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Abstract: This paper proposes a test scenario design method that reflects the longitudinal characteris-
tics of reality for effective verification of advanced driver assistance systems (ADAS) and autonomous
driving systems (ADS). Since the target systems interact with the external environment differently
from the existing vehicle control system, realistic and various verification scenarios are required for
verification. The proposed method consists of a vehicle model for simulating the vehicle behavior
and a driver model to actively respond to the driving environment. In particular, the driver model
used a model predictive control (MPC) algorithm to reflect the characteristic of human drivers. The
longitudinal driving characteristics of human drivers were derived through a large-scale driving
database analysis and considered in the driver model. The proposed method was compared with
an existing car-following model using computer simulations. It was confirmed that its longitudinal
driving behavior is similar to that of human drivers and that various scenarios can be designed by
changing the model parameters.

Keywords: advanced driver assistance systems (ADAS); autonomous driving systems (ADS); model
predictive control (MPC); scenario design; driver model; naturalistic driving database

1. Introduction

A great deal of research has been carried out for decades to develop advanced driver
assistance systems (ADAS) and autonomous driving systems (ADS) for drivers’ conve-
nience and safety [1–5]. ADAS and ADS are closely related to safety, thus verification
is required through various environments and scenarios. Recently, studies conducted
using virtual vehicle and traffic simulation programs, such as IPG Carmaker and Carla,
to improve the efficiency of ADAS and ADS design and verification are being actively
conducted [6–8]. In addition, research on a vehicle in the loop (VIL) models that utilize
the dynamic characteristics of real vehicles and interconnect with virtual environments is
increasing [9–12]. Especially, ADAS and ADS operate organically with surrounding and
external environments, hence the scenarios for verification in a simulation environment
must consider various factors.

As scenario design methods for verification of ADAS and ADS, standards assessment-
based, test matrix-based, malicious scenario-based, and traffic simulation-based methods
are widely known [13–21]. First, there is a standards assessment-based method widely
known as ISO and Euro NCAP [13,14]. The scenarios presented by these two organizations
focus on the verification of autonomous emergency braking systems (AEBS), adaptive
cruise control systems (ACCS), and lane support systems among ADAS. Although different
models have different purposes in terms of vehicle safety assessment or establishing ADAS
standards, they are similar in that they present minimum standards that ADAS must satisfy.
As the scenarios provided by the two organizations are limited, these scenarios need to be
expanded for drivers’ safety in various driving situations. A test matrix-based method can
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be used for designing various scenarios, which defines factors to be evaluated based on
a large-scale database [15,20]. Many projects have suggested test scenarios using actual
driving/accident data [15–18]. However, ADAS and ADS designed with known scenarios
inevitably have lower reliability for scenarios that have not occurred ever. A malicious
scenario-based method is one that defines scenarios near the limit of the mathematical
models of the ego and surrounding vehicles [19–21]. This method can be verified in a
short time because the verification is performed in the unstable regions of the ego and
surrounding vehicles. However, when the system is very complex or designing a model of
the system is not possible, it is difficult to design malicious scenarios. Last but not least, a
traffic simulation-based method can be used to validate ADAS and ADS in a comprehensive
environment. A traffic simulation is widely known as a method for macroscopic analysis
of traffic volumes for road or signal system design [12,22,23]. This method is based on
car-following models to simulate the traffic flow, and its application has recently been
increasing for the verification of ADAS and ADS. Table 1 represents the list of widely
known car-following models [24–29]. Each car-following model commonly uses the time
constant τ to express the driver’s delay. In Table 1, v f , a f , R,

.
R, Rmin, and Vd represent the

speed and acceleration of the ego vehicle, relative distance, speed and minimum relative
distance with a leading vehicle, and the maximum speed of the ego vehicle, respectively.
Other parameters (C, Cv, Cs, Ct, A, B, B̂) are configured to express various relative distances
and speeds with a leading vehicle. Traffic simulation software is designed by improving
the car-following models described in Table 1 [12,22,23]. Among the car-following models,
only the Gipps model considers both acceleration and deceleration, which are the basic
parameters governing the motion of the vehicle [28]. Therefore, it is not appropriate to
use the remaining car-following models in the verification of ADAS and ADS, where the
behavior of surrounding vehicles is important. As studies of ADAS and ADS became
active in the 2000s, a large-scale naturalistic database was built to design the behavior of
surrounding vehicles [18,30–37]. The 100-car naturalistic driving study (NDS) is a database
of 3 million km of driving data from 241 drivers led by Virginia Tech [30]. Safety pilot model
deployment (SPMD) is a database using roadside equipment and vehicle-mounted radar
and vision to demonstrate the technology of connected vehicles in various environments
and analyze driver acceptance of vehicle safety systems [35]. The High D dataset has
collected driving data from more than 110,500 vehicles on highways in Germany and is
being used in various ADAS and ADS studies [21,38]. Recently, using these large-scale
driving databases, research on drivers’ driving characteristics and their application to car-
following models is being actively conducted [29,39–42]. In [39], Bifulco defined the leading
vehicle from the driving database and derived parameters of the Gipps model that follows it
using artificial neural networks (ANNs). In [42], Przybyla deduced drivers’ characteristics
through analysis of the driving database and applied them to the Newell model to analyze
driving risk [42]. In [40], based on the NDS, Zheng derived the longitudinal acceleration
and yaw angle of the following vehicle using reinforcement learning and a fuzzy algorithm.
These methods are suitable for analyzing the traffic system by simulating the driving of the
vehicle in a simulation environment like one facing an actual human driving. However,
since it is difficult to design models for implementing malicious scenarios and control them,
the traffic simulation-based method has limitations in ADAS and ADS verification.

