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Abstract: Due to the barely resonant earthed system used in the transmission line, it is more challeng-
ing to identify faults at a 66 kV voltage level because of insufficient fault identification techniques.
In this paper, a 66 kV transmission line fault identification method based on a fault characteristic
matrix and an improved particle swarm optimization (IPSO)-wavelet neural network (WNN) is pro-
posed to address the difficulties in extracting and detecting characteristic parameters. The maximum
matrix of the dbN wavelet was used to determine its decomposition scale and construct the fault
characteristic matrix based on the energy values of frequency bands. The decomposition scale of
the dbN wavelet was determined by the modulus maximum matrix to ensure the integrity of fault
information. The fault feature matrix was then constructed based on the energy values of frequency
bands and the fault feature was accurately extracted. In this research, aiming at the problems such as
slow convergence speed and a tendency to fall into local minima, the WNN algorithm is enhanced
with the IPSO algorithm. This significantly increased the convergence speed of the identification
model and its ability to discover the global optimal solution. The simulation results demonstrate that
this method can effectively and accurately identify the fault type with high identification accuracy,
quick identification, and robust adaptability. Under challenging working conditions, it is capable of
accurately identifying the fault type of 66 kV transmission lines.

Keywords: 66 kV transmission line; resonant grounding system; wavelet neural network; characteristic
matrix

1. Introduction

Efficient and accurate fault identification is critical for emergency repair of high voltage
transmission lines, which are an integral part of the power system and prone to failure.
Compared with traditional transmission lines, 66 kV transmission lines are characterized
by high voltage levels, long distances, complex topological structures, large capacitance
to the ground during a fault, and a tendency to generate arc over-voltages, which lead to
complex fault features and difficulties in accurate extraction and fault identification. During
fault events, zero-sequence current and zero-sequence voltage change first and are more
accurate, complete, and fault-tolerant than steady-state current and voltage. In the case of
high-resistance ground faults, the transient characteristics of fault high-frequency signals
are inversely proportional to the transition resistance [1], and the transient zero-sequence
current has a nonlinear relationship in the transition process [2–4]. Over the years, various
fault detection methods based on zero-sequence current and voltage have been developed
to detect ground faults, such as one that extracts waveforms based on fault morphological
characteristics and another that uses the transient main resonant component [5]. However,
these methods have limitations in actual working conditions and can struggle to distinguish
the resonant component from the power frequency component. Further, a high-resistance
ground fault detection method based on the transient main resonant component has been
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proposed by Zhang et al. [6], however, this method is not effective at extracting the main
resonant component and it is difficult to distinguish the main resonant component from
the power frequency component. There are several primary causes of arc ground faults,
including lightning impulses, poor connections, and aging insulation [7,8]. However, arc
grounding faults cannot be accurately identified. Moreover, a method using the change in
waveforms such as voltage-current characteristics and zero-sequence currents as features
has been proposed for fault recognition [9]. In addition, a fault identification method based
on artificial neural networks has been proposed [10] due to the difficulty in extracting the
characteristics of arc earth faults and the differences in fault characteristics at different
voltage levels and in different environments. The method requires further consideration to
distinguish faults from normal system disturbances. A time-domain analysis method based
on Hilbert–Huang transform and a wavelet analysis method based on the time distribution
characteristics of fault harmonic characteristics have also been proposed [11,12]. However,
these methods only analyze and judge the waveform without extracting and optimizing
fault features.

