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Abstract: In this investigation, we mixed cement with electrospun nanofibers made of tetraethoxysi-
lane (TEOS) and polyvidone (PVP), as well as a modified version with carbon nanotubes (CNT). When
we incorporated TEOS/PVP and CNT-TEOS/PVP nanofibers into the cementitious materials, the
results of mechanical strength tests showed improvements in compressive strength of 28% and 38%
and in toughness of 54% and 66%, respectively. We observed the morphology and texture of the fibers
using a scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. In
addition, based on our SEM, energy-dispersive spectroscopy (EDS), and thermogravimetric analysis
(TGA), we observed that the matrix structure was compacted due to the nanofiber’s matrix-bridging
effect and the increase in hydration products. Therefore, the results of our microstructure studies
agree with those of the mechanical strength tests. Our findings can be used to increase cement quality
while lowering overall usage, thereby minimizing its environmental impacts.

Keywords: TEOS; PVP; CNT; cement; electrospun nanofibers; microstructure; compressive strength;
toughness

1. Introduction

The cement industry is one of the most non-ecological and creates huge emissions.
Therefore, exploring ways to make the cement industry environmentally friendly is of
considerable worldwide concern. Hamada et al. [1] used a response surface methodology to
demonstrate the efficiency of palm oil clinker and nano-palm-oil fuel ash in the production
of concrete and helped to achieve environmental sustainability by lowering the production
of agricultural and industrial waste byproducts. Further studies have improved cement
matrix characteristics to reduce cement usage. Recently, nanoscale materials have caught
the interest of researchers and are commonly used in cement-based products. According to
Zhang et al., cement-based materials containing nano-silica and superabsorbent polymer
can be used in practical engineering thanks to their low shrinkage and high ductility
characteristics [2]. Wang et al. [3,4] pointed out the effect of carbon nanofibers on improving
the electrical resistivity and capacitive reactance of cement pastes, and they observed that
the highest self-sensing performance sensitivity corresponded to a carbon nanofiber dosage
of 2.5%. Saleh et al. [5,6] showed the effectiveness of titanate nanofibers in modifying
cementitious materials to produce anti-radioactive or hazardous waste containers. We
conducted a literature review and found that researchers were most concerned with the
mechanical characteristics of nanofibers-modified cementitious materials. Many types
of nanofibers were applied to cement in different directions to analyze its mechanical
behavior. For instance, Chinchillas-Chinchillas et al. [7] reported increases in compressive
and flexural strength of 26.1% and 89.1%, respectively, and a decline of 93.1% in the drying
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shrinkage of cement mortar containing recycled PET/PAN nanofibers. McElroy et al. [8]
enhanced the compressive and tensile strength of oil-well cement up to 50% and 53%,
respectively, by adding alumina nanofibers to the paste. Azevedo and Gleize [9] reported
an increase of 74.77% and 24.87% in flexural and compressive strength, respectively, after
adding different dosages of silicon carbide nanofibers into Portland cement pastes. Al-
Rub et al. [10] observed increases in ductility, flexural strength, Young’s modulus, and
toughness of 73%, 60%, 25%, and 170% on average, respectively, after adding carbon
nanofibers or carbon nanotubes into cement pastes. In almost all of the above cases,
nanofibers were incorporated into cementitious materials by first dispersing in water to
form an aqueous solution and then mixing the as-solution with cement powder. The
dispersion of the precursors in water is a complicated process, normally conducted with the
help of ultrasonic energy [8,9] or the addition of surfactant agents (i.e., superplasticizers)
into the mix [3,4,9,10]. From another perspective, the previous works [11–13] presented
another approach to combine electrospun nanofibers with cement powder. Nanofibers
were fabricated and blended with cement powder through the electrospinning process
using an improved collector.

Electrospinning is a flexible and economical technology for creating nanofibers made
of various materials that are appropriate for a variety of applications [14–16]. The general
principle of the electrospinning technique is based on the electrostatic repulsion between
the strongly charged polymer solutions and the negative collector, which fabricates nano-
sized fibers. Our literature review showed that tetraethoxysilane/polyvidone nanofibers
(TEOS/PVP NFs) fabricated by the electrospinning technique were utilized in numerous
fields, such as catalytic applications [17], protein detection [18], wound-dressing appli-
cations [19], drug-delivery systems [20], etc. However, the literature rarely explored its
application in enhancing cement matrix strength. Therefore, the goal of our study is to
investigate the changes in the mechanical and microstructural properties of ordinary Port-
land cement (OPC) blended with TEOS/PVP NFs, as well as versions modified by carbon
nanotubes (CNT-TEOS/PVP NFs). To the best of our knowledge, silica is TEOS/PVP’s
primary ingredient. Where PVP is a carrier matrix and TEOS is a precursor to silica [21].
Therefore, it is anticipated that adding TEOS/PVP NFs to cement will result in more poz-
zolanic reactions. These nanofibers can, therefore, efficiently raise the amount of hydration
products in the matrix, enhancing its mechanical characteristics and toughness. According
to the findings of earlier research [11], CNTs have demonstrated their value in enhancing
the tensile strength of cement paste when combined with nylon 66 nanofibers. To continue
this strategy, CNTs have been introduced to TEOS/PVP NFs to examine their impact on the
pastes’ tensile strength. Positive results regarding the mechanical properties of cement can
be considered as a premise for improving the quality of this material, reducing the amount
of cement used and thereby minimizing its environmental impacts. The nanofibers were
fabricated by the electrospinning process [17,18,22–25] and blended directly into cement
powder [11,12]. In our study, we modified TEOS/PVP NFs using multi-walled carbon
nanotubes (MWCNTs), and we conducted the ultrasonication process while preparing the
polymer solution to break the strong van der Waals forces that cause the agglomeration of
carbon nanotubes (CNTs) [26–29].