Therefore, to overcome the limitations of the analyzed ADAS and ADS verification
scenario design methods studied thus far, we propose a longitudinal motion scenario
design method. In this method, the longitudinal driving characteristics of human drivers
were reflected in the surrounding vehicles of the ego vehicle for more realistic scenario
design in a simulation environment. First, a simplified vehicle dynamic model expresses
the dynamic behavior of the vehicle, and a driver model imitates human driving by using
model predictive control (MPC). With the vehicle and the driver model, the test vehicle
can adapt to the surrounding environment and drive realistically, and various scenarios
can be actively produced. Especially, to improve the consistency of the driver model, we
determined the acceleration/deceleration standards for typical human drivers derived
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from a large-scale driving database analysis. Lastly, the proposed method was verified
using computer simulations to confirm human driver imitations and their significance. The
computer simulations assumed a driving situation on a straight-line road with a high road
frictional coefficient. As the driving characteristics of human drivers vary depending on
the driving situation, it was limited to the longitudinal acceleration/deceleration situation.
The acceleration/deceleration and jerk, which are the longitudinal driving characteristics
of human drivers, are derived in this situation. The characteristics of the sailing/braking
start point are derived in this situation as well. To verify this and confirm consistency,
the velocity, acceleration/deceleration, and jerk of the proposed method were compared
with the acceleration/deceleration section of the randomly selected driver data. This
study confirmed the possibility of simulating various drivers by changing the weights
and constraints setting of the driver model. Through this, it is possible to create various
longitudinal driving scenarios that overcome the shortcoming of the existing scenario
design methods. In addition, if the constraints of the proposed driver model are set close
to the limit situation, such as close distance to the surrounding vehicle or sudden stop,
malicious scenarios can be easily designed with simple parameter changes.

This paper is organized as follows. Section 2 introduces a simplified vehicle model
in more detail. Section 3 describes the error dynamics between the ego vehicle and sur-
rounding vehicles and the design of an MPC-based driver model. Section 4 explains human
driving characteristics derived from a large-scale database analysis. Section 5 shows the
computer simulation results for the validation of the proposed method, and a conclusion is
conducted in Section 6.

Table 1. Deterministic classical car-following models.

Researcher (Year) Model

Pipe [24] (1953) aF(t + τ) = C
.
R(t)

Gazis [25] (1961) aF(t + τ) = C
.
R(t) vF(t)m

R(t)l

Newell [26] (1961) vF(t + τ) = Vd·
{

1− exp
(
−C· R(t)−Rmin

Vd

)}
Tyler [27] (1964) aF(t + τ) = CV ·

.
R(t) + CS·(R(t)− Ct·vF(t))

Gipps [28] (1981)

vF(t + τ) =

min


vF(t) + 2.5·A·τ·

(
1− vF(t)

vd

)
·
√

0.025 + vF(t)
Vd

B·τ +

√
B2·τ2 − B·

{
2·(R(t)− Rmin)− vF(t)·τ − vL(t)2

B̂

}
2. Simplified Vehicle Model

A simplified vehicle model for the longitudinal motion scenario design can simulate
vehicle motion by inputting the required acceleration (ax,des), which is designed by the
driver model proposed in Section 3. First, the simplified vehicle model assumes that the
vehicle is traveling on flat ground, thus the relationship between the acceleration and
velocity is shown in Equation (1) [43].