In view of the difficulty of fault feature extraction and fault type identification for
66 kV transmission lines, a fault recognition method based on a fault characteristic matrix
and an improved particle swarm optimization (IPSO)-wavelet neural network (WNN) has
been proposed in this paper. Firstly, in the aspect of fault feature analysis and extraction,
theoretical and simulation analysis is carried out for various types of faults, and fault
features are selected as the basis for identification. Secondly, in order to ensure the integrity
of fault information, the decomposition scale of dbN wavelet is determined by using the
mode maximum matrix, and the fault characteristic matrix is constructed by combining the
energy values of each frequency band, so as to achieve accurate fault feature extraction. In
view of the limitations of standard WNN, this paper improves a hidden layer of the WNN
i to reduce the impact of large fluctuation data on identification accuracy, and an IPSO
algorithm is used to design a prediction error function, improving the recognition accuracy
and speed of the recognition model, so as to realize the rapid and accurate recognition of
fault types. Finally, a large number of simulation results show that the proposed method
can realize the fault type identification of 66 kV transmission lines with high recognition
accuracy, a fast recognition speed, and strong adaptability.

2. Fault Analysis and Feature Extraction

The failure process of the 66 kV transmission line can be divided into a transient
state and a steady state. In the steady state, the system’s zero-sequence current is at a
low level due to the arc suppression coil, making it difficult to use for fault identification.
In the transient process, the fault transient component is several times higher than the
steady component. Therefore, this paper uses fault transient electrical gas to identify a
single-phase ground fault, which can be classified into high resistance ground faults and
arc ground faults. Metallic ground faults, which are rare, are not considered in this paper.

2.1. Single-Phase Ground Fault Simulation and Analysis

Transmission line operating environment is complex and affected by many factors,
including non-ideal conductors such as tree branches, sand, and turf, which can cause
single-phase ground faults. These faults, caused by high-resistance media, are usually
characterized by transition resistance higher than 200 Ω and are collectively referred to
as high-resistance ground faults. If not addressed in a timely manner, these faults can
expand in scope and seriously affect the stable operation of transmission lines. When a
fault occurs, the system’s operation produces high-frequency electromagnetic oscillation,
causing line-wide over-voltage for several hours and posing a serious threat to the weak
insulation areas of the transmission line.

Since arc ground faults are easy to recognize due to their distinct characteristics and
high resistance ground faults and arc ground faults are common and difficult to identify in
the actual working conditions of 66 kV transmission lines, this paper focuses on these two
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types of faults and proposes fault judgment criteria through simulation analysis of various
fault types to achieve the goal of fault identification.

2.1.1. High Resistance Ground Fault

When a high resistance ground fault occurs, the fault equivalent circuit is shown in
Figure 1. The resistance R can be approximated as 3 times the transition resistance R f . Due
to the large value of the transition resistance, the zero-sequence capacitance flowing through
the system is small and the transient resonant frequency is low, so the line inductance L
can be ignored. The fault transient process is mainly a parallel resonance process between
the equivalent inductance Lp of the arc suppression coil and the ground capacitance C0Σ of
the system.

Figure 1. High-resistance ground fault equivalent circuit.

Figure 1 shows that C0k(k = 1, 2, 3) is the zero-sequence distributed capacitance of

line k to ground, C0Σ =
3
∑

k=1
C0k; i0k is zero sequence current of the k feeder, and iC0j is zero

sequence capacitance current to ground. i0 f and i0Lp are the zero-sequence current at the
fault point respectively and u f is the zero-sequence voltage of the bus.

The second-order nonlinear homogeneous differential equation is given in Equation (1):

3R f C0ΣLp
d2i0Lp

dt2 + Lp
di0Lp

dt
+ 3R f i0Lp = u f (t) (1)

The characteristic roots of this differential equation are given in Equation (2):




p1 = − 1
6R f C0Σ

+

√((
1

6R f C0Σ

))2
− 1

LpC0Σ

p2 = − 1
6R f C0Σ

−
√(

1
6R f C0Σ

)2
− 1

LpC0Σ

(2)

The zero-sequence current flowing through the arc suppression coil is given
in Equation (3):

i0Lp(t) = Bsin(ω0t + ϕ2) + A1ep1t + A2ep2t (3)

Here, ω0 is the angular frequency of zero-sequence current oscillation, and B, A1, A2,
and ϕ2 has the following meanings (Equation (4)):





