesis is proposed: there exists
a similar geographical region with similar delay vectors and similar IP address prefixes
for hosts in a fine-grained trusted region. The design is based on the idea of layer by layer
approximation, and a coarse-grained–fine-grained target IP trusted region is delineated
after rule filtering of AS domain names, identification IPs, closest common routers, com-
mon prefixes of terminal addresses, and the closest routes with similar hostnames in the
order of the measurement paths. The existence of the closest common router specifies the
consistency of path directions. The common prefixes of terminal addresses characterize
the target IP near path address prefixes that characterize the paths, while the IPv6 address
segment in the Whois information verifies the accuracy of the common prefixes. Finally, the
target IP geolocation information is determined within a fine-grained trusted region with
the result of regional delay similarity evaluation, and the task of IPv6-based IP geolocation
is finally completed. Based on this assumption, this paper proposes a new IPv6 geolocation
algorithm framework, as shown in Figure 2.
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Figure 2. Overview of the proposed IP geolocation framework.

3.2. Preprocessor

The measurements are derived by probing landmark traceroute measurements, and
the main task of the preprocessor section is data collection and cleaning. Task 2 is the
encoding task of the raw measurement data.

Traceroute: Suppose there are N landmarks in the network, and according to the M
probes we deploy, traceroute measurements are sent from the probes to each landmark to
obtain a set of M*N landmark path measurement datasets, with the geographic information
of the landmarks in the form of (longitude, latitude) as labels. It is worth noting that this
paper focuses on delay similarity. Therefore, we added the measurement cycle to collect
stability delay information.

Aliases and anonymous routers: The presence of alias routes and anonymous routers
also significantly affects the model’s focus on routing vectors. For an anonymous router,
we tried to eliminate it directly and only retained its connectivity in the network topology.
For the alias router, because it leads to a diversity of measured paths, we focused on the
path segment in which the alias route is located to discriminate similarly with other routing
environments and evaluate whether the alias route is eliminated.

3.3. Encoder

Route-hop code method: Take the delay features and IP address features as the basis
for IP geolocation.

3.3.1. Dataset Construction

Landmark: The landmark is the collated measurement data. M probes are sent to N
landmarks to construct the M*N measurement path dataset Eld and the delay dataset Tld
corresponding to the hop value, combined with the Rapid7 query to build the landmark
measurement path hostname Hld. The hostname information is set to zero if not queried,
and the landmark router path set Eld is analyzed to collect the identity IP set Ri.

Eld = (pm1, pm2, pm3, ..., pmn) (1)

Tld = (tm1, tm2, tm3, ..., tmn) (2)

Hld = (hm1, hm2, hm3, ..., hmn) (3)

Ri = (r1i, r2i, r3i, ..., rzi) (4)
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pmn, tmn, and hmn record a complete path from the mth probe to the nth landmark
router information, delay information, and hostname information. It is worth noting that
the data here are stored in the order of path hop values to facilitate subsequent data filtering
work. rzi is the identification IP collected for the experimental region according to Zhao’s
method [13].

Target IP: Data probing with M probes for X target IPs to be located. The obtained raw
measurement data are cleaned to obtain the target IP path set Etd and the delay dataset
Ttd. Build the landmark measurement path hostname dataset Htd in combination with the
Rapid7 query, and set to zero if the hostname information is not queried.

Etd = (pm1, pm2, pm3, ..., pmx) (5)

Ttd = (tm1, tm2, tm3, ..., tmx) (6)

Htd = (hm1, hm2, hm3, ..., hmx) (7)

pmx, tmx, and hmx record a complete path from the mth probe to the xth target router
information, delay information, and hostname information.

3.3.2. Closest Common Router Set

Construction of the closest common routers set: Combined with the identity IP set Ri,
all routing addresses in each path due to the identity IP (in the direction of the path hop
value) are filtered from the landmark path dataset Eld as the closest common router set Elrp.
Its corresponding hostname dataset is also filtered out in the order of hop value within the
hostname dataset of the closest common router Hlrp.

