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Abstract: Estimating the three-dimensional (3D) pose of real objects using only a single RGB image
is an interesting and difficult topic. This study proposes a new pipeline to estimate and represent
the pose of an object in an RGB image only with the 4-DoF annotation to a matching CAD model.
The proposed method retrieves CAD candidates from the ShapeNet dataset and utilizes the pose-
constrained 2D renderings of the candidates to find the best matching CAD model. The pose
estimation pipeline consists of several steps of learned networks followed by image similarity
measurements. First, from a single RGB image, the category and the object region are determined and
segmented. Second, the 3-DoF rotational pose of the object is estimated by a learned pose-contrast
network only using the segmented object region. Thus, 2D rendering images of CAD candidates are
generated based on the rotational pose result. Finally, an image similarity measurement is performed
to find the best matching CAD model and to determine the 1-DoF focal length of the camera to align
the model with the object. Conventional pose estimation methods employ the 9-DoF pose parameters
due to the unknown scale of both image object and CAD model. However, this study shows that
only 4-DoF annotation parameters between real object and CAD model is enough to facilitates the
projection of the CAD model to the RGB space for image-graphic applications such as Extended
Reality. In the experiments, performance of the proposed method is analyzed by using ground truth
and comparing with a triplet-loss learning method.

Keywords: pose estimation; CAD retrieval; ShapeNet; image similarity; 4-DoF annotation; extended reality

1. Introduction

Estimating the three-dimensional (3D) pose of an object in an image captured with a
camera is an important problem in computer and robot vision. Estimating the 3D pose of an
object refers to determining the 3D rotation and translation—that is, six degrees of freedom
(6-DoF)—of the object from a certain reference coordinate system to the camera coordinate
system. Here, the 3D rotation and translation refer to the 3D rigid transformation from the
reference coordinate system to the camera coordinate system. Moreover, in case that 3D
CAD model retrieval from the reference coordinate system is considered at the same time,
the 3D pose information must be represented in 9-DoF due to the unknown scale between
the object and the corresponding CAD model.

Estimating the 3D pose of an object in an image captured with a camera has several
application areas. For example, in order for a robot to pick up an object, it has to estimate
the 3D pose of the object to determine the picking points of its own hand. Another
application area is autonomous driving vehicles. For example, images of road conditions
and circumstances are captured with a camera installed on an autonomous driving vehicle.
These images are then used to estimate the 3D pose of other vehicles on the road to predict
their motion.

The technology for estimating the 3D pose of an object can also be used in extended
reality (XR). As shown in Figure 1, if the 3D pose of the bench object shown in the camera
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image is estimated, the estimated rotation and translation information is used to transform
the 3D CAD model of the bench into the camera coordinate system and project it onto the
image to align it perfectly with the real image. XR techniques can be applied to remove
the bench from the image or to change the shape of the bench bench using this alignment
result. The 3D pose of the bench needs to be precisely estimated to align the chair in the
image with the CAD model, as shown in Figure 1. In this case, the CAD model is generally
represented with an unknown scale. Thus, 3D pose between the CAD model and the real
bench object must be represented in 9-DoF parameters.
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Figure 1. 3D pose annotation of a real object can be used to project and align the matching CAD
model to the object region in an image.

Various approaches have been proposed for estimating the 3D pose of an object using
images. Most previous studies on 3D pose estimation employed two types of techniques.
The first technique is to utilize the 3D depth information of the object in an image using
a depth camera. The second technique is to perform 3D-to-3D matching between the
CAD model and the 3D shape information of the object extracted with a stereo matching
technique using two or more images [1–3]. 3D depth or shape of the real object is very
useful information for 3D pose estimation. However, acquiring the 3D information of an
object from the image is difficult if only a single RGB image is used. In this study, we
address a 3D pose estimation using only a single RGB image.

In this paper, we propose a new framework to estimate the relative 3D pose between
an object in a single RGB image and its CAD correspondence in an Internet dataset. The
3D pose information is represented by only 4-DoF parameters between the object and the
model. This also provides the 4-DoF annotation to the CAD model to align the projection
of the CAD model to the object region in the RGB image. The proposed framework utilizes
a method that retrieves from the CAD dataset a 3D mesh model with the same class as the
object detected in the image.

Figure 2 shows the proposed pose estimation framework, and the overall process is
as follows. First, the object is detected from an RGB input image using a deep learning
network to determine its class and bounding box (BB). Second, the 3-DoF rotational pose
of the object—azimuth, elevation, and inplane rotation—is determined using only the
BB region of the input image. This process uses a pretrained deep learning network for
pose estimation. Third, candidate 3D CAD models with the same class are retrieved from
the CAD database using the 3D rotational pose and class information of the object. Here,
the estimated rotational pose is used to rotate the CAD model, and two-dimensional (2D)
rendered images of the CAD models are generated through rendering. Fourth, the similarity
between the rendered images of the candidate CAD models and the actual object image
is measured. Among the candidate CAD models, the model that best matches the actual
object is selected. Finally, the 3D mesh model of the selected CAD model is placed in a fixed
distance on the z-axis from the camera and projected onto the actual image by changing the
focal length. This process is repeated, and the 1-DoF focal length is determined by selecting
the value that produces the best alignment with the object region of the actual image.

The contributions of this study are summarized as follows:

(1) The 4-DoF pose estimation pipeline from a single RGB image is proposed.
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(2) The 4-DoF pose annotation database can be generated to align the CAD model of a
real object in the image plane.

(3) Three image similarity criteria are proposed to match deep features between rendered
CAD and real object images.