B = Um√
(3R f )

2
(1−ω2

0 LpC0)
2
+(ω2

0 Lp)
2

A1 = ω0Bcosϕ2−p2Bsinϕ2
p2−p1

A2 = ω0Bcosϕ2−p1Bsinϕ2
p2−p1

ϕ2 = θ − arctan ω0Lp

3R f (1−ω2
0 LpC0)

(4)
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According to Equation (4), busbar zero sequence voltage is given in Equation (5):

u0(t) = Lp
di0Lp

dt
= ω0LpBcos(ω0t + ϕ2) + Lp p1 A1ep1t + Lp p2 A2ep2t (5)

The zero-sequence capacitance to the earth is given in Equation (6):

iC0k = C0k
du0

dt
= ω2

0 LpC0kBsin(ω0t + ϕ2) + LpC0k

(
p2

1 A1ep1t + p2
2 A2ep2t

)
(6)

The zero-sequence current at the fault point is given in Equation (7):

i0 f = i0Lp + i0 =
(

1 − ω2
0 LpC0

)
Bsin(ω0t + ϕ2) +

[
LpC0 p2

2 + 1
]

A1ep1t +
[

LpC0 p2
2 + 1

]
A2ep2t (7)

According to Equation (7), each outgoing zero-sequence current consists of a steady-
state component and a transient component. Considering that the initial value of the
two-phase attenuated DC component is not 0 at the same time and the attenuation factors
are not equal, the transient-free component always exists. The grounding resistance value
is proportional to the transient duration, which is helpful for fault diagnosis.

For high-resistance ground faults, the greater the ground resistance, the lower the
zero-sequence current flowing through the system, and the charge and discharge speed
of the zero-sequence capacitor on the line is slow, resulting in a low transient resonant
frequency of the system. In this case, the inductive reactance of the circuit is low and can
be essentially ignored. The transition process occurs through a parallel connection between
the zero-sequence capacitance and arc suppression inductance. Additionally, the transition
resistance is inversely proportional to the zero-sequence current at the fault point and
directly proportional to the transient resonant frequency. The maximum resonance fre-
quency only slightly exceeds the power frequency and in this case, the resonance frequency
approaches the power frequency, the waveform of the zero-sequence current exhibits beat
frequency phenomena.

As an example, consider a high resistance ground fault with a ground resistance of
1000 Ω that occurs 1 km from phase A of fault line 3 at 0.01 s. The zero-sequence current of
the fault line and non-fault phase is shown in Figure 2.

Figure 2. Zero-sequence current of High-resistance ground fault line and non-fault line.

Simulated results indicate that in the high-resistance earth fault state, the first half
wave phase of the fault phase is the opposite, and the wave’s amplitude differs greatly from
that of the non-fault phase. A high transition resistance results in a resonance frequency
that is virtually the same as a working frequency, and a zero-sequence current oscillation
frequency that is certain, but there is a phenomenon known as the beat frequency at the
outer edge of each wave peak, resulting in a waveform with a longer wavelength.
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2.1.2. Arc Ground Fault

Arc ground fault is a common and harmful fault that is difficult to detect due to its
complex mechanism and difficulty in extracting fault characteristics. In order to address
these problems, this paper analyzes the transient electrical volume when simulating arc
generation and arc grounding fault, and proposes an identification basis.

(1.) Mayr arc model

Mayr arc is selected for research in this paper, and the Mayr arc simulation model is
built through MATLAB/simulation combined with the arc, as highlighted in Equation (8):

1
g

(
dg
dt

)
=

1
τM

(
ei

ploss
− 1
)
=

1
τM

(
ei
e0i

− 1
)

(8)

In the formula, the expression of each parameter is given in Equation (9):




g = g0e
Q

Q0

τ = f
(

g, dg
dt , ploss

)
=

g· dg
dt

ploss

τM = g · Q0
g · 1

ploss
= Q0

ploss
ploss = pcd + pd1 + p f s

(9)

where ploss is the total arc energy loss, pcd is transmitted and distributed power, pd1 is
convective emission power, p f s is radiation emission power;g is a constant; and Q0 is heat
per arc column.