Above all, the primary goal of this study is to examine the mechanical and microstruc-
tural characteristics of cementitious materials blended with TEOS/PVP NFs and CNT-
TEOS/PVP NFs. Our mechanical strength test results showed how our proposed electro-
spun nanofibers affected some key properties of cement. We also carried out microstructure
analyses, such as the field emission transmission electron microscope (FE-TEM) and the
field emission scanning electron microscope (FE-SEM), to confirm the changes in the
nanofibers’ morphology as well as the matrix’s microstructure. Furthermore, we performed
energy-dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA) to examine
the variation in hydration-product proportions.
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2. Experiments
2.1. Materials

We utilized type I OPC cement from Ssangyong Co, Korea, in compliance with ASTM
C150 [30]. Table 1 presents the chemical components and physical characteristics of OPC.

Table 1. Chemical composition and physical characteristics of OPC.

CaO 61.33

SiO2 21.01

Al2O3 6.40

SO3 2.30

MgO 3.02

Fe2O3 3.12

Ig. loss 1.40

Compressive strength at 28 days (MPa) 36

Specific surface area (cm2/g) 2800

We used TEOS (Tetraethoxysilane; Cas No 78-10-4; Alfa Aesar, Germany), PVP (polyvi-
done; Cas No 9003-39-8; Sigma-Aldrich, USA), butanol (Cas No 71-36-3; Sigma-Aldrich,
USA), and MWCNTs (multi-walled carbon nanotubes; diameter: 10 nm, length: 30 µm;
grade: CM-95; Hanos, Republic of Korea) to prepare the polymer solution. We employed
all chemicals as received. Table 2 presents the properties of the chemicals.

Table 2. Properties of TEOS, PVP, and butanol.

Properties TEOS PVP Butanol

Linear formula (C2H5O)4Si (C6H9NO)n C4H10O
Molecular weight (g/mol) 208.329 1,300,000 74.12

Purity (%) 98 98 99.9
Density at 25 ◦C (g/mL) 0.934 1.2 0.81

2.2. Polymer Solution

The following steps present our polymer solutions preparation process: (1) Stirring
TEOS and butanol with a volume proportion of 5:3 (TEOS: butanol) at 80 ◦C and 30 min;
(2) adding and stirring PVP in the as-solution with a weight proportion of 1:9 (PVP: as-
solution) at 120 ◦C and 90 min [25]. We added CNTs into the solution containing TEOS and
butanol first to prepare the polymer solution containing CNTs and TEOS/PVP, in which the
content of PVP was partly replaced by CNTs. Hence, the weight proportion between PVP
and CNTs was 24:1. The literature shows that agglomerate phenomenance is normally due
to the strong van der Waals links between CNT molecules [31–33]. Hence, we conducted
the ultrasonication process during this period to obtain the homogeneous solution [26–29].
After finishing the preparation process, we kept the obtained polymer solutions for 24 h
under laboratory conditions due to the relaxation of the polymer chain. Table 3 presents a
summary of the polymer solution’s component proportions.

Table 3. Components proportion of polymer solution by weight percent (%).

Solvent PVP CNTs

TEOS/PVP polymer solution 90 10 -

CNT-TEOS/PVP polymer solution 90 9.6 0.4
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2.3. Electrospinning Process

In our study, we fabricated TEOS/PVP NFs and CNT-TEOS/PVP NFs using an
electrospinning system. We conducted the electrospinning processes similar to the process
in [11,12] (see Figure 1). Information on the electrospinning process can be found in Table 4.
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Figure 1. Electrospinning process and polymer solutions.

To analyze the morphological properties of TEOS/PVP NFs and CNT-TEOS/PVP
NFs, we prepared the samples for FE-SEM and FE-TEM by electrospinning the nanofibers
directly onto 5 mm × 5 mm carbon tapes and copper grids.

Table 4. Input parameter of the electrospinning process.