.
vx = ax (1)

max = Fx − Fr − Fa

w.r.t
{

Fr = N
(
Cr,0 + Cr,1vx + Cr,2v2

x
)

Fa = 0.5CdρAv2
x

(2)

ax =


ax, U i f ax, des > ax,U
ax, L else i f ax,des < aL

ax, des else
x (3)

To consider the dynamic characteristics of the vehicle, a longitudinal dynamic vehicle
model is described in Equation (2). The vehicle acceleration is deduced by the longitudinal
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force (Fx), rolling resistance (Fr), and aerodynamic resistance (Fa) of the vehicle. The rolling
resistance (Fr) is composed of the normal force of the vehicle (N), the constant coefficient
(Cr,0), and velocity coefficients (Cr,1, Cr,2). The aerodynamic resistance (Fa) is composed of
the aerodynamic drag coefficient (Cd), the density of the air (ρ), and the area of the vehicle
(A). The rolling resistance and the aerodynamic resistance are dependent on the vehicle
velocity. The longitudinal force is constrained by the performance of the vehicle, which is
related to the vehicle’s powertrain and braking system. For this reason, the longitudinal
acceleration of the vehicle was constrained by an upper bound (ax,U) and lower bound
(ax,L). Figure 1a describes the upper constraint of the longitudinal force that varies with the
transmission gear ratio. For simplification, a simplified acceleration constraint, as shown in
Figure 1b, is designed to consider dynamic characteristics of the vehicle in the longitudinal
motion scenario design. It constrains the desired acceleration (ax,des) from the driver model
to describe realistic vehicle motions. In other words, the actual vehicle is composed of
complex dynamic systems, such as powertrain and hydraulic systems. However, in the case
of this simplified vehicle model, it is used to simulate vehicle movement by considering
acceleration and its related constraints. Acceleration and deceleration situations can occur
depending on the sign of the longitudinal acceleration (ax), and the simplified vehicle
model moves by causing a change in vehicle speed.
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Figure 1. Constraints of longitudinal force and acceleration: (a) the constraint of longitudinal force
varies with the transmission gear ratio; (b) the simplified acceleration constraint for the vehicle model.

3. Longitudinal Driver Model
3.1. Error Dynamics for the Car-Following Model

To design a control input of the simplified vehicle model, Figure 2 a state-space
equation is derived using the relative distance/velocity to the leading vehicle [43–45].[

ex
ev

]
=

[
xL,r
vL

]
−
[

xEGO, f
vEGO

]
−
[

cTGvEGO
0

]
(4)

d
dt

[
ex
ev

]
=

[
0 1
0 0

][
ex
ev

]
+

[
−cTG
−1

]
ax +

[
0
1

]
aL

→ .
x = Ax + Bu

s.t


amin ≤ ax ≤ amax

xmin − ctgvEGO ≤ ex ≤ ∞
vL − vEGP, max ≤ ev ≤ vL

(5)

In Equation (4), the desired relative distance (cTGvEGO) to the leading vehicle is de-
termined using the constant time gap (CTG) policy to satisfy the string stability of a row
of cars [44,45]. The distance error (ex) is designed using the desired relative distance and
the difference between the rear of the leading vehicle (xL,r) and the front of the ego vehicle
(xEGO, f ). The velocity error (ev) is set as the difference between the velocity of the leading
vehicle (vL) and the velocity of the ego vehicle (vEGO). The state equation constructed using
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the distance/velocity error is composed of the system matrices A, B, and the ego vehicle’s
acceleration as input u. In order to simulate the movement of the ego vehicle for designing
scenarios, a virtual target for deriving the distance/velocity error is required. For this rea-
son, it is assumed that there is a virtual stopped vehicle (vL, aL ≈ 0) in front of the vehicle
model at a future stopping position or a virtual vehicle with constant velocity (aL ≈ 0) to
derive the distance/velocity error for simplification. The control input is constrained by
the amax, amin that are defined by the characteristics of the vehicle and human drivers. In
addition, the constraints of the distance/velocity error are defined to satisfy the CTG policy.
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3.2. MPC-Based Driver Model Design

To design a driver model that considers human driving characteristics and various
constraints using the simplified vehicle model, it is required that a controller should reflect
future information and satisfy constraints. A model predictive control (MPC) algorithm is
a well-known optimal controller design method to consider future states and constraints.
The MPC algorithm is based on the discrete-time state-space model, and it calculates sub-
optimal control inputs to minimize the cost function with various potential optimization
methods [46]. The driver model of the proposed longitudinal motion scenario design
method is designed by the MPC algorithm that minimizes the cost function (J(u, x0)) by
satisfying the constraints in Equation (6).

J(u, x0) = xT
N PxN +

N−1
∑

k=0

(
xT

k Qxk + uT
k Ruk

)
s.t. xk+1 = Adxk + Bduk, k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
x0 = x(0), P = PT > 0, Q = QT > 0, R = RT > 0

(6)

The continuous time error dynamics model shown in Equation (4) is discretized by
the Euler method, denoted by the discrete-time state-space model Ad, Bd to construct
the MPC problem. X , U , and N are the constraints on the state, input, and prediction
horizon, respectively. In this paper, a quadratic cost function is used, where P, Q, and R
are symmetric and positive definite. The control input u∗ that minimizes the cost function
J(u, x0) and satisfies the constraints can be calculated using a quadradic programming (QP)
solver, such as “quadprog” in MATLAB, which is used in this paper. The driver model is
set to 0.2 s for the sampling time and 60 m for the prediction horizon, which means the
prediction time is about 12 s to consider the time that a vehicle traveling at 30 m/s can stop
with a maximum deceleration of −2.5 m/s2. Since this paper focuses on deriving a human
driving characteristics analysis and longitudinal motion scenario design, the process for
solving the MPC problem is omitted, and the existing MPC-related literature is referred to
for the solution process [46].