(2.) Simulation of Arc ground failure

Arc earthed failure not only has a great impact on the normal operation of the line,
but also reduces the insulation level of the whole line. Figures 3 and 4 show the arc current
voltage waveform, respectively.

Appl. Sci. 2023, 13, 1220 5 of 14

2.1.2. Arc Ground Fault

Arc ground fault is a common and harmful fault that is difficult to detect due to its
complex mechanism and difficulty in extracting fault characteristics. In order to address
these problems, this paper analyzes the transient electrical volume when simulating arc
generation and arc grounding fault, and proposes an identification basis.

(1.) Mayr arc model

Mayr arc is selected for research in this paper, and the Mayr arc simulation model is
built through MATLAB/simulation combined with the arc, as highlighted in Equation (8):

1
g

(
dg
dt

)
=

1
τM

(
ei

ploss
− 1
)
=

1
τM

(
ei
e0i

− 1
)

(8)

In the formula, the expression of each parameter is given in Equation (9):




g = g0e
Q

Q0

τ = f
(

g, dg
dt , ploss

)
=

g· dg
dt

ploss

τM = g · Q0
g · 1

ploss
= Q0

ploss
ploss = pcd + pd1 + p f s

(9)

where ploss is the total arc energy loss, pcd is transmitted and distributed power, pd1 is
convective emission power, p f s is radiation emission power;g is a constant; and Q0 is heat
per arc column.

(2.) Simulation of Arc ground failure

Arc earthed failure not only has a great impact on the normal operation of the line,
but also reduces the insulation level of the whole line. Figures 3 and 4 show the arc current
voltage waveform, respectively.

Figure 3. Arc voltage waveform.

The voltage waveform of the arc has serious distortion and presents nonlinear char-
acteristics, as can be seen in Figures 4 and 5. The arc starting voltage rises rapidly and
then falls off immediately. The voltage crosses zero after a period of constant voltage, then
turns to arc extinguishing voltage. The current waveform can be regarded as sine wave.
When the arc current is close to zero, the current changes slowly and exhibits a “resting
zero” phenomenon. After the “resting zero”, the current changes faster than a sine wave,
demonstrating the effectiveness of the model.

Figure 3. Arc voltage waveform.

The voltage waveform of the arc has serious distortion and presents nonlinear char-
acteristics, as can be seen in Figures 4 and 5. The arc starting voltage rises rapidly and
then falls off immediately. The voltage crosses zero after a period of constant voltage, then
turns to arc extinguishing voltage. The current waveform can be regarded as sine wave.
When the arc current is close to zero, the current changes slowly and exhibits a “resting
zero” phenomenon. After the “resting zero”, the current changes faster than a sine wave,
demonstrating the effectiveness of the model.
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Figure 4. Arc current waveform.

Figure 5. Waveform of zero-sequence current in fault phase and non-fault phase of arc ground-
ing fault.

The zero-sequence currents under fault and non-fault conditions are shown in Figure 5.
As can be seen in Figure 6, when an arc-earthed failure occurs, the suppression of arc coils
is effective. The phase of the first-half wave of zero-sequence current of the fault line in
the transient process is opposite to that of the non-fault line, that is, the phase difference is
180◦. In the steady-state process, the zero-sequence current has no phase difference; the
fault’s zero-sequence current has a large amplitude, so it is a good indicator of the arc
grounding fault.

2.2. Short Circuit Fault Analysis and Characteristic Diagnosis

Short-circuit faults are more common in power system faults, which can be divided into
phase-to-phase short circuit faults and three-phase short circuit faults. In this paper, the fault
characteristics and judgment basis of short-circuit fault are analyzed through simulations.