Voltage (kV) 12

Syringe (mL) 12

Needle 20

Working distance (mm) 60

Pump speed (µL/min) 30

2.4. Hardened Cement Pastes Preparation

Based on the blend method proposed in the previous works, we electrospun TEOS/PVP
NFs and CNT-TEOS/PVP onto an improved collector for blending the nanofibers and
cement powder [11,12]. The improved collector’s mechanism is based on the rotation of
a magnetic stir bar inside a metal bowl. The wall of the bowl needs to be insulated to
concentrate the nanofibers jet onto the bottom of the bowl. A magnetic stirrer machine
under the metal bowl supplies the magnetic energy for rotating the stir bar. The metal bowl
is connected to the ground and works as the negative electrode of the system (see Figure 1).
We conducted the blending process for every 95 g of OPC and 5 g of the polymer solution.
Studying the mechanical characteristics of cement is very difficult because of the changes
in volume as well as the development of spontaneous cracking during the curing period;
therefore, samples of hardened cement pastes usually have small dimensions. We pre-
pared the samples for the tensile and compressive strength tests in accordance with the
specifications of ASTM C307 [34] and ASTM C109 [35]. We prepared six dogbone and five
cubic samples for each type of cementitious material, kept a constant water-binder ratio
of 0.5, demolded after 24 h, and cured for 28 days in the water under 23 ± 2 ◦C with an
RH higher than 50% (see Figure 2). The mix proportions of the cement-based materials are
shown in Table 5.
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Table 5. Mix proportions of cement-based materials (by % mass).

Samples
Binder (B) Water/B

OPC TEOS/PVP NFs CNTs

Plain paste 100 0 0 0.5
T28S/C28S 99.7 3.3 0 0.5

T28CS/C28CS 99.7 3.3 0.02 0.5

We utilized the broken samples gathered from the mechanical strength test for SEM
analysis to analyze the cement matrix’s microstructure. We prepared the 0.5 mm thick SEM
samples. In addition, we also prepared micro-sized samples of each cementitious material
for TGA.
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cement paste).
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2.5. Apparatus and Methodology

In our study, we performed the tensile strength tests according to ASTM C307 [34]
using a mortar tensile strength test machine with a capacity of 5 kN. We used the hydraulic
universal testing device with a capacity of 1000 kN for the compressive strength tests accord-
ing to ASTM C109 [35]. We analyzed the morphology of the nanofibers, the microstructure
of the cement matrix, and the local chemical components of the samples by FE-SEM and
EDS analyses using the Zeiss Merlin Compact system. We set the input parameters as:
working distance from 7.1 to 7.9 mm and accelerating voltage from 3 to 5 kV. We coated a
5Å-platinum layer on the sample surface to improve the image resolution. We performed
FE-TEM using the FEI Tecnai F30 Twin system under an acceleration voltage of 300 kV.
Finally, we conducted a thermogravimetric analysis using TA instrument SDT-Q600 and
set the input parameters as: heating range: 25 ◦C–1000 ◦C, nitrogen atmosphere, heating
velocity: 10 ◦C/min, flow rate: 100 mL/min.

3. Results and Discussion
3.1. Tensile and Compressive Strength

We investigated the influence of TEOS/PVP nanofibers, including those modified
by carbon nanotubes, on the mechanical characteristics of hardened cement pastes using
28-day tensile and compressive strength tests. Figure 3 shows that the tensile strength of the
nanofibers-blended cement pastes increased slightly by around 6% and 10% compared with
that of the plain paste in comparisons between the tensile strength results of the T28S and
T28CS samples, respectively, and the T28PL sample. These unimpressive results show the
inefficiency of TEOS/PVP NFs and CNT-TEOS/PVP NFs in increasing the tensile strength
of the cement pastes. Previous studies have clarified the increase in tensile strength of
the pastes when blending nylon 66 nanofibers and their modified versions with cement
using the same method [11,12]. The comparison results are shown in Table 6. In contrast,
there was a significant increase in compressive behaviors when modifying cement with
the proposed fibers compared with those of plain paste (see Figures 4 and 5 and Table 7).
The results show an increase of 28% and 38% in compressive strength and 54% and 66% in
toughness when comparing the C28S and C28CS samples, respectively, with C28PL. These
results highlight the important role played by TEOS/PVP NFs and CNT-TEOS/PVP NFs
in improving the compressive strength and toughness of the cement pastes. Observations
in previous studies about the nylon 66 nanofibers-modified cementitious materials did
not show the efficiency of nanofibers from this perspective [11,12] (see Table 6). Above all,
our findings from the mechanical strength tests show a better performance in compressive
strength than in tensile strength when introducing TEOS/PVP NFs and CNT-TEOS/PVP
NFs into cementitious materials.

Table 6. Effectiveness of TEOS/PVP NFs, CNT-TEOS/PVP NFs, N66 NFs, and CNT-N66 NFs on
mechanical properties of cement pastes (increase in % compared with parameters of control samples).

Previous Works [11,12] Present Work

N66 NFs
MCP (1)

N66 NFs
MCP (2)

SWCNT-N66
NFs MCP

MWCNT-N66
NFs MCP T28S/C28S T28CS/C28CS

CNTs content (wt% in the
cement-based materials) 0 0 0.015 0.015 0 0.02

Tensile strength (MPa) 32 28 43 57 6 10

Compressive strength (MPa) 6 8 10 14 28 38

Toughness (J/m3) 42 49 30 12 54 66

Note: N66 NFs MCP (1): nylon 66 nanofibers-blended cement paste (formic acid–dichloromethane solvent). N66
NFs MCP (2): nylon 66 nanofibers-blended cement paste (formic acid–chloroform solvent). SWCNT-N66 NFs
MCP: hybrid nanofibers (single-walled carbon nanotube and nylon 66)-blended cement paste. MWCNT-N66 NFs
MCP: hybrid nanofibers (multi-walled carbon nanotube and nylon 66)-blended cement paste.
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Table 7. The 28-day toughness (J/m3).