The driver model in this study is used to simulate longitudinal driving situations,
such as acceleration/deceleration. It is designed using the fixed weights and constraints
in Equation (6). The driving tendency of human drivers can vary, mainly depending on
the driving situation [47,48]. Accordingly, the weights and the constraints of the driver
model for imitating a specific driver can be changed. Therefore, it is limited to expressing
the acceleration/deceleration situation, in which the longitudinal driving characteristics of
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human drivers are well expressed, and it is globally optimal in this situation through the
optimal control problem in Equation (6).

4. Naturalistic Driving Data-Based Longitudinal Driver Model Parameter Design
4.1. Driving Data Pre-Processing

The safety pilot model deployment (SPMD) database, an open naturalistic driving
database, is used to derive the driving characteristics of human drivers [35]. SPMD consists
of data acquisition systems (DAS), basic safety messages (BSM), roadside equipment (RSE),
and contextual data. Among the vast amount of data in this database, only a part of DAS,
which is closely related to this paper, is selected for human driving characteristics analysis.
DAS consists of DAS1 and DAS2. Both DAS1 and DAS2 provide data for ego vehicles and
GPS measurements for each vehicle. However, for measurement of the vehicle in front,
DAS1 used a vision sensor and DAS2 used a radar sensor. Between them, only the radar
sensor-based DAS2, which has relatively high measurement accuracy for longitudinal
driving, is used. In DAS2, 14,346 driving datapoints of 64 vehicles are measured at a 10 Hz
cycle. It is confirmed that there are omissions or noise in some of the data. Therefore,
the data are preferentially classified through a classification process shown in Table 2 in
consideration of its reliability and efficiency. For more detail, the data classification process
is described in Appendix A.

Table 2. Data classification process to ensure reliability.

Step Exclusion Conditions Remain Time (s)

(1) Original - 8,338,419.4
(2) Trip time Trip data less than 300 s 7,589,392.0

(3) Radar Radar data nonexistence 7,523,291.5
(4) 0 to 0 Zero speed nonexistence 7,277,452.8
(5) Data Continuous data nonexistence over 10 s 6,884,491.7

A smoothing process is performed to remove noise from the classified data. For
this purpose, the locally estimated scatterplot smoothing (LOESS) algorithm, which is a
widely known local regression method, is used [49]. LOESS is a regression method that
constructs a quadratic polynomial using a weight function w for regression smoothing and
a robust weight function G based on median values (see Equations (7)–(9)). In Equation (9),
the coefficients a, b, and c of the quadratic polynomial are derived in the direction of
minimizing the product of the weights and the square error of the actual data and the
quadratic polynomial.

w(xk) =

(
1−

∣∣∣∣ xi − xk
di

∣∣∣∣3
)3

f or k = 1, . . . , n (7)

G(xk) =

{
1− 6MID |6MID| < 1

0 |6MID| ≥ 1
s.t 6MID = |yi−ŷi |

6 median (|yi−ŷi |)

(8)

RSSx(a, b, c) = ∑
k

w(xk)G(xk)
(

yk − a− bxk − cx2
k

)2
(9)

Figure 3 is an example of smoothing results obtained by applying LOESS to the
classified data. As shown in Figure 3, the smoothing process was carried out only to the
extent that the characteristics of the data were not loose. In the case of the acceleration data,
there is an offset within the data, thus there is an error even when the smoothing process is
performed. For example, although the speed increases in the 65–70 s section in Figure 3a,
the acceleration in the same section in Figure 3b is shown as 0, indicating that there exists
an offset of the acceleration data. It is judged that this offset is caused by problems such as
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the measurement equipment setting and the mounting error when gathering the SPMD
data set. However, in the case of the speed data, the smoothing processing showed a better
result than the acceleration data. For this reason, acceleration for the data analysis is used
by differentiating the smoothed speed of the data.
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4.2. Analysis of Free Acceleration/Deceleration Point

Using the pre-processed data in Section 4.1, we analyzed the human drivers’ free
acceleration/deceleration driving data in a situation where the vehicle in front is far away
and not obstructed. Figure 4 shows the maximum acceleration/deceleration distribu-
tions of vehicles driven by human drivers derived from the randomly chosen 300 free
acceleration/deceleration datasets. The speed, acceleration, and jerk data used for the
analysis are presented in Figure A2. Moreover, the distributions of maximum accelera-
tion/deceleration for each maximum section during free acceleration/deceleration are
summarized in Tables A1 and A2.
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Figure 4. Distribution of maximum acceleration/deceleration (300 random vehicles): (a) case of free
acceleration; (b) case of free deceleration.