When an A or B phase-to-phase short-circuit fault occurs on the line, the fault current
is shown in Figure 6. In the case of a phase-to-phase short circuit fault, the fault current of
the fault phases A and B of the transmission line suddenly increases several times, with a
large fluctuation range, which can be used as a basis for judgment.

Figure 4. Arc current waveform.

Figure 5. Waveform of zero-sequence current in fault phase and non-fault phase of arc ground-
ing fault.

The zero-sequence currents under fault and non-fault conditions are shown in Figure 5.
As can be seen in Figure 6, when an arc-earthed failure occurs, the suppression of arc coils
is effective. The phase of the first-half wave of zero-sequence current of the fault line in
the transient process is opposite to that of the non-fault line, that is, the phase difference is
180◦. In the steady-state process, the zero-sequence current has no phase difference; the
fault’s zero-sequence current has a large amplitude, so it is a good indicator of the arc
grounding fault.

2.2. Short Circuit Fault Analysis and Characteristic Diagnosis

Short-circuit faults are more common in power system faults, which can be divided into
phase-to-phase short circuit faults and three-phase short circuit faults. In this paper, the fault
characteristics and judgment basis of short-circuit fault are analyzed through simulations.

When an A or B phase-to-phase short-circuit fault occurs on the line, the fault current
is shown in Figure 6. In the case of a phase-to-phase short circuit fault, the fault current of
the fault phases A and B of the transmission line suddenly increases several times, with a
large fluctuation range, which can be used as a basis for judgment.



Appl. Sci. 2023, 13, 1220 7 of 14

Figure 6. Phase-to-phase short circuit fault current.

In the three-phase short-circuit state, the current waveform of each line is shown
in Figure 7, and the zero-sequence current of the fault line and non-fault line is shown
in Figure 8.

Figure 7. Three-phase short circuit fault phase current.

Figure 8. Zero-sequence current.
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When a three-phase short-circuit fault occurs, the three-phase current of A, B, and
C suddenly increases several times at the fault moment, while the increase of transient
zero-sequence current is substantially limited in the transient process, making it difficult to
serve as a basis for judgment. Therefore, this paper concludes that the short-circuit fault
type can be judged by the increase in the number of phases through the fault phase current.

3. Fault Feature Extraction

This paper employs wavelet transform to decompose fault zero sequence current
signal since it has good processing effects on abrupt and nonlinear signals. To ensure the
integrity of fault information after decomposition, this paper determines the decomposition
scale using the modular maximum matrix, combined with an energy value equation to
calculate the energy value of each frequency band and build a fault characteristic matrix,
which can represent the characteristics of different types of faults, providing significant
support for the accurate identification of faults.

3.1. Selection of Basic Parameters
3.1.1. The Selection of Wavelet Basis Function

There are several kinds of wavelet basis functions, and different wavelet basis functions
have varying analysis effects. The commonly used wavelet basis functions include Gaus,
Dmey, Haar, and dbN. In order to realize the transient feature extraction of phase current
and zero-sequence current, dbN is selected as the wavelet basis function in this paper. The
advantage of this is that the localization of the frequency domain increases with an increase
in N. In practical application, DB analysis has good performance. Extensive test results
show that DB6 provides best performance, so it is chosen in this paper.

3.1.2. Decomposition Scale and Selection of Characteristic Quantities

A wavelet function has the advantage of being able to extract the signal mutation
location from the maximum value of the pair of modes as a result of its small scale, but its
disadvantage is its sensitivity to noise and inability to extract the fault position accurately.
When the decomposition scale is large, harmonic interference can be prevented, but the
position of the maximum modulus and the signal mutation point cannot coincide effectively,
so it is highly important to choose the appropriate decomposition scale.

In this paper, a maximum modulus matrix Aij is established to help determine the
decomposition scale, where i represents the fault line and j represents the decomposition
scale. The maximum modulus matrix is established as shown in Equation (10).