Elrp = (Rnc(m1), Rnc(m2), Rnc(m3), ..., Rnc(mn)) (8)

Hlrp = (hnc(m1), hnc(m2), hnc(m3), ..., hnc(mn)) (9)

Rnc(mn) and hnc(mn) record the complete path due to the identification IP, the mth probe
to the nth landmark probe path router information, and hostname information.

3.3.3. Path Encoding

Landmark path encoding and entity encoding to be measured in Eld. The feature
encoding is performed for M*N landmark paths.

Cl = (Rcl , Tl) (10)

Cl = (AS, Pi, L, Pmn(/α), Hs, Tl) (11)

Ct = (Rct, Tt) (12)

Ct = (AS, Pi, L, Pmx(/α), Hs, Tt) (13)

Cl and Ct are the path coding vectors of landmarks and targets. Rcl and Rct are the
route feature coding vectors of landmarks and targets. The dimensions of the Rcl and Rct
vectors and the encoded features are the same: AS is the AS domain information code of
the terminal IP. Pi is the encoded value that identifies the IP. L is the value of the code that
evaluates the presence of the closest common router. Pmn(/α) is the common address prefix
ofthe landmark and the closest common router. Pmx(/α) is the common address prefix of
the target and the closest common router. Hs is the encoded value to evaluate the presence
of similar routes for hostnames. Tl and Tt are the remaining path delay vector encoding
of the network for the landmark and the target in the trusted region approximated by the
routing feature, respectively.

Routing vector encoding: Coding tasks for geographically correlated routing features
in the traceroute measurement data.
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Rcl and Rct are encoded representations of the routing features for landmark paths
and destination paths. The coding features and coding methods are the same. The detailed
process for routing code (Rcl) for landmark paths is as follows.

Pi =

{
Pm,n,i if Pm,n,i in Ri

γ if Pm,n,i not in Ri
(1 < i < k) (14)

L =

{
1 if Pm,n,j in Elrp

0 if Pm,n,j not in Elrp
(15)

Pm,n,k is the kth IPv6 routing address on the probing path of the mth probe in the
Eld dataset for the nth landmark route or the terminal routing address. In the screening
evaluation of identification IPs, to pursue the geographically strong correlation of identi-
fication IPs for terminal routing, the inverse path order for screening is adopted. That is,
the order starting from the terminal IP(Pm,n,k) to the end of the starting IP(Pm,n,1). When
Pm,n,i(1 < i < k) exists in the identity IP set Ri, Pi takes the value of the identity IP route
Pm,n,i. Otherwise, Pi takes the value of γ.

In the screening task of the closest common router: Pm,n,j is the any route IP in a path after
the identification IP. The path segment starting from the identification IP(Pm,n,i(1 < i < k))
to the terminal route IP(Pm,n,k) screens the closest common router near the terminal in the
reverse path order. When any IPv6 route (Pm,n,j(i < j < k)) on the path exists in the closest
common router set Elrp, L is assigned a value of 1. Else, L is assigned a value of 0.

Pmn(/α) =

{
Pmn(/α) if Pm,n,j(/β) = Pm,n,k(/β) and β > α

λ else
(16)

Pmn(/α) approximates the trusted region based on the closest common router. It
likewise supports the credibility of the region delineated by the closest common router.
Pmn(/α) analyzes the geographic association of the closest public router and terminal IPs by
filtering their common prefixes, taking the value of Pmn(/α) when the number of common
prefix bits of the closest common router and terminal IP satisfies β > α. Otherwise, Pmn(/α)

takes the value of λ. The α assignment takes into account the address prefix segment
provided in the Whois information as a way to limit the common prefix.

Hs =

{
1 if hm,n,c similar hnc (hnc in Hlrp)

0 else
(17)

Hs is our filtering evaluation for the hostname similar routers after the closest common
router in the landmark measurement data, the path segment starting from the closest com-
mon router Pm,n,j to the terminal routing address Pm,n,k. When any IPv6 route Pm,n,c(j<c<k)
on the path segment has a hostname similar to the one in the Hlrp hostname data, i.e., there
is a route with a similar hostname after the closest common router, the value is assigned as
1. Otherwise, the value is assigned as 0.