Section 2 presents a review of various existing methods for estimating the 3D pose of
an object detected in an image. Then, Section 3 presents the proposed framework in detail,
and Section 4 describes the experiment for estimating the 3D pose of objects detected in
real images collected by us. Finally, Section 5 presents the discussion.
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2. Literature Review
2.1. Retrieval of CAD Models

With regard to one of the SHREC tracks, Hua B. et al. [4] introduced various techniques
for retrieving CAD models and estimating the pose of an object using the 2D information
and 3D depth information of the object from an RGB-D image. In their study, a 3D CAD
model dataset called ObjectNN was provided to track participants, and the performances
of various algorithms were compared. ObjectNN was composed of 1667 RGB-D images
obtained from the SceneNN [5] dataset and 3308 CAD models of 20 categories obtained
from ShapeNet [6]. Their study compared the performances of six deep-learning-based
algorithms and three general feature-based algorithms, and the results of the experiment
showed that the model retrieval performance of the deep-learning-based algorithms was
superior to that of the feature-based algorithms.

2.2. Retrieval of CAD Models and Pose Estimation

Gümeli C. et al. [7] proposed a method most similar to the framework proposed in
this paper for estimating the 3D pose of an object. Their study also used RGB images as
the input and showed the process of estimating the pose of the CAD model with respect to
the camera coordinate system and projecting it onto the image as the final result. In their
study, the ResNet-50-FPN [8,9] was used to detect objects, and Mask-RCNN [10] was used
to segment the region of the object. Furthermore, to utilize the 3D distance information of
an object, the depth information was obtained from a single input image using MonoDepth
deep learning convolutional neural network (CNN) based on multiscale feature fusion [11].
The normal vector image of the surface of the object was recalculated using the depth and
segmentation information. In addition, the 3D shape and normal vector information of the
CAD model and the 2D color image and 3D normal vector image of the object were used as
the input to a deep learning network, and the pose of the CAD model with the best match
was estimated using the deep learning network. Moreover, the ScanNet25K [12] image data
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and CAD models provided by Scan2CAD [13] were used in their experiment. The error
measurement of the method proposed in their paper utilized the 3D annotation information
of Scan2CAD, and the accuracy of translation, rotation, and scale ratio was 27.4%.

In the previously described paper by Gümeli C. et al. [7], 3D CAD models of Scan2CAD [13]
were used. In Scan2CAD, a deep learning network was proposed for detecting an object in an
RGB-D input image and aligning a CAD model matching the detected object with the RGB-D
image. In addition, 3D CAD models, 3D scan data obtained with a depth camera, and 3D pose
annotation data of each model between the CAD model and scan data were provided to train
the network. For the 3D scan data, 1506 data points imported from ScanNet [12] were used, and
the annotation information of keypoints between 14,225 ShapeNet CAD models and scan data
were provided. In their study, a 3D CNN-based deep learning network was proposed to align
the 3D pose of the object detected in an RGB-D image in 9-DoF.

In Mask2CAD [14], introduced by Weicheng K. et al., a deep learning network was
proposed for detecting an object from an RGB input image and estimating the 3D pose
of the object in 5-DoF. The Mask2CAD network segments the region of the object and
compares the deep learning features of the segmented object with the features of the CAD
models in the embedding space to retrieve the most similar CAD model and estimate
the pose of the object. Moreover, Pix3D [15] and Scan2CAD datasets were used in their
experiment. In Pix3D, 10,069 images and the annotations of the 3D pose information of
objects in the images were used to measure accuracy. Moreover, the performance of the
network was tested using 5436 RGB images of Scan2CAD. The results of the experiment
for Pix3D showed an intersection over union (IoU) of approximately 0.613, and the average
precision (APmesh) was 8.4 for AP50-AP95 [16] of Scan2CAD.

In Pix3D, presented by Sun X et al. [15], a deep learning network was proposed for
detecting an object in a single RGB image and estimating the 3D pose of the object in 9-DoF.
In addition, a dataset was constructed using RGB images and CAD models for training the
network and the annotation information of the 3D pose of objects in the images, and the
dataset was published. In particular, in their study, all the objects in the images consisted
of only the products sold by IKEA, and the IKEA benchmark dataset was used for the
3D CAD models of the products [17]. The images of IKEA products were crawled from
the Internet, and the authors of the paper constructed the dataset using only the images
that almost perfectly matched the IKEA products. Hence, the results of the object pose
estimation experiment showed an accuracy of approximately 70%.

2.3. Industrial Applications of Object Pose Estimation

The 3D pose estimation of objects has several industrial applications, and a bin picking
technique is one of the examples. Bin picking is an essential technology for robots to pick
up objects or parts and move them to another location or assemble them. Recent technology
trends in pose estimation have been identified in the paper by He Z. et al. [1]. Studies on bin
picking technology have been ongoing for a long time, even prior to recent deep-learning
technology. Research on bin picking technology began with a study that used the feature
information of objects in images. Pose estimation using image feature information extracts
the feature information of objects detected in the input image primarily using feature point
extraction techniques, such as SIFT [18] or SURF [19], and uses the position information
of the feature points to estimate the 3D pose of the objects. In addition, a technique that
matches the feature points between a 3D CAD model and a 2D object image and uses the
PnP algorithm to estimate the 3D pose was introduced [20].

Yu X. et al. [21] recognized complexly arranged objects of various shapes and colors
and segmented the regions of the objects. Then, the rotation transformation was calculated
as quaternions to transform the CAD coordinate system to the camera coordinate system
for each segmented object. In their paper, they proposed a deep learning network called
PoseCNN for obtaining the rotation transformation. They also built the fully connected
layer of the network in an end-to-end fashion so that quaternions could be regressed.
They used the YCB-Video and LINEMOD datasets to evaluate their proposed technique
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quantitatively and used both RGB and RGB-D images as the input images. As RGB-D input
images were more advantageous for obtaining the rotation information of objects because
of the depth and scale information of the objects. Their 6-DoF pose estimation performance
was also higher for RGB-D input images.