Aij =




a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36


 (10)

After the decomposition scale is determined, the energy value of the corresponding
characteristic frequency band is calculated using Equation (11).

E6,J =
∫ +∞

−∞

∣∣S6,J(t)
∣∣dt =

n

∑
k=1

∣∣∣dj,k

∣∣∣
2

(11)

The frequency band energy corresponding to the zero-sequence current of each circuit
is calculated using Equation (11), and the maximum energy value in each frequency band
is selected to form a characteristic matrix. Through the analysis of the training model,
fault type identification and diagnosis are achieved. The characteristic matrix Bcd is shown
in Equation (12).

Bcd =




b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36


 (12)
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where c is the number of lines and d is the decomposition scale.

3.2. Calculation of Fault Characteristic Matrix

In this paper, the maximum modulus matrix is obtained by db6 decomposition of
the zero-sequence current obtained through fault simulation. Since the simulation model
selected in this paper has three lines, i = 3, and 6 times wavelet decomposition j = 6, the
maximum matrix of high resistance grounding fault mode is A36.

A36 =




0.0033 −0.0213 −0.0601 0.2109 −0.1955 0.2451
0.00334 0.0026 −0.0732 0.1324 0.1465 0.2652

0.0092 −0.0597 0.0668 −0.4361 0.1872 −0.5461




According to matrix A36, the largest elements of high-resistance grounding fault mode
are all in the sixth column, namely db6 scale, and the corresponding system decomposition
scales of the three lines are consistent. According to Equation (12), energy values are
constructed to realize feature extraction of high-resistance grounding fault.

B36 =




0.71 0.62 −0.75 −0.76 0.81 0.01
0.64 0.57 −0.83 −0.84 0.78 0.01
−1.23 1.87 −2.04 −2.56 2.85 0.01




It can be seen from the characteristic matrix B63 that the characteristic quantity of the
fault line is greater than that of the non-fault line, and the characteristic quantity of each
scale gradually increases. The first column element of the faulty line is also different from
that of the non-faulty line, which conforms to the characteristics of high-resistance earthed
fault proposed above.

Maximum matrix of arc ground fault matrix A36 is:

A36 =



−0.05 0.23 −0.52 1.64 0.56 0.47
0.04 −0.24 1.55 5.37 −2.54 1.59

0.17 0.68 3.56 −14.66 −6.23 −9.53




It can be seen from matrix A36 that the largest elements of the high-resistance ground-
ing fault mode are all in the fourth column, namely db4 scale. The characteristic matrix of
the corresponding decomposition scale is constructed as follows:

B34 =




1.38 −1.02 0.67 0.37 0.53 −0.51
1.42 −0.98 0.72 0.31 0.46 −0.56
−3.56 1.39 −2.13 3.24 1.53 −1.43




According to the characteristic matrix, the characteristic quantity of fault line is larger
than that of the other lines and the polarity is opposite, which conforms to the characteristics
of an arc ground fault proposed above.

4. Fault Identification Method Based on IPSO-WNN

WNN is a type of neural network that uses an excitation function error back propaga-
tion and wavelet cardinality as the hidden layer node. This paper chooses wavelet neural
network to realize fault identification because it fully combines the good time-frequency
localization property of wavelet transform and the self-learning property of neural network.

4.1. WNN Hidden Layer Output Optimization

The standard WNN structure diagram is shown in Figure 9.
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Figure 9. The topology of WNN.

In Figure 9, X and Y denote input samples and predicted outputs; ωij are the weights
connecting output layer node i and implicit layer node j; ωik is the weight connecting node
j in the implicit layer and node k in the output layer; and ψ(x) is the dbN function.

There are n input nodes in WNN. The input sequence X = (x1, x2, . . . , xn) is processed
by the dbN function and the output value is obtained in the hidden layer.