Delay vector encoding: The different trusted regions divided by different routing
features determine the different delay vectors of interest, as shown below.

Tl =


tm,n,k, tm,n,(k−1), ..., tm,n,(i+1), tm,n,i if Pi = Pm,n,i and L = 1
tm,n,k, tm,n,(k−1), ..., tm,n,j, ..., tm,n,1 if Pi = γ and L = 1
tm,n,k, tm,n,(k−1), ..., tm,n,j, ..., tm,n,1 if Pi = γ and L = 0

(18)

Tl landmark delay vector coding: In the landmark path delay dataset Tld, when
Pi = Pm,n,i and L = 1, the path coding delay vector Tl is assigned to all delays from the
terminal IP delay tm,n,k to the marking IP delay tm,n,i, and the inverse path order delay is
assigned. When Pi = γ and L = 1, the assignment of this path delay vector code Tl starts
from the terminal IP delay tm,n,k to the end of the starting router delay tm,n,1, also called the
inverse path order delay assignment. When Pi = γ and L = 0, the assignment of this path
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delay vector code starts from the terminal IP delay tm,n,k to the end of the starting router
delay tm,n,1, also called the inverse path order delay assignment.

Tt =


tm,x,k, tm,x,(k−1), ..., tm,x,(j+1), tm,x,j if Pi = Pm,x,i and L = 1
tm,x,k, tm,x,(k−1), ..., tm,x,(i+1), tm,x,i if Pi = Pm,x,i and L = 0
tm,x,k, tm,x,(k−1), ..., tm,x,(j+1), tm,x,j if Pi = γ and L = 1
tm,x,k, tm,x,(k−1), ..., tm,x,j, ..., tm,x,1 if Pi = γ and L = 0

(19)

Tt target delay vector encoding: In the target path delay dataset Ttd, when Pi = Pm,x,i
and L = 1, the path encoding delay vector Tt is assigned to all the delays from the terminal
IP delay tm,x,k to the closest common route IP delay tm,x,j, in the reverse path delay order.
When Pi = Pm,x,i and L = 0, the path encoding delay vector Tt is assigned to all the delays
from the terminal IP delay tm,x,k to the identified IP delay tm,x,i. When Pi = γ and L = 1,
the path encoding delay vector Tt is assigned to all the delays from the terminal IP delay
tm,x,k to the closest common router delay tm,x,j, also called the inverse path delay order.
When Pi = γ and L = 0, this path delay vector code Tt is assigned from the terminal IP
delay tm,x,k to the starting route tm,x,1, also called the inverse path delay order. Pm,x,i is the
representation of the identification IP in the target IP path, which is encoded in the same
way as Pm,n,i.

3.4. Pre-Classifier

A robust model requires a reasonable set of parameters. In the assumption of region
delay similarity, we must approximate the training set to a fine-grained region to achieve
the task of robust model training. Reasonable constraints should be imposed on the
partitioning of the training set before, importing the partitioned training set into the neural
network model.

Landmark clustering: This task aims to reduce the complexity of the model in eval-
uating vector similarity through rule-based preselection of real geographic relationships
among landmarks. The street-level clustering task of landmarks is accomplished based
on a priori knowledge of street-level IP geolocation combined with the routing features of
landmark IPs. In addition, as mentioned in the Introduction, the latitude of delay caused
by the processing of delay in this paper is not uniform, which leads to the accuracy of the
subsequent evaluation results being affected. In the landmark clustering task, we try to
solve this problem using SubvectorS.Detailed steps are shown below.

Step 1: First, the closest common router with the strongest and stable geographic
correlation is extracted from the coded landmark routing vector as the first round of
screening criteria, and then, the IPv6 prefix in the Whois information is used as a constraint
to screen for the dataset Gi(i = 1, 2, 3, . . . , i). i is the maximum profile factor.