Toughness (J/m3)

Plain paste 67,898.5

T28S/C28S 104,537.7

T28CS/C28CS 112,933.9

3.2. Morphological Characteristics of Nanofibers

Figure 6 depicts the morphologies of TEOS/PVP NFs and CNT-TEOS/PVP NFs in
our study. In general, the electrospun nanofibers tend to overlap each other, forming net
layers as a result. Figure 6 shows that the morphologies of both nanofibers are rough and
lumpy. This surface texture is desirable when incorporating these nanofibers into cement
paste due to the numerous connecting points between the surface of the nanofibers and
the cement hydration products. We estimated the mean diameters at 179 nm and 180 nm
for TEOS/PVP NFs and CNT-TEOS/PVP NFs, respectively. From the TEM result shown
in Figure 7, we determined that CNT-TEOS/PVP NFs and TEOS/PVP NFs are hollow
structures (see Figure 7a), which can explain the unimpressive tensile strength results
of the proposed fibers in blended cement materials. Figure 7b shows numerous CNTs
inside the nanofiber. These CNTs strengthened the nanofibers, leading to slightly better
tensile strength results for pastes blended with CNT-TEOS/PVP NFs compared with those
blended with TEOS/PVP NFs.
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3.3. Microstructure of Hardened Cement Pastes

Figures 8 and 9 present the microstructure of the hardened cement pastes blended
with TEOS/PVP NFs and CNT-TEOS/PVP NFs. In both cases, the fibers were interleaved
among the hydrates, showing their bridging effect inside the cement matrix. We also found
the bridging effect of nanofibers inside the cement matrix’s microstructure by using the
same method to incorporate nanofibers into cementitious materials [11,12]. Therefore, our
proposed method had previously proved its effectiveness in incorporating the electrospun
nanofibers into cementitious materials. In our work, despite the bridging effect observed
in the cement matrix, the tensile strength of these pastes increased slightly due to the low
strength of the electrospun nanofibers, as presented in the previous section. However, these
nanofibers made the cement matrix’s microstructure more compact because of cross-linking
among the cement hydrates, such as calcium silicate hydrates (CHS), calcium hydroxide
(CH), ettringite, etc. In addition, the more silicate content added through the nanofibers, the
more the CSH content increased. Furthermore, Figures 8b and 9b show that the nanofibers
grow out from the cement hydration products, demonstrating the well linking between
nanofibers and cement hydrates. As a result, we found a higher compressive strength in
the modified cement pastes compared with the plain pastes.

Appl. Sci. 2023, 13, 714 10 of 19 
 

3.3. Microstructure of Hardened Cement Pastes 
Figures 8 and 9 present the microstructure of the hardened cement pastes blended 

with TEOS/PVP NFs and CNT-TEOS/PVP NFs. In both cases, the fibers were interleaved 
among the hydrates, showing their bridging effect inside the cement matrix. We also 
found the bridging effect of nanofibers inside the cement matrix’s microstructure by using 
the same method to incorporate nanofibers into cementitious materials [11,12]. Therefore, 
our proposed method had previously proved its effectiveness in incorporating the elec-
trospun nanofibers into cementitious materials. In our work, despite the bridging effect 
observed in the cement matrix, the tensile strength of these pastes increased slightly due 
to the low strength of the electrospun nanofibers, as presented in the previous section. 
However, these nanofibers made the cement matrix’s microstructure more compact be-
cause of cross-linking among the cement hydrates, such as calcium silicate hydrates 
(CHS), calcium hydroxide (CH), ettringite, etc. In addition, the more silicate content 
added through the nanofibers, the more the CSH content increased. Furthermore, Figures 
8b and 9b show that the nanofibers grow out from the cement hydration products, demon-
strating the well linking between nanofibers and cement hydrates. As a result, we found 
a higher compressive strength in the modified cement pastes compared with the plain 
pastes. 

 
(a) 

 
(b) 

Figure 8. SEM images of cement matrix containing TEOS/PVP NFs. (a) magnification of 20 k, (b) 
magnification of 50 k. 

(a) (b) 

Figure 9. SEM images of cement matrix containing CNT-TEOS/PVP NFs. (a) magnification of 20 k, 
(b) magnification of 50 k. 

3.4. EDS Analysis 
Figures 10–14 illustrate our EDS analyses of the surface of the hardened plain cement 

paste, the hardened cement pastes blended with TEOS/PVP NFs and CNT-TEOS/PVP 
NFs, and the local zone containing the nanofibers inside the pastes. In general, the element 

Figure 8. SEM images of cement matrix containing TEOS/PVP NFs. (a) magnification of 20 k,
(b) magnification of 50 k.