The calculated values of the standard WNN implied layer are susceptible to the
influence of the input layer data, with large fluctuations between values and a single
calculation method, which cannot meet the requirements of this paper for fault identification
accuracy. Therefore, using quantified connection weights between input and implied layers,
this paper seeks to reduce the influence of single input data. The calculation is shown
in Equation (13):

uj = ψ

[
∑n

i=1 ωijxi − bj

aj

]
, j = 1, 2, 3, . . . , l (13)

where u is the output value of the implicit layer nodes, n is the number of nodes in the
input layer, and l is the number of implied layers, and a, b denote the scaling factor and
translation factor of the dbN function, respectively.

After the implicit layer processing, the output value obtained is given in Equation (14).

yk = ∑l
j=1 ωjkuj, k = 1, 2, 3, . . . , m (14)

where yk is the actual output of the network, and m is the number of output layer nodes.
The error function of WNN is usually expressed as the mean squared difference

between the actual output value and the desired output value, as shown in Equation (15).

ED = ∑m
k=1(yk − ŷk)

2 (15)

where ED is the training error, and ŷk is the desired output.

4.2. Fault Identification Method Based on IPSO-WNN

In order to reduce the prediction error, the mean squared error function in Equation (15)
is used as the fitness function of the IPSO algorithm in this paper. Whenever the fitted
value is near the actual value, the recognition model error is smaller, and the particle’s
fitness is higher, and the current particle is in the best position when the recognition error
reaches the expected value.
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This paper improves PSO algorithm to make the global search ability and local search
ability in a balanced state by acquiring a faster convergence speed and making the algorithm
more resistant to falling into local minima.

wi = wmax −
i(wmax − wmin)

Imax
(16)

where wmax, wmin are the maximum and minimum values of inertia weights, respectively.
Imax is the preset maximum number of iterations. w is the number of iterations with I
linearly decreasing, but to consider the effects of the evolutionary speed and aggregation
degree of the particle population, a nonlinear decreasing strategy of inertia weights is
proposed in this paper, as given in Equation (17).

wi =

{
wmax, f ≥ favg
wmin +

wmaxwmin
1+e f avg− f , f < favg

(17)

where f is the fitness of the particle, favg is the average fitness of all particles. This method
adjusts the inertia weights of the particles based on the relationship between f and favg in
order to enhance the ability of the particles to find the global optimal solution.

The learning factors c1 and c2 in PSO algorithm affect the superiority seeking ability
of particles and the information interaction ability between particles. In the standard PSO
algorithm c1, and c2 are equal fixed values, which have a large impact on the convergence
speed and the merit-seeking ability of the algorithm. Therefore, in this paper, the learning
factor is optimized based on the nonlinear decreasing strategy for the inertial weight.

{
c1(t) = 2 − egt− 1

N ∑N
i=1 pi

c2(t) = 2 − c1(t)
(18)

where N is the total number of particles, c1 is the number of particles in the first t at the
second iteration, and c2 is the value of gt, which is the optimal solution of the current
particle swarm. pi is the optimal solution of the first i optimal solution of the first i particle.

From Equation (18), it can be seen that as the iterations proceed, the learning factor
c1 decreases nonlinearly and c2 nonlinearly increases, which significantly increases the
convergence speed of the algorithm and achieves the goal of enhancing the algorithm’s
ability to find the global optimal solution.

4.3. Fault Identification Process

Through the analysis of the expected output, fault data and the fault features of each
fault type are input into the diagnosis model for training. The model training input values
are shown in Table 1.

Table 1. Model training input values.

Input Fault Type Input Fault Characteristics Desired Output

Three phase short circuit fault ∆I > 100 and ∆Ii(i = A, B, C) > 100A is l,
l = 2 1

High resistance ground fault ∆I > 100 and l = 3 2
Arc earthed failure U0 > 0.15Un and Bcd 3

Three phase short circuit fault U0 > 0.15Un and Bcd 4

In Table 1, U0 represents the zero-sequence voltage and Un represents phase volt-
age of the line. When a single-phase grounding fault occurs on the line, it conforms to
U0 > 0.15Un, which can be used as the basis for determining the grounding fault.