Step 2: Clustering based on real geographic information of landmarks (latitude and
longitude) to obtain datasets Lj(j = 1, 2, 3, . . . , j), where j is the maximum profile factor.
The clustering method uses the K-means method with a latitude and longitude distance
constraint of 10 km.

Step 3: Street-level landmark dataset Gi ∩ Lj. Obtain sn(n = 1, 2, 3, . . . , n), where n is
the maximum profile factor and uses the cluster center landmark as the geographic location
information for this street-level landmark class.

Step 4: Landmark path collection Sn(n = 1, 2, 3, . . . , n); the S1 set of geographically
related landmarks’ path sets (10 km) is recorded, and this section iterates the delay vector
on the path of each landmark using the subvector algorithm to obtain the delay vector of a
landmark at different latitudes.

SubvectorS: To delineate the final fine-grained region constraint of the entity, we used
the rules of the closest common router and the closest hostname similar router. Each
entity to be located may filter out different closest common routers and closest routers
with similar hostnames. Therefore, after the credible region of each target to be located is
divided, its remaining path length is difficult to unify, resulting in the nonuniformity of the
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dimensionality of the delay feature vector. Difficulties exist in the similarity measure of the
delay vectors based on the cosine similarity.

We let Tl denote the landmark residual path delay vector. Tt denotes the target IP
residual path delay vector. |Tt| denotes the dimension of the target IP residual path delay
vector. SubvectorS enumerates all the subdelay vectors Tl of Tl [1, j](1 < j ≤ |Tl |) and
iteratively generates all subvectors of the landmark delay vector combined with the routing
vector to expand a landmark path vector into Tt. This task is performed iteratively in
the planned training set. [1, j] denotes the first router to the jth router sequence. The
Algorithm 1 is shown as follows.

Algorithm 1 SubvectorS

Input:
Landmark paths and delay vectors Cl

Output:
Training set Sn

1: Θ(Tl [1, j], Tt)←− 0, |Tt| ←− dimension(Tt)
2: for (int i = 0 ; i < n; i++) do
3: for (int k = 0 ; k < j; k++) do
4: Tlk ←− (Tl [1, k])
5: Clk ←− (Rcl , Tlk)
6: Sn.append(Clk)
7: end for
8: end for
9: return Sn

3.5. Neural Network

The multilayer perceptron consists of multiple perceptrons interconnected with each
other, which provides a strong fitting capability. Each perceptron accepts all the outputs
from the previous layer. The strength of the connections between the perceptrons is derived
from the weights, and an activation function is applied to return the result as the output. A
generic example of a two-layer multilayer perceptron is shown in Figure 3, where the first
layer is the input layer, Z is the hidden layer neural unit, and y is the output layer.

z1

..

..

..

z2

z3

zm

y1

yp

1l
C

2l
C

nl
C

Figure 3. MLP general example.

Zm = ReLU(
n

∑
i

WimCln + bim) (20)

yp = so f tmax(
m

∑
j

WmpZm + bmp) (21)

Cln, Zm, and yp are the input layer input, hidden layer output, and output layer output
of the simple MLP model, respectively. ReLU and so f tmax are the activation functions of
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the hidden layer and output layer, respectively. Wim and Wmp are the weight parameters
we need to train. bim and bmp is the bias.

3.5.1. Model Training

Training: The training of the model is a nonlinear optimization task, which makes the
local extremes appear in the task instead of the desired global optimum. Here, we tried to
reduce the frequency of the local extremes by various means, firstly by selecting different
parameter values during parameter initialization, secondly by applying stochastic gradient
descent calculation, and finally, by adjusting the number of training sessions to finally filter
the best-performing set of parameters in the training task through repeating the training
several times.

Overfitting: The learning performance of backpropagation causes the model to overfit
easily. In this paper, the model chooses the L2 regularization to optimize the model training
and the overfitting phenomenon. In addition, in the deep learning model, more attention is
paid to the model in the validation error rather than the absolute value of the error in the
training and validation sets.