With the analysis of the free acceleration/deceleration data, human drivers generally
have similar patterns during free acceleration/deceleration (see Figure A2), and the mean
values of maximum acceleration/deceleration are 2.30 m/s2 and −2.16 m/s2, respectively.
Longitudinal driving characteristics of human drivers can be derived mainly from the
mean and median values of acceleration/deceleration, and the mean was used in this
study [47,48]. Figure 5 shows the driving of different drivers arbitrarily selected to see the
human drivers’ free acceleration/deceleration patterns in detail, and the maximum speed
and maximum acceleration/deceleration for each driver are expressed in Table 3.
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Figure 5. Examples of free acceleration/deceleration driving cases: (a) case of SPMD driver #23;
(b) case of SPMD driver #57.

Table 3. Summary of two drivers’ trips.

Trip Time
(s)

Max. Speed
(m/s)

Max. Acceleration
(m/s2)

Max. Deceleration
(m/s2)

Driver #23 47.2 20.5 2.10 −2.75
Driver #57 35.5 13.9 1.98 −1.92

In Figure 5, the maximum acceleration/deceleration of drivers #23 and #57, which are
arbitrarily chosen, demonstrate similar results to the mean values shown in Figure 4. That
is, the acceleration/deceleration characteristics of typical human drivers can be defined
through the criteria in Figure 4 and Tables A1 and A2, and various acceleration/deceleration
scenarios can be configured according to the analyzed distributions.

4.3. Analysis of Sailing/Braking Start Time

Next, we analyzed the sailing and braking start times of human drivers. In Figure 5,
shown in the previous section, human drivers generally coast down before stopping, which
is related to the timing of pressing the brake pedal. In other words, typical human drivers
have a similar driving pattern, which sequences as acceleration, sailing, and braking. Such
driving can be viewed as one of the driving characteristics derived from human drivers.
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To analyze the driving characteristics at the beginning of the time of braking, the required
deceleration for braking is calculated and analyzed from data. The required deceleration
means the deceleration required for a complete stop when the relative distance is R and the
relative speed is

.
R. Figure 6 and Equation (10) express the required deceleration calculation.

areq = sign
( .

R
) .

R
2

2R
(10)
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Figure 6. Scheme of required deceleration.

The beginning point of braking is defined as the point at which the first brake pedal
signal occurs in the deceleration section before stopping. For the case where there is no
leading vehicle, it is assumed that the virtual vehicle is stopped at the stop position of the ego
vehicle. The analysis of the required deceleration calculated from the data at the beginning
point of braking is specified in Figure 7a. The required deceleration at the start point of
braking is −1.37 m/s2 on average with a 0.55 m/s2 standard deviation. In the same way,
the required deceleration at the sailing start point before braking is analyzed. The sailing
start point can be expressed as the time when the acceleration pedal is released to brake, and
this can be regarded as the start point of braking. As described in Equations (2) and (3), the
rolling/aerodynamic resistances affect the motion of the vehicle. Therefore, the tendency to
decelerate during sailing is different depending on the size or type of the vehicle. As this study
develops the longitudinal motion scenario by imitating the overall driving pattern of a human
driver, the sailing behaviors of various vehicles can be expressed with the variation of the
required deceleration at the sailing start point. The analysis result of the required deceleration
at the start of sailing is specified in Figure 7b, and the average value is −0.89 m/s2 with
a standard deviation of 0.44 m/s2. Moreover, the distributions of required deceleration at
braking/sailing start point are summarized in Tables A3 and A4.
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Figure 7. Distribution of required deceleration (300 random vehicles): (a) case of braking start point;
(b) case of sailing start point.
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To analyze the reason why the required deceleration is necessary to imitate the driving of
human drivers, the distributions of braking/sailing start points are represented with respect
to relative distance/velocity (see Figure 8). Human drivers show a similar tendency to
trend toward the average value of the required deceleration specified in Tables A3 and A4.
In addition, the time-to-collision (TTC), which is widely used in vehicle risk assessment
standards, is approximated near the origin and compared with the specified average required
deceleration. As the TTC has a linear relationship with both the relative distance and the
relative speed, it cannot adequately represent the driving patterns of human drivers. In other
words, to express the characteristics of the sailing and braking start points, the driver model
should be an acceleration/deceleration-based model.
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4.4. Driver Model Parameter Adaptation from the Analysis of Driving Data