Appl. Sci. 2023, 13, 714 10 of 19 
 

3.3. Microstructure of Hardened Cement Pastes 
Figures 8 and 9 present the microstructure of the hardened cement pastes blended 

with TEOS/PVP NFs and CNT-TEOS/PVP NFs. In both cases, the fibers were interleaved 
among the hydrates, showing their bridging effect inside the cement matrix. We also 
found the bridging effect of nanofibers inside the cement matrix’s microstructure by using 
the same method to incorporate nanofibers into cementitious materials [11,12]. Therefore, 
our proposed method had previously proved its effectiveness in incorporating the elec-
trospun nanofibers into cementitious materials. In our work, despite the bridging effect 
observed in the cement matrix, the tensile strength of these pastes increased slightly due 
to the low strength of the electrospun nanofibers, as presented in the previous section. 
However, these nanofibers made the cement matrix’s microstructure more compact be-
cause of cross-linking among the cement hydrates, such as calcium silicate hydrates 
(CHS), calcium hydroxide (CH), ettringite, etc. In addition, the more silicate content 
added through the nanofibers, the more the CSH content increased. Furthermore, Figures 
8b and 9b show that the nanofibers grow out from the cement hydration products, demon-
strating the well linking between nanofibers and cement hydrates. As a result, we found 
a higher compressive strength in the modified cement pastes compared with the plain 
pastes. 

 
(a) 

 
(b) 

Figure 8. SEM images of cement matrix containing TEOS/PVP NFs. (a) magnification of 20 k, (b) 
magnification of 50 k. 

(a) (b) 

Figure 9. SEM images of cement matrix containing CNT-TEOS/PVP NFs. (a) magnification of 20 k, 
(b) magnification of 50 k. 

3.4. EDS Analysis 
Figures 10–14 illustrate our EDS analyses of the surface of the hardened plain cement 

paste, the hardened cement pastes blended with TEOS/PVP NFs and CNT-TEOS/PVP 
NFs, and the local zone containing the nanofibers inside the pastes. In general, the element 

Figure 9. SEM images of cement matrix containing CNT-TEOS/PVP NFs. (a) magnification of 20 k,
(b) magnification of 50 k.

3.4. EDS Analysis

Figures 10–14 illustrate our EDS analyses of the surface of the hardened plain cement
paste, the hardened cement pastes blended with TEOS/PVP NFs and CNT-TEOS/PVP
NFs, and the local zone containing the nanofibers inside the pastes. In general, the element
components in all the pastes are consistent together. The main elements of all three samples
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are Ca, Si, Al, and O, which are the components of common hydrated products, such as CH,
CSH, calcium aluminate hydrates (CAH), etc. [36–40]. The main reactions of the hydration
process are shown in Equations (1)–(3) below:

C3A + 6H→ C3AH6 (1)

2C3S + 6H→ C3S2H3 + 3CH (2)

2C2S + 4H→ C3S2H3 + CH (3)

However, the proportion of Si element (in SiO2) in the plain paste is less than that
in the pastes including nanofibers, around 3.57 wt% in the plain paste compared with
4.07 wt% in both pastes blended with TEOS/PVP NFs and CNT-TEOS/PVP NFs (see
Figures 10, 11 and 13, and Table 8). Especially in the local zone that contains nanofibers,
the proportions of Si element are the highest at around 5.64 wt% and 5.38 wt% in the zone
containing TEOS/PVP NFs and CNT-TEOS/PVP NFs, respectively (see Figures 12 and 14,
and Table 8). From our results, we observed that the hydration products in all samples
are consistent with each other. However, the content of the Si element changed among the
three samples. As a result, the more content of the Si element added, the more the CSH
component increases. Therefore, the structure becomes more compacted, increasing the
material’s compressive behavior. Furthermore, a comparison of the ratio between Ca and Si
(Ca/Si) can reflect the situation of CSH in cement hydration products. Table 8 shows that the
highest Ca/Si ratio belongs to the hardened plain cement paste (4.87), and it reduces in the
TEOS/PVP NFs-blended cement paste and the CNT-TEOS/PVP NFs-blended cement paste
(3.81 and 2.68, respectively). Singh et al. [41] and Da Silva Andrade et al. [42] concluded
that the reduction in the Ca/Si ratio complied with the increase in the silica reactive for the
formation of CSH. Therefore, the lowest Ca/Si ratio observed from the EDS analysis of the
paste blended with CNT-TEOS/PVP NFs is comparable to the highest previously observed
compressive behavior.

Table 8. Elemental analysis from EDS results.

Element Wt% Wt% Sigma Atomic % Standard Label

Plain paste

C 6.70 0.41 11.69 C Vit
O 47.48 0.33 62.21 SiO2

Mg 1.90 0.05 1.64 MgO
Al 2.17 0.05 1.69 Al2O3
Si 4.78 0.07 3.57 SiO2
S 0.82 0.04 0.54 FeS2
K 1.23 0.05 0.66 KBr
Ca 33.19 0.24 17.36 Wollastonite
Fe 1.73 0.11 0.65 Fe

T28S/C28S

C 9.54 0.39 16.40 C Vit
O 45.00 0.32 58.08 SiO2

Na 0.92 0.05 0.83 Albite
Mg 0.55 0.04 0.47 MgO
Al 1.60 0.05 1.22 Al2O3
Si 5.54 0.07 4.07 SiO2
S 0.76 0.04 0.49 FeS2
K 4.46 0.07 2.36 KBr
Ca 30.14 0.22 15.53 Wollastonite
Fe 1.47 0.11 0.54 Fe
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Table 8. Cont.