3.5.2. Network Entity Geolocation

In the target IP localization task, the target IP encoding vector is imported into the
trained model, and the result is output through the model to compare the threshold τ.
If Q > τ is satisfied, the localization success is returned, along with the geolocation
information (longitude, latitude) of the target IP. Otherwise, the geolocation failure is
returned. The Algorithm 2 is shown as follows.

Algorithm 2 SubvectorS_Geo

Input:
Target IP path and delay vector Ct

Output:
Target IP (longitude, latitude)

1: Ct ←− (Rct, Tt)
2: Q←− MLP(Ct)
3: if Q > τ
4: return geolocation success,The target IP geographic location is (longitude, latitude)
5: else
6: return geolocation failure

4. Experimental Results and Discussion

Because the previous research on IP geolocation is limited by intellectual property
rights and other factors, there is no suitable public dataset available, only the experimental
data collected by us.

4.1. Dataset

The probes were deployed in Zhengzhou and Hong Kong, China, and Virginia, USA.
Traceroute measurements of the acquired IPv6 landmark addresses were performed by
probes for a period of a month. The measurement data were collected and combined with
methods such as Allys and Mercator [32] for router aliasing and Sarac’s [33] anonymous
route resolution method for cleaning and filtering the measurement data. We chose the
minimum value of delay in the measured data during the long measurement period as the
final delay data involved in the experimental training. The hostname data corresponding to
the measurement dataset were derived from the public dataset Rapid7 [34]. The IPv6 city-
level identification IPs were collected using the method of Zhao [13] for the measured data.

Based on the demand for fine-grained location accuracy in the field of IP geolocation,
we screened a total of 5610 street-level landmarks in three regions at home and abroad,
including 2195 in Shanghai, China, 1826 in New York State, USA, and 1589 in Tokyo, Japan,
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by combining the IPv6 public datasets provided by APNIC [35], an Asian Pacific address
distribution organization, and ARIN [36], a North American address distribution organiza-
tion, through the method of [20]. The region of Shanghai is 6340 square kilometers. The
region of New York State is 141,300 square kilometers. The region of Tokyo is 2155 square
kilometers. These regions are divided between developed and developing parts of North
America and Asia. As shown in Figure 4.

It is worth noting that we were dealing with the cleaned path data. Therefore, the
inaccuracy of the route data caused by route aliases and anonymous routers is a problem
we must solve before starting the experiment. Routing aliases were cleaned using the
Spring [32] approach. As for anonymous routers, we simply treated them as a “top-down”
link. The anonymous routing processing scheme of Sarac [33] was used.

(a) Shanghai (b) New York State (c) Tokyo

Figure 4. Landmark distribution in the three regions.

4.2. Model Parameter Settings

The model implementation was based on the Pytorch framework. The parameters
were initialized using the Xavier initialization to select a variety of different parameters.
The optimizer was selected as Adam. The L2 regularization term was learned between 0.01,
0.001 and 0.0005. The learning rate was selected between 0.01 and 0.001. The number of
hidden layers was selected between 2, 3, 4, and 5. The hidden layer activation function was
selected as ReLU, and the output layer activation function was selected as softmax.

4.3. Geolocation Experiment Result

Following the settings in Table 1, we collected 5610 landmarks for traceroute measure-
ments in the three regions around the world. We trained the measurements for 60% (3365)
of the landmarks in Table 2. Of these 3365 landmark measurements, 20% (1122) were used
as the validation set, and another 20% (1123) were selected as the test set. Table 3 shows
the geolocation errors that can be geolocated in the three regions for the method proposed
in this paper, as well as for the other three IP positioning algorithms. We compared three
different IP geolocation algorithms with the geolocation algorithm proposed in this paper
under the same landmarks and measurement environments in the three regions. The cu-
mulative distribution of the geolocation errors of the four algorithms for locatable entities
is shown in Figure 5.

Table 1. Experimental device.

Device Region

Probe deployment China: Zhengzhou and Hong Kong
USA: Virginia

Landmark deployment Shanghai, Tokyo, and New York State
Detection protocol ICMPv6
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Table 2. Dataset details.