The DenseFusion 6-DoF pose estimation network proposed by Chen W. et al. [22] used
RGB-D images as the input, and RGB and depth features were extracted using a separate
CNN network. Then, the features extracted from each image were fused into a global
feature using a multilayer perceptron (MLP) to extract features for each image pixel. In the
final process, the features of each pixel were used to perform regression on the rotation
information of the object with a quaternion model. Their proposed network showed
excellent performance and outperformed existing techniques in the ADD-S [18] evaluation.

Yisheng H. et al. [23,24] published two deep-learning-based papers related to pose
estimation: PVN3D and FFB6D. As both networks use RGB-D images as the input, they
have the drawback of having to obtain the depth information in advance using a color
camera and, additionally, a depth camera. A common technique used in both studies is
to utilize a CNN and an MLP to find keypoints, which are the most important feature
points in RGB images and depth images. ResNet34 [9], trained with general ImageNet [25],
was used to extract features from RGB images, and PointNet++ [26] was used to extract
features from depth images. In addition, keypoints were extracted using an MLP that
shares the result of each CNN as the weight. Here, the keypoints have color and depth
information. Hence, a 3D transformation matrix that minimizes the error between these
keypoints and the keypoints predefined in the CAD model is calculated. In their study, the
FFB6D network does not use an MLP and has a characteristic where all the CNN layers
that obtain features from the RGB and depth images share the weights. Then, the rotation
and translation matrices are obtained by performing depth-wise concatenation and least
squares on the shared features extracted by the CNN.

To develop a bin picking technology for the automation of logistics, Christopher
M. et al. [27] rendered the appearance of complexly stacked CAD models of various objects
with Blender and generated depth images to use them as the training data for the deep
learning network. YOLOv3 was used as the network for detecting objects, and the network
trained with CAD models was used to analyze the performance of the detection of objects
of various sizes in real images.

2.4. RGB Image-Based Pose Estimation

Studies on technologies for estimating the 3D pose of objects in RGB or RGB-D images
captured with a camera have been ongoing for a long time [1,2]. As 3D spatial information
is required to estimate the pose of an object, performance is generally better when 3D
RGB-D images are used than when only 2D RGB images are used. Therefore, further
studies have been conducted using RGB-D images as the input—either a learning-based or
non-learning-based method was used. However, a separate sensor, such as a depth camera,
is required to obtain RGB-D images. Hence, applying this technique to all image-processing
fields is difficult. Therefore, multiple learning-based studies have recently been conducted
using only RGB images.

Georgios G. et al. [28] proposed a deep learning network that extracts and matches
features from an RGB image and a CAD model. If feature point matching between the 2D
RGB image and the 3D CAD model is accurate, the 3D pose of the object can be obtained
through the RANSAC and PnP algorithms. In addition, VGG was used as the backbone
of the network, and a 2048-dimensional descriptor vector was generated for each grid of
the image using the keypoint proposal network. Moreover, Georgios G. et al. introduced a
more improved deep learning network in [29].

Florian L. et al. [30] also introduced a technique for extracting and matching the feature
points of an RGB image and a CAD model using a method similar to [28]. The most difficult
problem in matching features between an RGB image and a CAD model is the domain
gap. RGB images have natural colors like photographs because they display information



Appl. Sci. 2023, 13, 693 6 of 20

captured with a real camera. However, CAD models contain information generated in a
virtual graphic environment, and they do not have sufficient texture information. Hence,
the domain gap problem occurs. To solve this problem, in their study, the region of the
object was segmented from the RGB image using Mask-RCNN, and the VGG [31] network
was used to extract features from the RGB image and the rendered image of the CAD model.
To mitigate the domain gap problem in the feature extraction process, the feature vectors
were mapped to the joint embedding space to minimize the difference between the vectors
of the matching features. In their study, the Pix3D dataset was used for training. Moreover,
the proposed pose estimation improves the APmesh [32] to 37.8 on seen objects and to 17.1
on unseen objects.

Maciej J. et al. [33] compared the similarity between 2D images and 3D CAD models
using a Multi-view CNN [34]. Their study does not focus on a technique for estimating
the pose of an object in an RGB image. Instead, it focuses on retrieving a CAD model that
best matches the object in the RGB image among multiple CAD models. On the other hand,
Anan L. et al. [35] introduced a technique for retrieving a CAD model that best matches
the object in the input RGB image and estimating the pose using the same multi-view
CNN network. To solve the domain gap problem, they trained the network to improve the
retrieval performance by projecting the feature vector of the RGB image and the rendered
image of the CAD model onto a common vector space.

3. Proposed Pose Estimation Pipeline
3.1. Object Detection in RGB Images

The 3D pose estimation of an object proposed in this paper includes the rotation and
translation transformation relationships between the coordinate system of the CAD models
of ShapeNetCore and the coordinate system of the camera that captured RGB images.
It also includes the projection transformation from the camera coordinate system to the
image coordinate system. The rotation and translation transformations between the 3D
coordinate systems have 6-DoF. In addition, in order for the CAD model that has been
transformed into the camera coordinate system to match the size of the object in the RGB
image when the CAD model is projected onto the camera image space, the size of the
CAD model needs to be determined in each of the x, y, and z directions. Hence, additional
3-DoF pose information is required. Consequently, 9-DoF is required. However, this study
aims to calculate the pose information between the object in an RGB image and the CAD
model using only 4-DoF by minimizing the complexity of pose estimation. Here, 3-DoF is
required for rotation transformation, and the translation of the camera and the focal length
related to the size of the projected object are calculated in 1-DoF by considering them as
one parameter.