Element Wt% Wt% Sigma Atomic % Standard Label

T28S/C28S–
nanofibers
spectrum

C 8.70 0.43 15.06 C Vit
O 43.63 0.33 56.67 SiO2

Na 1.10 0.05 0.99 Albite
Mg 3.09 0.06 2.64 MgO
Al 1.44 0.05 1.11 Al2O3
Si 7.62 0.09 5.64 SiO2
S 0.92 0.05 0.60 FeS2
K 5.05 0.08 2.68 KBr
Ca 27.44 0.22 14.23 Wollastonite
Fe 1.01 0.11 0.38 Fe

T28CS/C28CS

C 12.78 0.42 20.49 C Vit
O 49.00 0.33 58.98 SiO2

Na 1.00 0.05 0.84 Albite
Mg 0.62 0.04 0.49 MgO
Al 1.64 0.04 1.17 Al2O3
Si 5.94 0.07 4.07 SiO2
S 0.81 0.04 0.49 FeS2
K 4.34 0.07 2.14 KBr
Ca 22.75 0.18 10.93 Wollastonite
Fe 1.14 0.09 0.39 Fe

T28CS/C28CS–
nanofibers
spectrum

C 8.92 0.41 16.42 C Vit
O 37.01 0.34 51.15 SiO2

Na 1.19 0.05 1.14 Albite
Al 1.58 0.05 1.29 Al2O3
Si 6.83 0.08 5.38 SiO2
S 1.44 0.05 0.99 FeS2
K 8.22 0.11 4.65 KBr
Ca 33.30 0.25 18.37 Wollastonite
Fe 1.51 0.12 0.60 Fe
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3.5. Thermal Analysis

Figures 15–18 show the results from thermogravimetric analyses of the modified
cement pastes and plain cement paste. Generally, the TGA results show the common curves
for hardened cement paste. In the TGA result of the cement pastes before 145 ◦C, the weight
loss belongs to the free water included in each sample [39]. Therefore, for comparing the
TGA results of three pastes, the point 100% weight should be put at 145 ◦C (see Figure 15).
The thermal analysis result of the hardened cement paste sample normally consists of three
processes, namely the dehydration of CSH, dehydration of CH, and decarbonation of calcite,
which are related to three temperature ranges at 145 ◦C–200 ◦C, 400 ◦C–500 ◦C, and 550 ◦C–
900 ◦C, respectively [11,12,43–45]. Figure 15 shows that the weight loss from the thermal
analysis of the hardened cement paste blended with CNT-TEOS/PVP NFs is the highest,
followed by the hardened cement paste blended with TEOS/PVP NFs, while the lowest
weight loss belonged to that of the plain paste. Figures 16–18 present the TGA/DTG results
of each sample and the detail of the %weight loss that peaked out from the curves. The
%weight loss of hydration products from the modified cement pastes is more than that of the
plain pastes. Specifically, the amount of CSH phase in the pastes containing TEOS/PVP NFs
and CNT-TEOS/PVP NFs is higher than that in the plain pastes. Our findings confirmed
that the more compacted structure that developed inside the modified pastes was a result
of the increased CSH content. Additionally, CSH is the primary component that formed the
long-term strength and durability of cement-based materials [46], explaining the increase
in compressive strength. In Figure 18, a peak around 550 ◦C to 650 ◦C is attributed to the
weight loss of CNTs, which is found in [47]. Above all, the TGA results are suitable with the
above results, namely that the higher proportion of hydrates in the cement matrix, which
were blended with TEOS/PVP NFs and CNT-TEOS/PVP NFs, explained the increase in
the compressive strength of cementitious materials.

Figures 15–18 show the results from thermogravimetric analyses of the modified
cement pastes and the plain cement paste. Generally, the TGA results show the common
curves for hardened cement paste. As the authors’ knowledge, in the TGA result of cement
pastes, before 145 ◦C, the weight loss belongs to the free water included in each sample [39].
Therefore, for comparing the TGA results of three pastes, the point 100% weight should be
put at 145 ◦C (see Figure 15). As reported from the literature, the thermal analysis result of
hardened cement paste sample normally consists of three processes the dehydration of CSH,
dehydration of CH, and the decarbonation of calcite, which is related to three temperature
ranges at 145 ◦C–200 ◦C, 400 ◦C–500 ◦C, and 550 ◦C–900 ◦C, respectively [11,12,43–45].
As can be seen from Figure 15, the weight loss from the thermal analysis of the hardened
cement paste blended with CNT-TEOS/PVP NFs is the highest, followed by the observation
of the hardened cement paste blended with TEOS/PVP NFs and the lowest weight loss has
belonged to that of the plain paste. Figures 16–18 present the TGA/DTG results of each
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sample and the detail of %weight loss that peaked out from the curves. It is clear that the
%weight loss of hydration products from the modified cement pastes is more than that of
the plain pastes. Especially the amount of CSH phase in the pastes containing TEOS/PVP
NFs and CNT-TEOS/PVP NFs is higher than that in the plain pastes. These findings
confirmed the more compacted structure that developed inside the modified pastes as a
result of the increased CSH content. Additionally, CSH is the primary component that
forms the long-term strength and durability of cement-based materials [46]. Therefore, the
rise in compressive strength can be explained by these observations. In Figure 18, a peak
around 550 ◦C to 650 ◦C is attributed to the weight loss of CNTs, which is found in [47].
Above all, the TGA results are suitable with the above results. The higher proportion
of hydrates in the cement matrix, which were blended with TEOS/PVP NFs and CNT-
TEOS/PVP NFs, has been observed and explained for the increase in compressive strength
of this cementitious material.
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4. Conclusions