Region Landmark Deployment Quantity

China Shanghai 2195
America New York State 1826

Japan Tokyo 1589
total 5610

Table 3. Performance (kilometers) comparison of baselines and SubvectorS_Geo.

Method
Shanghai, China New York State, USA Tokyo, Japan

Max Ave Med Max Ave Med Max Ave Med

IPv6-CBG 1 59.892 31.802 29.254 486.729 43.603 16.105 53.766 27.587 28.088
Corr-SLG 1 55.427 15.337 13.916 481.127 37.303 7.501 46.881 12.019 9.856

TNN 2 48.881 15.139 13.617 447.095 34.39 10.381 47.874 14.475 12.249
MLP-Geo 2 46.273 13.809 11.614 428.376 27.361 8.047 43.972 12.118 10.618

Our Proposed 44.895 11.194 9.709 421.527 24.854 7.025 42.018 10.564 8.751
“Max” indicates max error distance; “Ave” indicates average error distance; “Med” indicates median error distance.
1 Rule-based IP geolocation algorithm, 2 Deep-learning-based IP geolocation algorithm.
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Figure 5. Error distance CDF of the three regions.
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4.4. Comparison and Verification

For accuracy, in Table 3, the median error of the proposed method in the Shanghai
dataset was improved by 16.4% compared to the optimal baseline. Compared to the
optimal baseline, the maximum error and average error were improved by 3.0% and
18.8%, respectively. In the New York State dataset, the median error, maximum error, and
average error values of this algorithm were improved by 6.8%, 1.6%, and 9.2%, respectively,
compared to the optimal baseline. In the Tokyo dataset, the median error, maximum error,
and average error of this algorithm compared to the optimal baseline were improved by
11.2%, 4.3%, and 12.1%, respectively.

The errors of the four geolocation algorithms in the three different regions were
analyzed. Figure 5 shows the cumulative distribution of the geolocation errors for their
locatable entities. Furthermore, to show more clearly the geolocation performance of the
algorithm at the street level (<10 km), we produced a map of the cumulative distribution
of the geolocation errors for locatable entities within 10 km. In addition, the CDF images
overlap at large values of the error distances. To solve this problem, we zoomed in on
the CDF overlapping region images of each of the three regions. Combined with the
overall CDF image in Figure 5, our IPv6 geolocation algorithm outperformed the existing
state-of-the-art algorithms for geolocation between 10 km and 50 km.

4.5. Ablation Study

In this section, an ablation study was performed to evaluate the effectiveness of Sub-
vectorS in the geolocation task. We named the model with SubvectorS removed and the
full model separately as follows. SubvectorS_Geo is the complete model framework. Sub-
vectorS_Geo_A is the model framework for removing SubvectorS. The SubvectorS_Geo_A
model replaces SubvectorS with the cosine distance [37]. Furthermore, to increase the
effectiveness of SubvectorS in comparison with other similarity measure evaluation meth-
ods, the SubvectorS_Geo_B model and the SubvectorS_Geo_C model were added. Sub-
vectorS_Geo_B is a model framework that uses the edit distance on the real sequence
(EDR) [38] instead of SubvectorS. SubvectorS_Geo_C is a model framework using the edit
distance on real sequence (LCSS) [39] instead of SubvectorS.

As shown in Figure 6, SubvectorS presents a stronger effect on the final IP geolocation
accuracy than other similarity metric algorithms. Among them, the cosine similarity has the
least impact on IP geolocation accuracy, which is mainly due to the delay vector dimension’s
nonuniformity of the route hot coding in this paper. Although the EDR and LCSS are less
affected by the nonuniformity of the delay vector dimension, the sensitivity of the EDR to
noise points leads to a less valid similarity measure than SubvectorS. The LCSS is more
consistent with the delay vector of our model, but its minimum distance threshold e is more
difficult to define. There is a possibility that the LCSS has the error of returning dissimilar
paths as similar results.