First, the rotation and translation transformations, which are external transformation
parameters, are relationships between two 3D coordinate systems. Hence, the candidate
CAD models need to be determined after determining the category of the object. Therefore,
in the first step, the proposed framework detects objects in RGB images. Several studies
have been conducted on non-learning- and learning-based object detection methods. Re-
cently, learning-based methods have shown relatively superior performances, and hence,
they are commonly used. In this study, DetectoRS [36] was used to detect objects and
segment the regions of objects. DetectoRS is a detection and instance segmentation network
that uses a feature pyramid network (FPN) [8] as its backbone. It utilizes the FPN repeatedly
to extract the features of images more precisely. In this study, the weights pretrained with
the Microsoft COCO 2017 dataset were used, and val2017 was used for testing. For the
baseline model of the network, ResNet-50 was used as the feature extractor, and a hybrid
task cascade was used as the detector. For the learning environment, the epoch was set
to 12, and the NVIDIA Titan RTX graphics card was used as the graphics processing unit
(GPU). The performance of the trained network was 49.1 for the box AP and 42.6 for the
mask AP.
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The CAD candidate models were determined from the object category of ShapeNet-
Core that matches the class of the object detected by DetectoRS in the RGB input image.
Ten candidate CAD models were selected for one category. Section 3.3 describes the candi-
date CAD models in detail. In addition, a 2D BB was determined with the segmentation
information of the region of the detected object, and the image of the object in the BB region
of the input RGB image was used for pose estimation.

3.2. 4-DoF Pose Estimation

The pose of an object refers to the position and rotation information of the object in 3D
space. In Euclidean space, which we generally use, the pose of an object can be expressed
by 3D rotation and translation. The rotation can be expressed as a 3 × 3 matrix, and the
translation can be expressed as a 3 × 1 vector. Here, both the rotation and translation
matrices have 3-DoF; hence, the 3D pose information has 6-DoF. In addition, as 3D rotation
and translation are transformation relationships between two coordinate systems, the
coordinate systems must be defined. In this study, the coordinate system of the CAD
models of ShapeNetCore is defined as the world coordinate system, and the coordinate
system of the camera that captures RGB images is defined as the camera coordinate system,
as shown in Figure 3. Rotation from the world coordinate system to the camera coordinate
system can be expressed using three rotation angles, as shown in Figure 3. These rotation
angles are denoted by azimuth (Azim), elevation (Elev), and inplane rotation (Inpr).
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Let PW be a point in the 3D CAD model space, and let PC be this point in reference to
the camera coordinate system. Moreover, let pB be the projection point in the 2D camera
image coordinate system of PC. Here, pB is a 2D coordinate when the BB region of the
object in the original RGB input image is considered a new 2D image space. Therefore, 2D
translation tB exists between the image space of the BB region and the coordinate system
of the original image space, as shown in Figure 4. Therefore, points PW and pB can be
expressed using the following perspective projection relation:

PC = [R|T]PW, (1)

spB = KPC =

 f 0 Ox
0 f Oy
0 0 1

PC. (2)
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Here, it is assumed that the x and y directions of the focal length, an inner parameter
of the camera, are the same. In addition, s is the distance value of the 3D point PC on the
z-axis or the scale value of the projection point PC, which is an arbitrary value that cannot
be known.

Suppose that the rotation matrix R from the world coordinate system to the camera
coordinate system is calculated first. In other words, if the azimuth, elevation, and inplane
rotation are known, the 3 × 3 matrix R can be calculated. Subsequently, suppose the CAD
model rotated into the camera coordinate system is translated only along the z-axis such
that the origin of the world coordinate system of the CAD model intersects the z-axis of the
camera coordinate system, as shown in Figure 3. In this case, the 3 × 1 translation vector
can be expressed as

T = [0 0 tZ]
′. (3)

Here, []’ is the transpose of the vector. If the above translation vector T is substituted
in Equation (1), we obtain

PC = RPW + T, (4)

PC = P′W + [0 0 tZ]
′, (5)

spB = KPC =

 f 0 Ox
0 f Oy
0 0 1

(P′W + [0 0 tZ]
′
)

, (6)

=


f P′Wx

+ Ox

(
P′Wz

+ tZ

)
f P′Wy

+ Ox

(
P′Wz

+ tZ

)
P′Wz

+ tZ

. (7)

We know from Equation (7) that the scale factor s is P′Wz
+ tZ. Hence, if it is transformed

into the 2D projection point, pB is expressed as follows:

pB =

pBx

pBx

1

 =


f

P′Wx
P′Wz+tZ

+ Ox

f
P′Wy

P′Wz+tZ
+ Oy

1

 (8)

In the above equation, the principal point is the 2D vector tM = [Ox Ox 1]′, as shown
in Figure 4. Hence, it is not related to the size of the object projected onto the image.
Therefore, to project the rotated coordinates P′W of the 3D CAD model onto the BB image
plane so that they exactly overlap with the real object of the RGB image, the parameters
related to the change in the size of the 2D image point pB must be calculated accurately. In
Equation (8), the parameters related to the size of the image point pB and whose values
have not been determined are the focal length f and the distance value tZ from the camera
coordinate system to the world coordinate system along the z-axis. However, both unknown
parameters need not be calculated. As both the parameters are related to the size of the 2D
image space of the object, one parameter can be fixed while the other parameter is varied
to obtain a value that achieves the optimal overlap with the object of the BB. Another factor
related to the size of the projected object is the coordinates of the CAD model. As the
CAD model of ShapeNetCore is not in a real metric space but in a virtual graphic space, its
size is an arbitrary value. Therefore, even P′Wz

, the z value of the rotated CAD model in
Equation (8), can be considered an arbitrary value.