In our study, we showed that tetraethoxysilane/polyvidone nanofibers (TEOS/PVP
NFs) and their modified version with carbon nanotubes (CNT-TEOS/PVP NFs) have an
impact on the mechanical and microstructural characteristics of cementitious materials. We
make the following conclusions considering our findings:

- According to results from mechanical strength testing, adding TEOS/PVP NFs and
CNT-TEOS/PVP NFs to cementitious materials results in an increase in compressive
strength of 28% and 38% and in toughness characteristics of 54% and 66%, respectively;

- We observed our proposed nanofibers’ morphology using SEM and TEM studies. We
discovered that TEOS/PVP NFs had a hollow structure by examining TEM images.
Additionally, the existence of CNTs was clear;

- We discovered the bridging effect of fibers inside the matrix through SEM images. Ad-
ditionally, through our EDS and TGA observations, we assessed the change in cement
hydrates’ proportions and the more compacted structures of the modified cement
pastes. Based on these microstructure observations, we showed that a higher percent-
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age of cement hydrates combined with the more compacted structure is commensurate
with, the higher compressive strength of our survey’s samples.

Above all, we regarded the process of adding electrospun nanofibers to the pastes as a
useful strategy for strengthening cementitious materials. Our findings can be considered
a foundation for increasing cement quality while lowering overall usage, thereby mini-
mizing its environmental impacts. However, more studies are required to optimize the
performance of the composite cement manufacturing process and determine the impact of
these nanofibers on the other qualities of cement paste and concrete to put this product to
use in practical applications.
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19. Veverková, I.; Lovětinská-Šlamborová, I. Modified Silica Nanofibers with Antibacterial Activity. J. Nanomater. 2016, 2016, 2837197.

[CrossRef]
20. Henry, N.; Clouet, J.; Le Visage, C.; Weiss, P.; Gautron, E.; Renard, D.; Cordonnier, T.; Boury, F.; Humbert, B.; Terrisse, H.; et al.

Silica nanofibers as a new drug delivery system: A study of the protein–silica interactions. J. Mater. Chem. B 2017, 5, 2908–2920.
[CrossRef]

21. Tepekiran, B.N.; Calisir, M.D.; Polat, Y.; Akgul, Y.; Kilic, A. Centrifugally spun silica (SiO2) nanofibers for high-temperature air
filtration. Aerosol Sci. Technol. 2019, 53, 921–932. [CrossRef]

22. Choi, S.-S.; Lee, S.G.; Im, S.S.; Kim, S.H.; Joo, Y.L. Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 2003,
22, 891–893. [CrossRef]

23. Newsome, T.E.; Olesik, S.V. Silica-based nanofibers for electrospun ultra-thin layer chromatography. J. Chromatogr. A 2014, 1364,
261–270. [CrossRef] [PubMed]

24. Freyer, A.; Savage, N.O. Effects of Sol Viscosity and Application to Thin Layer Chromatography. In The Science and Function of
Nanomaterials: From Synthesis to Application; American Chemical Society: New York, NY, USA, 2014. [CrossRef]

25. Shahhosseininia, M.; Bazgir, S.; Joupari, M.D. Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci.
Eng. C 2018, 91, 502–511. [CrossRef] [PubMed]

26. Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H.J. Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and
Solvent Properties. J. Phys. Chem. C 2010, 114, 8821–8827. [CrossRef]

27. Huang, Y.Y.; Terentjev, E.M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties.
Polymers 2012, 4, 275–295. [CrossRef]

28. Yang, K.; Yi, Z.; Jing, Q.; Yue, R.; Jiang, W.; Lin, D. Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the
anionic surfactant SDBS: The role of sonication energy. Chin. Sci. Bull. 2013, 58, 2082–2090. [CrossRef]

29. Sabet, S.M.; Mahfuz, H.; Hashemi, J.; Nezakat, M.; Szpunar, J.A. Effects of sonication energy on the dispersion of carbon nanotubes
in a vinyl ester matrix and associated thermo-mechanical properties. J. Mater. Sci. 2015, 50, 4729–4740. [CrossRef]

30. ASTM C150; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2020.
31. Rao, A.M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P.C.; Haddon, R.; Venkateswaran, U.D.; Kwon, Y.-K.; Tomanek, D. Effect

of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Phys. Rev. Lett. 2001, 86, 3895–3898.
[CrossRef]

32. Sabba, Y.; Thomas, E.L. High-Concentration Dispersion of Single-Wall Carbon Nanotubes. Macromolecules 2004, 37, 4815–4820.
[CrossRef]

33. Che, J.; Wu, K.; Lin, Y.; Wang, K.; Fu, Q. Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes
ternary composites via filler network-network synergy. Compos. Part A Appl. Sci. Manuf. 2017, 99, 32–40. [CrossRef]

34. ASTM C307; Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings. ASTM
International: West Conshohocken, PA, USA, 2018.