The fault identification based on IPSO-WNN is shown in Figure 10.
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Figure 10. Fault identification based on IPSO-WNN.

5. Simulation Verification

In this section, the feature values corresponding to each fault type are input to the fault
diagnosis model for verification, and the prediction error is reduced by setting the number
of implied layers and the number of iterations. The optimal choice is achieved when the
number of implied layers is 50 and the number of iterations is 2000, as demonstrated by
a large number of simulations. By combining etime() and clock in MATLAB, the time
difference between t1 and t0 in Figure 10 is calculated as the fault identification time. This
paper uses the same experimental equipment, in the same data volume environment, in
order to reduce the error in computing time brought by the computer hardware.

To further verify the applicability of the method proposed in this paper, comparison
experiments were conducted by setting different fault distances and different fault initial
phase angles, and the experimental results are shown in Tables 2 and 3.

Table 2. Fault distances.

Number of
Training
Samples

Number of Test
Samples

Fault
Distance/km

Recognition
Accuracy/% Training Time/s

150 50

5 98 134
20 96 148
40 96 167
60 94 181

Table 3. Different fault initial phase angles.

Number of
Training
Samples

Number of Test
Samples

Fault Initial
Phase Angle/◦

Recognition
Accuracy/% Training Time/s

150 50

0 96 171
25 96 159
45 98 146
60 96 157
90 100 143

According to Table 2, the fault identification accuracy decreases with the increase of
the fault distance. When the fault distance is 60 km, the fault identification accuracy is
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96% and the fault identification time is 181 s, which verifies the strong applicability and
robustness of IPSO-WNN under different fault distances.

In Table 3, it is evident that IPSO-WNN is equally applicable at different initial fault
phase angles.

In this paper, the recognition accuracy and recognition time of IPSO-WNN are com-
pared with the currently used recognition methods: WNN, support vector machine (SVM),
PSO–WNN, and SSA–SVM. The comparison results are shown in Table 4.

Table 4. Comparison of the performance of different methods.

Number of
Training
Samples

Number of Test
Samples Algorithm Type Recognition

Accuracy/% Training Time/s

150 50

WNN 82 1149
SVM 84 921

PSO-WNN 94 547
SSA-SVM 92 344

IPSO-WNN 98 164

Table 4 shows that IPSO-WNN has superior recognition accuracy and recognition time
as compared to other algorithms, proving the superiority of the proposed method.

In summary, this paper presents a method for identifying various types of transmission
line faults using IPSO-WNN, which combines the time-frequency localization property
of wavelet transform with the self-learning ability of neural networks. The method is
verified through comparison experiments with different identification methods, different
fault distances, and different fault initial phase angles. The results show that the proposed
method has a high identification accuracy and a fast identification speed, which can meet
the needs of actual working conditions. Overall, the proposed IPSO-WNN method is a
promising approach for fault identification in transmission lines.

6. Conclusions

In this paper, the fault characteristics of different fault types of 66 kV transmission
lines were simulated and analyzed. The decomposition scale of the dbN wavelet was
determined using the mode maximum matrix to ensure the integrity of fault information.
A fault characteristic matrix, which characterizes the fault characteristics based on the
energy value of each frequency band, was also proposed. This laid a solid foundation
for the subsequent fault identification. As for the fault identification model, the standard
WNN algorithm’s hidden layer was improved to weaken the influence of data with large
fluctuations on the identification accuracy. The prediction error function was improved
by combining it with the IPSO algorithm, greatly improving the convergence speed of
the identification model and its ability to find the global optimal solution. Finally, the
superiority and applicability of the method were further verified through comparison
experiments, demonstrating its ability to meet the needs of actual working conditions and
complex environments.
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