Thus, the focal length f of the camera, the z-axis distance tZ, from the origin of the
camera coordinate system to that of the world coordinate system, and P′Wz

—the z value



Appl. Sci. 2023, 13, 693 9 of 20

of the rotated CAD model—in Equation (8) are all unknown scale values. Here, tZ can be
regarded as a constant. Hence, if tZ = 2.0 m, Equation (8) can be simplified as follows:

pB =

pBx

pBx

1

 =


f

P′Wx
P′Wz+2.0 + Ox

f
P′Wy

P′Wz+2.0 + Oy

1

. (9)

According to Equation (9), if tZ is regarded as an arbitrary constant, the optimal f can
be determined by changing the focal length f of the BB image camera and determining
how much the image of the CAD model projected onto the BB space overlaps with the
region of the actual object. In this study, the object in an RGB image is detected, and the
region of the object is segmented from the image. Then, the RGB image of the BB region
is used as the input to estimate the pose. Hence, the 3D pose information of the object
can be obtained by calculating both the 3-DoF rotation and the focal length f that makes
the projected region of the CAD model overlap with the object region the most. Thus, the
complete pose information is determined in 4-DoF. Previous studies had to solve highly
complex problems of 6-DoF, including the rotation and translation, or 9-DoF if including
the scale of the CAD model. In comparison, the proposed technique has the advantage of
minimizing the complexity of the pose estimation problem to 4-DoF.
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3.3. Estimation of Rotation and Focal Length

The previous section provided the theoretical background of the 4-DOF-based object
pose estimation proposed in this paper. This section describes the method of calculating
4-DoF, that is, 3-DoF for rotation and 1-DoF for the focal length f. Estimating the rotation
between the pose of the object detected in the RGB image based on the camera coordinate
system and the ShapeNetCore world coordinate system of the matching CAD model has
a high complexity of 3-DoF. Previous related studies also used the feature values for a
visual change owing to the rotation of the object. For learning-based methods, previous
studies have adopted the method of learning these features using a deep learning network.
However, as observed in FFB6D, which is a recent learning-based pose estimation method
that uses RGB images as the input, even learning all the visual features of the 3-DoF rotation
values for an object class requires a large amount of training data and deep CNN layers.
Hence, FFB6D is trained on one class and performs pose estimation for that class. In the case
of the existing methods using RGB-D images as the input, additional depth information is
available. Hence, these methods simultaneously learn the poses of objects from multiple
classes and use them. However, in this study, only RGB images are used as the input, and
hence, it is difficult to utilize them.

In this study, the 3-DoF pose is estimated using only the RGB input images of objects of
several classes. Hence, the existing method based on the image features of the objects is not
used. Instead, PoseContrast, which is a learning-based method that can estimate the pose
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regardless of the class of the object, is used. PoseContrast is a learning method that uses
pose-aware contrast loss to consider only the pose of the object and not its class. The pose
contrast loss of the object in the RGB image is based on SimCLR, which applies different
types of data augmentation to the image regardless of the class of the object. Then, the
feature representations of positive pairs are trained so that the distance between the feature
vectors decreases, and the feature representations of negative pairs are trained so that the
distance between the feature vectors increases. Based on this principle, PoseContrast learns
pairs with different poses as negative pairs and pairs with similar poses as positive pairs.

Three datasets—Pascal3D+, ObjectNet3D, and Pix3D—were used to train PoseCon-
trast. The entire dataset comprises 80,696 training images and 42,306 validation images
for 121 classes. Each dataset contains Euler angle information (azimuth, elevation, inplane
rotation) as the ground truth for learning the poses. The Adam optimizer was used in an
end-to-end manner for training, and the batch size was set to 32. The initial learning rate
was 10−4 at 15 epoch, and the training was conducted for approximately two hours using
the V-100 16G GPU. In addition, MoCo v2 (pretrained ResNet-50) was used as the image
encoder network.

After the rotational pose of the object is estimated, the method for estimating the
camera focal length f of 1-DoF is as follows. To project the CAD model onto the 2D BB
image space, the model needs to be expressed as points, and Equations (4)–(8) need to
be applied. However, all the CAD models of ShapeNetCore are saved in a mesh format.
Therefore, it is difficult to project the vertices of the mesh model onto the image plane and
compare the degree of overlap between the projected model and the image information of
the actual object. Therefore, in this study, the CAD model expressed in a mesh format was
transformed into point clouds, which were then projected onto the BB image. Then, the
degree of overlap between the distribution of the point clouds and the segmented region of
the object was determined using the IoU. As shown in Figure 5, the CloudCompare [37]
software was used to transform the mesh model into point clouds. The mesh of the CAD
model consists of vertices. However, as shown in Figure 5b, the number of points is
insufficient to calculate the IoU. Therefore, the mesh surface was sampled as points, as
shown in Figure 5c. In addition, numerous points were projected onto the BB image plane,
and an f value with an IoU close to 1.0 was selected. After projecting the point cloud
data of the model onto the BB image space using the projection transformation matrix in
Equation (2), a rectangular space was defined with the maximum and minimum values of
x and y of the projected points. Then, the IoU between this rectangular space and the BB
rectangular space was used to determine the most suitable focal length.
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Figure 5. An example of the graphical representation of a CAD model. (a) Mesh, (b) mesh vertices:
17,815, and (c) resampled points: 60,000.

3.4. Retrieval of a CAD Model and Similarity Measurement

The CAD model whose shape best matches the object detected in the RGB input image
was retrieved from ShapeNetCore. ShapeNetCore consists of 51,300 CAD models classified
into 55 categories. Each category is further divided into several subcategories. For example,
the category “chair” has 23 subcategories and consists of 6778 models. Therefore, the
class of the object detected in the RGB image can be regarded as one type of category in
ShapeNetCore. If the class of the object detected in the image is “chair,” the model with
the best matching shape among 6778 chairs in the “chair” category needs to be retrieved
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from ShapeNetCore. However, such a retrieval task is difficult, mainly because of the
domain gap problem. The CAD models of ShapeNetCore are 3D mesh data generated with
a graphic technology. The texture of the CAD models is also generated with the graphic
technology. Hence, there is a significant difference between the CAD model and the actual
appearance. Even if a 2D rendered image of a CAD model is generated for a comparison
with the image features of the object detected in the input image, the 2D rendered image
also has noticeable graphic texture characteristics. Hence, there is a significant difference
between the 2D rendered image and the actual image.