In Sections 4.1–4.3, parameters expressing the driving characteristics of human drivers
are derived. These parameters are the maximum acceleration (amax), the maximum de-
celeration or minimum acceleration (amin), and the deceleration at the sailing start point
(asail). The three parameters are analyzed in terms of the mean and standard deviation
in the previous sections. A typical human driver can be regarded as having the mean
value of each parameter, and the more atypical the driver is, the further their behavior is
from the mean. Therefore, the driving situations of various drivers can be simulated using
the parameters derived from the analysis results. This means that atypical scenarios and
various human driving patterns can be expressed according to changing parameters, such
as the constraint for acceleration/deceleration and the weights of the driver model in the
proposed longitudinal motion scenario design method. In other words, it is possible to
create various longitudinal scenarios by defining the mode transition conditions of the
driver model, as shown in Figure 9, and changing the constraint settings presented in
Equation (6) for the required acceleration/deceleration corresponding to each mode.



Appl. Sci. 2023, 13, 716 11 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 

Figure 9. Scheme of the driver model for the proposed longitudinal motion scenario design. 

There is a limit to expressing the driving patterns of various drivers only by setting 

the constraints. Thus, as shown in Equation (11), they can be expressed by changing the 

weights of the MPC used in the driver model design. 

𝑄 = [
𝑞1 0
0 𝑞2

] , 𝑅 = 𝑟1 (11) 

𝑞1 and 𝑞2 are weights for the distance error and velocity error, respectively, and 𝑟1 

is a weight for acceleration, which is a control input. In linear quadratic-based optimal 

control, suitable control performance is derived with the ratio of each weight. Therefore, 

in this study, the driving pattern is simulated by changing only 𝑞1 and 𝑟1, while fixing 

the weight of the velocity error 𝑞2 as 1 [46]. When the driver’s velocity to be imitated in 

the simulation is 𝑣𝑣𝑒𝑙𝑜,𝑑𝑎𝑡𝑎, the weights 𝑞1 and 𝑟1 of the driver model can be derived 

using the following equation. Here, 𝑇 is the length of the time interval to be imitated, and 

𝑣𝑚𝑜𝑑𝑒𝑙  is the speed of the driver model. 

𝑞1
∗, 𝑟1

∗ = arg min
𝑞1,𝑟1

(

 √
1

𝑇
∑(𝑣𝑣𝑒𝑙𝑜,𝑑𝑎𝑡𝑎(𝑘) − 𝑣𝑚𝑜𝑑𝑒𝑙(𝑘))

2
𝑇

𝑘=1
)

  (12) 

5. Computer Simulation Results 

To verify the proposed longitudinal motion scenario design method, we set appro-

priate parameters in the driver model to check whether the driving is like that of a human 

driver. The Gipps model introduced in Table 1 is used for comparison, and the parameters 

common to both the Gipps model and the MPC-based driver model are set to the same 

values [28]. The computer simulation was conducted assuming the driving situation on a 

dry, asphalt, straight road. 

The simulations are carried out with Intel®  CoreTM i9-11900CPU@2.50 GHz, 32 GB 

RAM. The execution time was derived with 22 ms as the maximum, 0.64 ms as the mini-

mum, and 0.92 ms as the mean per step, which is less than the step time specified as 200 

ms (0.2 s) for the overall simulation results. For this reason, real-time performance can be 

guaranteed during simulation. If the execution is performed with explicit MPC, it is ex-

pected to derive less than the preciously derived execution time. Generally, the driving 

tendency of human drivers can vary depending on the driving situation [47,48]. For this 

reason, the simulation results were expressed as fixed parameters and constraints for the 

randomly selected acceleration/deceleration section of the human driving data. 

Figure 9. Scheme of the driver model for the proposed longitudinal motion scenario design.

There is a limit to expressing the driving patterns of various drivers only by setting
the constraints. Thus, as shown in Equation (11), they can be expressed by changing the
weights of the MPC used in the driver model design.

Q =

[
q1 0
0 q2

]
, R = r1 (11)

q1 and q2 are weights for the distance error and velocity error, respectively, and r1 is a
weight for acceleration, which is a control input. In linear quadratic-based optimal control,
suitable control performance is derived with the ratio of each weight. Therefore, in this
study, the driving pattern is simulated by changing only q1 and r1, while fixing the weight
of the velocity error q2 as 1 [46]. When the driver’s velocity to be imitated in the simulation
is vvelo,data, the weights q1 and r1 of the driver model can be derived using the following
equation. Here, T is the length of the time interval to be imitated, and vmodel is the speed of
the driver model.

q∗1 , r∗1 = argmin
q1, r1


√√√√ 1

T

T

∑
k=1

(vvelo,data(k)− vmodel(k))
2

 (12)

5. Computer Simulation Results

To verify the proposed longitudinal motion scenario design method, we set appropri-
ate parameters in the driver model to check whether the driving is like that of a human
driver. The Gipps model introduced in Table 1 is used for comparison, and the parameters
common to both the Gipps model and the MPC-based driver model are set to the same
values [28]. The computer simulation was conducted assuming the driving situation on a
dry, asphalt, straight road.