35. ASTM C109; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube
Specimens). ASTM International: West Conshohocken, PA, USA, 2020.

36. Mohammed, S.; Elhem, G.; Mekki, B. Valorization of pozzolanicity of Algerian clay: Optimization of the heat treatment and
mechanical characteristics of the involved cement mortars. Appl. Clay Sci. 2016, 132–133, 711–721. [CrossRef]

37. Nevielle, A.M. Properties of Concrete, 5th ed.; Pearson, Prentice Hall: London, UK, 2005.
38. Vedalakshmi, R.; Raj, A.S.; Srinivasan, S.; Babu, K.G. Quantification of hydrated cement products of blended cements in low and

medium strength concrete using TG and DTA technique. Thermochim. Acta 2003, 407, 49–60. [CrossRef]
39. Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997; Chapter 5.
40. Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials; The McGraw-Hill Companies, Inc: New York, NY,

USA, 2006; Chapter 6; pp. 203–252. [CrossRef]
41. Singh, L.; Zhu, W.; Howind, T.; Sharma, U. Quantification and characterization of C-S-H in silica nanoparticles incorporated

cementitious system. Cem. Concr. Compos. 2017, 79, 106–116. [CrossRef]
42. Andrade, D.D.S.; Rêgo, J.H.D.S.; Morais, P.C.; Lopes, A.N.D.M.; Rojas, M.F. Investigation of C-S-H in ternary cement pastes

containing nanosilica and highly-reactive supplementary cementitious materials (SCMs): Microstructure and strength. Constr.
Build. Mater. 2019, 198, 445–455. [CrossRef]

43. Kim, J.J.; Foley, E.M.; Taha, M.M.R. Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying
CaO/SiO2 mixture ratios. Cem. Concr. Compos. 2013, 36, 65–70. [CrossRef]

http://doi.org/10.1016/j.mseb.2017.01.001
http://doi.org/10.1021/acs.accounts.7b00218
http://www.ncbi.nlm.nih.gov/pubmed/28777535
http://doi.org/10.1021/cm061331z
http://doi.org/10.1088/0957-4484/19/44/445714
http://doi.org/10.1155/2016/2837197
http://doi.org/10.1039/C7TB00332C
http://doi.org/10.1080/02786826.2019.1613514
http://doi.org/10.1023/A:1024475022937
http://doi.org/10.1016/j.chroma.2014.08.065
http://www.ncbi.nlm.nih.gov/pubmed/25218634
http://doi.org/10.1021/bk-2014-1183.ch008
http://doi.org/10.1016/j.msec.2018.05.068
http://www.ncbi.nlm.nih.gov/pubmed/30033282
http://doi.org/10.1021/jp101431h
http://doi.org/10.3390/polym4010275
http://doi.org/10.1007/s11434-013-5697-2
http://doi.org/10.1007/s10853-015-9024-y
http://doi.org/10.1103/PhysRevLett.86.3895
http://doi.org/10.1021/ma049706u
http://doi.org/10.1016/j.compositesa.2017.04.001
http://doi.org/10.1016/j.clay.2016.08.027
http://doi.org/10.1016/S0040-6031(03)00286-7
http://doi.org/10.1036/0071462899
http://doi.org/10.1016/j.cemconcomp.2017.02.004
http://doi.org/10.1016/j.conbuildmat.2018.10.235
http://doi.org/10.1016/j.cemconcomp.2012.10.001


Appl. Sci. 2023, 13, 714 19 of 19

44. Foley, E.M.; Kim, J.J.; Taha, M.M.R. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made
with 1.5 CaO/SiO2 mixture. Cem. Concr. Res. 2012, 42, 1225–1232. [CrossRef]

45. Wongkeo, W.; Thongsanitgarn, P.; Chindaprasirt, P.; Chaipanich, A. Thermogravimetry of ternary cement blends—Effect of
different curing methods. J. Therm. Anal. 2013, 113, 1079–1090. [CrossRef]

46. Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY,
USA, 2013.

47. Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, M.S.; Selegue, J.P. Thermogravimetric Analysis of the Oxidation
of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry. Nano Lett. 2002, 2,
615–619. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cemconres.2012.05.014
http://doi.org/10.1007/s10973-013-3017-3
http://doi.org/10.1021/nl020297u

	Introduction 
	Experiments 
	Materials 
	Polymer Solution 
	Electrospinning Process 
	Hardened Cement Pastes Preparation 
	Apparatus and Methodology 

	Results and Discussion 
	Tensile and Compressive Strength 
	Morphological Characteristics of Nanofibers 
	Microstructure of Hardened Cement Pastes 
	EDS Analysis 
	Thermal Analysis 

	Conclusions 
	References