In retrieving CAD models, the number of candidate CAD models is another problem,
along with the domain gap problem. As mentioned in the earlier example, the “chair”
category, which is the most common object among indoor objects, has 6778 CAD models.
In the case of the “table” category, there are 26 subcategories and 8436 models. Hence,
retrieving a CAD model identical to the object in the actual image is a difficult task. Hence,
previous studies using the ShapeNet dataset did not use all the CAD models but used only
a small number of models. As another example, only 90 CAD models were used out of
759 CAD models in the IKEA dataset [17] in Pix3D [15]. As Pix3D uses nine categories, ten
CAD models were used for each category on average.

In this study, we also selected ten categories in ShapeNetCore. For each category,
ten CAD models with commonly encountered shapes were selected. In other words,
ten categories and one hundred CAD models were used in the experiment, as shown
in Figure 6. As shown in the figure, CAD models with different shapes were selected
within each category for easier classification. However, as evident in the example of the
all categories, the shapes of the candidate CAD models were still similar even though we
manually selected the candidate models. Hence, retrieving a model that best matches the
object in the input image among the candidate models is a difficult task.

As explained earlier, the category of the object detected in the RGB input image was
determined, and the CAD model with the same category was retrieved from ShapeNetCore.
In general, to learn a category called “car” with the current learning-based deep learning
technology, a dataset is constructed with a large volume of car image data with various
shapes, and this dataset is used to train the network. For example, even in training datasets,
such as ImageNet [25], Microsoft COCO dataset [16], and YOLOv3, categories related to
“car” are only classified into categories with a broad meaning, such as “vehicle” and “truck.”
However, the CAD models required in this study must have almost the same shape as the
object in real images. The technique developed by us is utilized in the XR field. Hence,
when the 3D CAD model is projected onto the 2D image space with the pose information
of the actual object, the projected model must align with the region of the object accurately.
This indicates that the shape of the detected object must match the shape of the model of
ShapeNetCore almost exactly. Therefore, a model that best matches the object detected in
the image must be retrieved from the ten candidate models selected by us for each category.

This operation can be considered one of the 2D–3D model retrieval methods. As
we determined the approximate 3D rotation information of the object detected in the
image using PoseContrast, we intend to solve the 2D–3D retrieval problem as a 2D–2D
matching problem. The rotation information (Azim, Elev, Inpr) of the object obtained
using PoseContrast in Section 3.3 and Blender Python API [38] are used to save the shape
of a candidate CAD model rotated into the camera coordinate system as a 2D image. If
the PoseContrast result can determine the approximate rotation information of the object,
the candidate model can be rotated to the viewpoint of the camera, and a 2D image of
an appropriate size can be generated. The image generation result can be regarded as
the image of a candidate model with the same rotation information as the actual object.
Moreover, we determine the final model by measuring the similarity between the BB image
that only includes the region of the object in the input image and the 2D image of the
candidate model generated using Blender Python API.
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Measuring the similarity between the actual image and the rendered image of the
CAD model is a difficult problem owing to the domain gap. The domain gap is the
most difficult problem in current learning-based object detection or retrieval methods [39].
This study does not deal with the domain gap problem directly. Instead, the final CAD
model is retrieved using the 2D–2D similarity measurement. In addition, the local features,
rather than global features, are compared between the object and the model to minimize
the domain gap problem in the similarity measurement process. As the category of the
object has already been determined in the object detection phase, a method that can
distinguish different local features among 10 candidate models with the same category is
more appropriate than to compare the global features among the candidate models again.

The local feature information is used to measure the similarity between the RGB image
of the actual object (within the BB region) and the 2D rendered image of the candidate
CAD model. In this study, the DELF [40] features are used to extract the local features of
images. DELF uses a learning-based CNN with the descriptor of image features required for
large-scale image retrieval. In a previous study [40], a two-phase process was performed for
large-scale image retrieval. We modified the image retrieval pipeline, which is the second
phase in DELF, and used it to measure the 2D–2D similarity. In the image retrieval pipeline
of DELF, the nearest neighbor is determined among the feature descriptors between the
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query image and all the images in the database. Subsequently, the matching points with
each database image are collected separately. Then, geometric verification is performed
using RANSAC [41] to determine the best-matching database image.

In this study, DELF was used to obtain and match all the features between the RGB
query image and the rendered images of ten candidate models. As the 3D pose of the object
was already estimated approximately from the query and rendered images—which are
used to measure the similarity—the pose of the object viewed in the image is almost similar.
Therefore, it is assumed that there is only small difference in rotation or scale between the
query and rendered images. Consequently, the 2D affine transformation model was used
in this study for the geometric verification of image feature matching. The final matched
candidate model was determined using the affine transformation model in the order of the
most inliers.

Suppose the 3 × 3 affine matrix Ak
ij between the RGB query image and k-th rendered

CAD image is determined by matching the DELF features between them. And suppose Iij
is the same size identity matrix. Here, i and j are indices of the matrix elements. In addition,
let Nk

inl be the number of feature inliers between them. We use following three criteria for
image similarity measurement ρk for the k-th rendered CAD image. The final candidate is
selected which has the maximum ρk. We demonstrated through the experiment that the
affine transformation model is sufficient to perform the geometric verification between the
query and rendered images.

• Similarity measure 1 (SM1):

εk = ∑i,j

∣∣∣∣∣∣
Ak

ij

max
(

Ak
ij

) − Iij

∣∣∣∣∣∣ (10)

ρk = Nk
inl o f k-th rendered image among f ive smallest εk

• Similarity measure 2 (SM2):

ρk = Nk
inl (11)

• Similarity measure 3 (SM3):

εk = ∑i,j

∣∣∣∣∣∣
Ak

ij

max
(

Ak
ij

) − Iij

∣∣∣∣∣∣ (12)

ρk = (1− α(sigmoid(εk))× Nk
inl (α = 0.35)

4. Experiments
4.1. Object Detection and Segmentation

To evaluate the performance of the proposed method, we use total ten indoor and
outdoor objects, Bed, Motobike, Table, Oven, Bag, Clock, Bottle, Chair, Car, and Bench as shown
in Figure 7. One common property of the test objects is that they are nonsymmetric.
Symmetric objects such as bottle or cup is not used to reduce the pose ambiguity problem.
In each object category, we collect 100 RGB images from the Internet. When collecting the
images, we try to collect such images whose color and shape are similar with those of the
corresponding CAD models as much as possible.
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Figure 7. Example images of ten test objects. Clockwise direction from the top-left: Clock, Chair,
Bench, Car, Bottle, Bag, Bed, Desk, Motobike, and Oven. (a) RGB input images (b) Detection and
semantic segmentation results.