The simulations are carried out with Intel® CoreTM i9-11900CPU@2.50 GHz, 32 GB
RAM. The execution time was derived with 22 ms as the maximum, 0.64 ms as the minimum,
and 0.92 ms as the mean per step, which is less than the step time specified as 200 ms (0.2 s)
for the overall simulation results. For this reason, real-time performance can be guaranteed
during simulation. If the execution is performed with explicit MPC, it is expected to
derive less than the preciously derived execution time. Generally, the driving tendency of
human drivers can vary depending on the driving situation [47,48]. For this reason, the
simulation results were expressed as fixed parameters and constraints for the randomly
selected acceleration/deceleration section of the human driving data.

The simulation results are compared with the results imitating the driving data of
drivers #23, #57, #61, and #13 of SPMD, and are presented in Figures 10 and 11. The
weights of the proposed MPC-based driver model were derived using Equation (12) to
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show the longitudinal driving pattern most similar to the actual driver’s speed profile.
The parameters set in the MPC-based driver model are specified in Table 4. It can be
confirmed that the accelerations shown in Table 4 are included in the acceleration range of
human drivers derived from Section 4. In these results, the proposed model has mostly
lower RMSE than the Gipps model’s, which means that the proposed model shows a
more similar driving pattern than the Gipps model. With the simulation results from
Figures 10 and 11a, it is shown that the proposed model can simulate both the acceleration
and the deceleration of the target driver, as well as the timing and deceleration of the
driving speed. However, the Gipps model shows a sudden acceleration/deceleration
change that is physically impossible due to the absence of constraints. In other words, the
Gipps model shows a large value of jerks when the vehicle starts acceleration and braking.
Moreover, the sailing shown by the human driver is not considered in the Gipps model,
resulting in differences between the Gipps model predictions and the actual human driver
behavior. If the Gipps model is used in the verification of ADAS and ADS, the ADAS
and ADS can act abnormally because the Gipps model acts in a manner that is physically
impossible in the real world. For this reason, the proposed method can be reasonable in the
verification of ADAS and ADS.
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Figure 11. Computer simulation results to compare the Gipps model (compared) and the proposed
driver model (proposed): (a) the case of SPMD driver #61; (b) the case of SPMD driver #13 (cut-
in/out situation).

Table 4. Driver model parameters for simulation.

amax(m/s2) amin(m/s2) areq, sail(m/s2) asail(m/s2) q1(-) r1(-)

Driver #23 2 −2.1 −0.5 −0.4 3 45
Driver #57 2 −2.5 −0.5 −0.1 5 45
Driver #61 2 −2.7 −0.8 −0.5 2 40
Driver #13 2 −1 −0.5 −0.1 5 40

The proposed driver model is verified with the presence of multiple lane changes in
the SPMD data, which is driver #13’s driving, to confirm the driving reliability in the traffic
environment (see Figure 11b). The leading vehicle with a relatively low speed changes into
a lane ahead of the ego vehicle at 3040 s and 3190 s. In the case of the proposed model,
the change in acceleration is similar to that of driver #13’s driving, and stable driving is
achieved for the leading vehicle. However, the Gipps model shows rapid acceleration
changes due to the mode transition when a lane change occurs. This shows the same result
as the problem shown in Figures 10 and 11a. The RMSE of the proposed method is similar
to the Gipps’. This is because the proposed method is assumed with the constant velocity
motion of the leading vehicle (vL, aL ≈ 0) for simplification. Moreover, driver #13’s driving
is not shown to have the CTG policy to the leading vehicle as the proposed model. However,
the proposed model has a similar acceleration tendency as the human driver, despite the
presence of the velocity/acceleration of the leading vehicle. If the leading vehicle has a
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sudden velocity change, the acceleration of the leading vehicle should be considered in the
driver model, as mentioned in Section 3.1, for more realistic driving motion.

With the computer simulation results, the proposed longitudinal motion scenario
design method not only simulates sailing and the longitudinal driving characteristics of
human drivers, but it also satisfies the constraints. In addition, with variations of the
constraints and weights of the driver model, it is confirmed that various human drivers
can be imitated. Moreover, the proposed model can induce an atypical scenario if the
constraints and weights are suitably chosen. For these reasons, this method can simulate
the longitudinal movement of surrounding vehicles of the ego vehicle more diversely
and realistically in a simulation environment. With these results, we confirmed that the
possibility of designing various longitudinal scenarios with human driving characteristics.
This method is focused on typical longitudinal driving situations. However, it is judged
that malicious driving situations or edge cases can be dealt with if the constraint is set
to approximate the vehicle’s limit situation or collision risk situation, or if the target
acceleration/deceleration is approximated to the limit situation, by diversifying the weights
of the driver model. Therefore, the proposed method can provide more realistic scenarios
by overcoming the shortcomings in the existing scenario design methods. However, as
these results were compared with the randomly selected drivers in the limited driving
section, additional verification is required for the robustness of the proposed method. Due
to this, further improvement and verification will be conducted in future work.