(a) Shanghai (b) New York State (c) Tokyo

Figure 6. Ablation study in the three experimental regions.

4.6. Effect of the Number of Hidden Layers on the Model

In this section, to better optimize and evaluate the geolocation performance of Subvec-
torS_Geo, we introduced a new evaluation index, the mean squared error (MSE) [40], which
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mainly analyzes the influence of the parameters on the mean error distance and reduces
the concern about the maximum error distance and median error distance. As shown in
Figure 7, on the experimental data of the three real regions, the median error distance and
the maximum error distance with the most advantage of the average error distance were
always smaller than our selected baseline, which verifies the validity of SubvectorS_Geo.
In addition, the best-performing hidden layers in the three experimental regions (Shanghai,
New York State, and Tokyo) were 2, 3, and 2, and the worst-performing hidden layers were
5, 1, and 1, respectively. Compared with the worst layers, the improvement of the average
error distance was 25.8% on the Shanghai dataset, 23.7% on the New York State dataset,
and 22.1% on the Tokyo dataset.
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Figure 7. Study of hidden layers in the three regions.

4.7. Analysis and Discussion

In this section, we analyze the geolocation logic of SubvectorS_Geo, explain it in
deep learning, discuss its limitations, and look forward to the fine-grained research in
IPv6 geolocation.

SubvectorS_Geo completes fine-grained trusted region partitioning by a layer by
layer approximation region constraint policy and, then, evaluates the delayed similarity
near the target IP to map the target IP to a landmark that satisfies the threshold. In the
region constraint policy design, we introduced AS domains with geographic identification
information, identification IPs, closest common routers, and hostname similar routing
based on the a priori knowledge of IP geolocation. In addition, IPv6 prefix similarity within
the trusted region was also included in the model evaluation, and the assumption that
IPv6 addresses in the same region have the same IPv6 address prefix was statistically
proven by Padmanabhan [41]. The IPv6 routing lookup algorithm [42] also laterally
verifies the validity of this assumption. The network characteristic with geoconstrained
information is the logic of our design of the IPv6 geolocation algorithm, which is also the
interpretation of SubvectorS_Geo on deep learning. Although SubvectorS_Geo can achieve
better geolocation performance in a certain region, it is still in a structured data processing
mode and does not focus on the contribution of suboptimal landmarks for the target IP
geolocation, in addition to the difficulty of the neural network in modeling the connectivity
information of the network topology [43].

Landmarks play an extremely important role in IPv6 geolocation tasks, and the dis-
tribution and concentration of landmarks can significantly affect the performance of IP
geolocation algorithms [44]. The rapid development of cloud services and the gradual
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adoption of the cloud service model for servers in traditional landmark collection regions
such as universities, hospitals, and government units, with fewer available high-value
landmarks, pose new challenges for IPv6 geolocation technology. It is worth noting that
there are more IPv6 application scenarios in the rapidly developing IoT, and IoT devices
including cameras are potential landmark collection objects. Meanwhile, we are also com-
mitted to obtaining more device network information from IoT application scenarios, and
network modeling of IoT IPv6 application scenarios [29] is the direction of our fine-grained
IPv6 geolocation research.

5. Conclusions

We proposed SubvectorS_Geo, a new IPv6 geolocation algorithm, which screens the
routing characteristics of landmark paths based on the assumption of regional delay sim-
ilarity and applies the idea of layer by layer approximation to divide the hierarchical
trusted regions; it provides a new path encoding method that captures the delay vector
characteristics near the target IP to achieve high-quality IPv6 geolocation. The final ex-
perimental results for three regions showed that the median error distance range of the
SubvectorS_Geo geolocation results was 7.025 km to 9.709 km. In IPv6, compared to the
current state-of-the-art IP geolocation algorithms, the median error distance was reduced
by at least 6.8%. The comparison with the geolocation results of MLP-Geo confirmed the
residual path property with a tight delay distribution and strong geographic relationship.
We will model the network implementation of IPv6 in graph deep learning for fine-grained
IPv6 geolocation algorithms.
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