In each object category, we have total ten CAD candidates. In fact, in each object
category, there is a large number of CAD models in ShapeNetXCore. For example, in the
Clock category, there are three sub-categories and 651 CAD models in total. Thus, there are
large overlaps in terms of similarity of color and shape. One of the purposes of our study is
finding the matching pair between the real and the CAD model. Therefore, it needs to be
the CAD models distinguishable in terms of color and shape. In each object category, we
select ten CAD models which are commonly available in daily life and have different color
and shape.

4.2. Pose Estimation and Similarity Measurement

In the previous section, the details of the object category and segmentation are de-
scribed. As the next step, the rotational pose of the object is estimated. In Figure 8, the
bounding box images of four sample objects are shown, Car, Bench, Bag, and Clock. At the
right side of the image, ten CAD models of the detected categories are shown. In this figure,
the rotational pose of the CAD models is determined with the results from PoseContrast.
The images of the CAD models are rendered by Blender Python API. As shown in this
figure, the pose of the CAD models is very close to that of input real object. Appearance of
the CAD models look different so that image similarity measurement can recognize the
instance of the models.

Figure 9 shows DELF feature matching results of sample four object categories between
the RGB input and CAD candidates. In each result, the left is RGB query and right is
rendered CAD image. The DELF features are detected in both RGB input images and the
rendered images. The blue-colored lines show the inlier matching features between the
two images. Because the pose of the real objects and CAD models are very similar, the
feature matching results implies that there is 2D affinity relationship between the real and
CAD images. Based on the number of inliers, only top five matching results are shown and
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the left one is the best match. Among them, the red-colored box in each category means
ground truth CAD model.
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4.3. Performance Analysis of Similarity Measurement

Tables 1–3 shows similarity matching results with three different measure criteria.
As mentioned before, we use ten object categories and each category has 100 RGB test
images, total 1000 RGB query images are used for experiments. However, at the object
detection and pose estimation steps, some query images are rejected because of detection
and estimation failure. Thus, in the similarity measurement experiment, total 596 query
images are used.

Table 1. CAD model retrieval results using the similarity measurement SM1.

Category 1-st Rank 2-nd Rank 3-rd Rank Top-3

Bag (19) 7 2 0 9
Bed (24) 4 7 3 14

Bench (63) 38 10 1 49
Bottle (77) 47 14 8 69
Car (80) 33 11 8 52

Chair (80) 45 21 3 69
Clock (59) 27 12 4 43

Motorbike (76) 37 8 8 53
Oven (79) 34 10 10 54
Table (39) 18 2 2 22

Total (596) 290 97 47 434

Success rate (%) 48.65 16.27 7.88 72.81

Table 2. CAD model retrieval results using the similarity measurement SM2.

Category 1-st Rank 2-nd Rank 3-Rd Rank Top-3

Bag (19) 7 3 3 13
Bed (24) 6 7 3 16

Bench (63) 39 16 2 57
Bottle (77) 41 15 14 70
Car (80) 33 16 6 55

Chair (80) 45 20 2 67
Clock (59) 26 13 4 43

Motorbike (76) 39 8 6 53
Oven (79) 33 9 12 54
Table (39) 20 4 1 25

Total (596) 289 111 53 453

Success rate (%) 48.48 18.62 8.89 76.00

Table 3. CAD model retrieval results using the similarity measurement SM3.

Category 1-St Rank 2-Nd Rank 3-rd Rank Top-3

Bag (19) 6 1 4 11
Bed (24) 6 5 5 16

Bench (63) 39 15 1 55
Bottle (77) 41 14 15 70
Car (80) 32 14 6 52

Chair (80) 43 20 3 66
Clock (59) 25 14 5 44

Motorbike (76) 38 7 7 52
Oven (79) 33 9 12 54
Table (39) 16 6 3 25

Total (596) 279 105 61 445

Success rate (%) 46.81 17.61 10.23 74.66
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In an ideal case, the similarity measurement finds the real matching CAD model
which yields the highest similarity score. However, due to the texture quality of the CAD
models, about 48% of the input finds the matching CAD models. Thus, we analyze the
similarity measure up to the top-3 similar CAD images as shown in the tables. As shown
in Tables 1–3, SM2 measurement shows the best performance, which simply counts the
number of matching inliers. However, in terms of the top-first model retrieval, SM1 is the
best measurement.

4.4. Comparison with a Triplet Loss Learning Method

The performance of the proposed method is also compared with a learning based
CAD model retrieval method [30]. In the deep learning architecture in [30], a triplet loss
learning network is employed for CAD model retrieval. This method also retrieves the
top-n matching CAD rendering images for candidate models, and a key point matching is
used to determine the final best matching model. We also employ the triplet loss learning
network for comparison with our method as shown in Table 4.

The triplet loss learning network in [30] composed of two VGG encoders to train the
positive and negative features between the RGB and CAD rendering images in a feature
embedding space. Here, the features from the RGB images become the anchor in the feature
space. For each RGB input image, we use one matching CAD image as the positive label
and ten mis-matching CAD images as the negative labels. The mis-matching CAD images
are randomly selected from all categories. As the encoder, the VGG16 model is used and it
was trained with ImageNet2014. For training, total 592 RGB images are used and the batch
size is set to 6. As the optimizer, SGD is used and the learning rate is set to 2 × 10−6. To
test the triplet loss network, total 100 RGB images are used which have not been included
in the learning. Furthermore, to improve the performance of the triplet loss network, the
negative mining strategy is also used. For negative mining, the CAD images of the bottom-7
negative images are reused for training the network.