6. Conclusions

In this paper, a longitudinal motion scenario design method was proposed to overcome
the shortcomings of the existing scenarios for ADAS and ADS verification. A simplified
vehicle model was designed, including the dynamic characteristics of the vehicle that
provide physical constraints, and the longitudinal driver model to control it was designed
based on the MPC. The longitudinal driver model parameters were derived from a large-
scale driving database to overcome the limitations of the conventional traffic models. To
obtain reliable model parameters, the human drivers’ acceleration/deceleration tendency
and constraints were derived through the analysis of pre-processed data. The proposed
longitudinal motion scenario design method showed an organic relationship with the
test vehicle and other vehicles in the scenario, and at the same time can define atypical
conditions more clearly and intuitively, which is meaningful in conducting more free and
realistic tests. In addition, the proposed method can simulate various driving situations
by simply changing parameters, without having to configure a complex vehicle dynamics
model or driver model.

The proposed method was validated in the computer simulation environment. The
MPC, which is used in the driver model design, may have difficulty satisfying real-time per-
formance due to the high amount of computation if the driving situation is more complex.
For this reason, it can be supplemented by using explicit MPC or other constraint control
methods, such as the control barrier function method [46]. Moreover, in this study, only
the longitudinal aspect of the vehicle was considered to derive the driving characteristics
of human drivers. However, human drivers also have lateral characteristics in the real
world, such as two-dimensional trajectories in a lane change situation. Therefore, future
work should develop an adaptive scenario design method to consider both longitudinal
and lateral driving scenarios.
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Appendix A

This is a description of the data classification process of SPMD for human driver
driving characteristic analysis. For data classification, it is based on speed and radar data.
First, as the driving characteristics of human drivers are not well expressed when the length
of the data is short, data of less than 300 s were excluded. Moreover, due to the problem of
the dataset itself, the case where there was no radar data measuring surrounding vehicles
was excluded. Next, the data was classified by excluding the situation where the speed,
which is judged as stop, was 0 and the data did not continue for more than 10 s. For
example, section #3 of Figure A1 is excluded from the data for driving characteristics
analysis because the data does not continue for more than 10 s.
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Figure A2. 300 randomly sampled data of free acceleration/deceleration situation from SPMD:
(a) case of free acceleration; (b) case of free deceleration.

Figure A2 shows 300 randomly sampled datasets from SPMD for the free accelera-
tion/deceleration characteristics of human drivers in Section 4.2. Tables A1–A4 are the
distributions of maximum acceleration, deceleration, required deceleration at the braking
start point, and required deceleration at the sailing start point, respectively.

Table A1. Distribution of maximum acceleration (300 random vehicles, free acceleration).

Range (m/s) Bottom 75% Med. 25% Top

10 0.13 1.11 1.57 2.06 3.47
10–20 1.03 2.04 2.38 2.76 3.83
20–30 1.23 2.32 2.67 3.09 4.24
30–40 1.63 2.39 2.73 3.18 4.076

ALL 0.567 1.86 2.30 2.73 4.02
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Table A2. Distribution of maximum deceleration (300 random vehicles, free deceleration).

Range (m/s) Bottom 75% Med. 25% Top

10 −4.85 −1.90 −1.49 −1.08 −0.15
10–20 −3.73 −2.57 −2.16 −1.80 −0.95
20–30 −4.36 −3.03 −2.52 −2.13 −0.98
30–40 −3.99 −3.08 −2.62 −2.21 −1.38

ALL −3.85 −2.56 −2.10 −1.68 −0.36

Table A3. The distribution of the required acceleration at the braking start point.

Range (m/s) Bottom 75% Med. 25% Top

10 −2.16 −1.27 −0.98 −0.67 −0.03
10–20 −2.56 −1.67 −1.36 −1.11 −0.33
20–30 −2.80 −1.88 −1.54 −1.27 −0.38
30–40 −2.47 −1.69 −1.20 −0.86 −0.46

ALL −2.57 −1.65 −1.31 −1.04 −0.12

Table A4. The distribution of the required acceleration at the sailing start point.

Range (m/s) Bottom 75% Med. 25% Top

10 −1.67 −0.96 −0.70 −0.47 −0.03
10–20 −1.88 −1.13 −0.84 −0.63 −0.21
20–30 −0.83 −1.12 −0.84 −0.65 −0.20
30–40 −1.24 −0.82 −0.64 −0.50 −0.17

ALL −1.81 −1.08 −0.80 −0.60 −0.03
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