Table 4. Comparison of CAD retrieval performance with triplet loss network [30]. (100 untrained
RGB images are teste.d).

Methods 1-st Rank 2-nd Rank 3-rd Rank Top-3

Triplet loss learning [30]
(w/o negative mining) 31 18 19 68

Triplet loss learning [30]
(w/negative mining) 29 25 17 71

Proposed (SM1) 56 13 4 73
Proposed (SM2) 56 16 6 78
Proposed (SM3) 51 15 12 78

Figure 10 shows the final image alignment results using the proposed 4-DoF pose
estimation. Onto the real image space, the matched CAD model, which is the top-first
CAD model from the similarity measure, is projected and overlapped. To project the
matched CAD model, we convert the mesh structure of the CAD model to point clouds
using CloudCompare. This alignment results show that the pose of the matched CAD
model is reasonably accurate for the application to the extended reality. As shown in the
figure, there is still overlap errors in some objects, which is caused by shape mismatch
between the real object and the CAD model. For example, the result of Bag object show
that the matched CAD model couldn’t perfectly overlap with the real object area. This is
due to the fact that there is no perfectly matching shape among our CAD candidates.

We present Figure 10 only for showing examples of CAD model alignment in the
input images, not showing the performance measurement of the proposed pose estimation.
For quantitative measurement of the alignment performance, the shape of the CAD model
should be same with the real object in the image so that the alignment error is measured in
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the image space. However, this paper uses the Internet database for the most-similar CAD
retrieval, thus the quantitative alignment error analysis is not addressed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 20 
 

figure, there is still overlap errors in some objects, which is caused by shape mismatch 
between the real object and the CAD model. For example, the result of Bag object show 
that the matched CAD model couldn’t perfectly overlap with the real object area. This is 
due to the fact that there is no perfectly matching shape among our CAD candidates. 

We present Figure 10 only for showing examples of CAD model alignment in the 
input images, not showing the performance measurement of the proposed pose estima-
tion. For quantitative measurement of the alignment performance, the shape of the CAD 
model should be same with the real object in the image so that the alignment error is 
measured in the image space. However, this paper uses the Internet database for the most-
similar CAD retrieval, thus the quantitative alignment error analysis is not addressed. 

 
Figure 10. The matched CAD model is projected to the 2D image plane with the 4-DoF pose infor-
mation. 4-DoF pose of the Clock and Car objects are very closely matched with the real objects. The 
Bench model projection is not perfectly matched with real object area due to a small pose error. The 
projection error of the Bag object CAD is caused by the shape mismatch between the real object and 
the CAD model. 

5. Discussion 
The goal of the proposed pipeline is to estimate the 3D pose of a real object in a single 

image only with the 4-DoF annotation parameters to a matching CAD model. To achieve 
the goal, the proposed pipeline detects objects of various classes in RGB images, retrieves 
CAD candidates with the same shape, estimate the rotational pose of the objects, and per-
forms the similarity measurement to find the base matching 3D model. The rotational pose 
is represented only with 3-DoF parameters and the focal length of the camera for align-
ment of the model to the object is represented only with 1-DoF parameter. Thus total 4-
DoF pose parameters are enough to annotate the pose of the CAD model relatively with 
the object area in an RGB image. 

In this study, ten CAD models were arbitrarily selected for each class of the object, 
and the similarity between the rendered image of the rotated CAD model and the RGB 
image was measured to determine the optimal CAD model. DetectoRS was trained to de-
tect the object and its class, and PoseContrast was used for rotation among the detected 
object pose information. The similarity between the rendered images of the 10 candidate 
CAD models with the same class as the class of the detected object was measured by 
matching the DELF feature to minimize the domain gap problem. 

From experiments, we find that only 4-DoF pose annotation parameters are enough 
to project the CAD model to the image space to align the shape of the model with the 
object region. The proposed pose estimation framework can be used to several graphic-
to-image fusion applications such as Augmented or Extended Reality. 

Figure 10. The matched CAD model is projected to the 2D image plane with the 4-DoF pose
information. 4-DoF pose of the Clock and Car objects are very closely matched with the real objects.
The Bench model projection is not perfectly matched with real object area due to a small pose error.
The projection error of the Bag object CAD is caused by the shape mismatch between the real object
and the CAD model.

5. Discussion

The goal of the proposed pipeline is to estimate the 3D pose of a real object in a single
image only with the 4-DoF annotation parameters to a matching CAD model. To achieve
the goal, the proposed pipeline detects objects of various classes in RGB images, retrieves
CAD candidates with the same shape, estimate the rotational pose of the objects, and
performs the similarity measurement to find the base matching 3D model. The rotational
pose is represented only with 3-DoF parameters and the focal length of the camera for
alignment of the model to the object is represented only with 1-DoF parameter. Thus total
4-DoF pose parameters are enough to annotate the pose of the CAD model relatively with
the object area in an RGB image.

In this study, ten CAD models were arbitrarily selected for each class of the object, and
the similarity between the rendered image of the rotated CAD model and the RGB image
was measured to determine the optimal CAD model. DetectoRS was trained to detect the
object and its class, and PoseContrast was used for rotation among the detected object pose
information. The similarity between the rendered images of the 10 candidate CAD models
with the same class as the class of the detected object was measured by matching the DELF
feature to minimize the domain gap problem.

From experiments, we find that only 4-DoF pose annotation parameters are enough to
project the CAD model to the image space to align the shape of the model with the object
region. The proposed pose estimation framework can be used to several graphic-to-image
fusion applications such as Augmented or Extended Reality.
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