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Abstract: This paper investigates the dissipativity analysis of large-scale networked systems with
linear time-invariant dynamics. The networked system is composed of a large number of subsystems
whose connections are arbitrary, and each subsystem can have different dynamics. A sufficient and
necessary condition for the strict dissipativity analysis of the networked system is derived, which
takes advantage of the block-diagonal structure of the system parameter matrix and the sparseness
characteristics of the subsystem interconnections. Then, a necessary condition and a sufficient
condition that depend only on a single subsystem parameter are given separately. Numerical
simulations illustrate that compared with the existing results, the conditions suggested in this paper
have higher computational efficiency in the dissipative analysis of large-scale networked systems.
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1. Introduction

In recent years, the research of large-scale networked systems has attracted great at-
tentions [1–4]. The system can be considered as composed of a large number of subsystems
with different spatial locations connected in a certain way [5]. Generally, subsystems ex-
change information with their neighbors straightforwardly and predictably, but the system
often exhibits complicated dynamic behavior when seen as a whole. Such systems have
extensive application background, including airplane formation flight [6], power network
distributed system [7], automated highways [8], multi-agent formation systems [9], and so
on. For such a complex system, the classic method of bringing all the subsystems together
and analyzing it as a single large-scale system has very strict requirements on the calcu-
lation speed and accuracy of the computer, which will inevitably bring computational
difficulties. Therefore, using the system structure to find more efficient computational
conditions is of great engineering significance for the dissipativity analysis of large-scale
networked systems.

There are already many results on the performance analysis of networked systems,
but the research on dissipativity is not mature enough and needs to be further developed
and improved. In 1972, the famous scholar Willems first put forward the concept of dissi-
pativity [10,11]. Dissipativity describes the equilibrium relationship between the system’s
internal energy, which is a vital concept in theoretical research and practical application. Its
essential meaning is that there is a non-negative energy function (called storage function)
so that the energy supply rate of the system is always greater than the loss of energy
inside the dynamic system. Based on Willems’ work, many scholars have done in-depth
studies on dissipativity and obtained rich results, which have played a significant role
in the field of circuit, system, and control theory. Refs. [12,13] respectively studied the
dissipative control problems of linear continuous-time and discrete systems based on linear
matrix inequality (LMI) methods. A simplified mathematical model of the interconnected
two-machine power system was established in [14], and its non-linear dynamic behavior
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such as dissipativity properties was analyzed. In [15], the analysis and improvement of the
dissipativity performance of interconnected passive systems are studied. For networked
control systems, Ref. [16] obtained some new sufficient conditions by utilizing Lyapunov
stability theory and LMI technology to ensure that the closed-loop system is finite-time lim-
ited and dissipative. In [17], a distributed controller was created to ensure the dissipativity
of a networked system made up of dynamically coupled subsystems. Its control synthesis
is done locally at the subsystem level and doesn’t involve the relationship among subsys-
tems, hence it has certain drawbacks. The linear dynamic system with the interconnection
structure specified by the directed graph is studied in [18]. Based on the dissipativity
inequality, an LMI for calculating system performance is established and the concept of
local dissipativity is defined. Using the knowledge of graph theory to analyze large-scale
networked systems has certain constraints on the dynamic characteristics and connection
modes of subsystems, which has certain limitations in practical application [19,20].

Considering that the system structure of large-scale networked systems usually has
sparse characteristics or specific structural forms [21–23], in the large-scale connected
systems discussed in [24], the concept of internal input and output is introduced to represent
the connections and functions among subsystems, and the connection relationship among
sub-units of the entire system is described by subsystem connection matrix. This description
method takes into account the situation where the dynamic characteristics of the subsystems
are different and the connection relationship of the subsystems is arbitrary. The previously
mentioned UAV formation flight refers to the arrangement of multiple UAVs in a certain
formation so that they maintain in formation or change their relative positions within
a limited scope during the flight. To maintain a certain formation shape, information
interaction is required among the UAVs. In a centralized strategy, each UAV has to know
information about the whole formation, demanding substantial information interaction. It
is computationally intensive and requires the high performance of the airborne computer.
In fact, each UAV can interact with its position, speed, attitude, and motion target with
only the UAVs connected to it in the formation. In this way, the amount of computation
is greatly reduced, and the system is relatively simple to implement. It is this sparse
property or specific structural form among subsystem connections that we exploit to give
more computationally efficient dissipativity criteria for large-scale networked systems.
Dissipativity explains some of the energy losses and control problems of control systems
and is a more general performance indicator of system performance.

In this paper, our objective is to reduce the computational burden of dissipativity
analysis for large-scale network systems with a large number of subsystems. In general, the
large-scale networked systems studied in this paper have the following characteristics. The
first is that the scale of the system is large, including many subsystems. The second and
most important point is that the interaction among subsystems of large-scale networked
systems is usually sparse or has a specific structural form. We introduce intermediate
variables in networked systems to describe the relationship among subsystems, which is
more general and explicitly characterizes the structural characteristics of large-scale systems.
In this regard, this paper proposes several new LMI conditions, which effectively use the
block diagonal structure of the system parameter matrix and the sparsity of the subsystem
connection matrix, avoiding the inverse computation of high-dimensional matrices. The
simulation results indicate that the conditions proposed in this paper are more efficient
than the existing results.

The following is the structure of the paper. The model and the definition of dissi-
pativity for the networked system and some preliminary results are given in Section 2.
In Section 3, some conditions for dissipative analysis of networked systems are given,
and the relationship between these conditions and existing conditions is discussed. Some
numerical simulation results are presented in Section 4. The research results of this paper
are summarized in Section 5, and the direction of further research is also proposed here.
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Notation 1. The symbol R is used to denote the set of real numbers, and the vector space produced
by real numbers of appropriate dimensions is denoted as R#. col

{
Zi|Li=1

}
denotes the vector/matrix

stacked by Zi(i = 1, 2, . . . , L), and diag{Zi|Li=1} signifies a block diagonal matrix with Zi as the

i-th diagonal block.
{

Zij
∣∣i=M,j=N
i=1,j=1

}
stands a matrix with M × N blocks, and its i-th row j-th

column block matrix being Zij. 0n and 0n×m represent the n dimensional zero column vector and
the n×m dimensional zero matrix respectively, the dimension subscript is omitted if there is no
ambiguity, and the identity matrix I is the same. The superscript T represents the transpose of a
matrix or vector, and (∗)TWZ or ZW(∗)T is shorthand for ZTWZ or ZWZT .

2. System Description and Some Preliminaries

The networked system Γ is consisted of N linear time-invariant subsystems, and the
i-th subsystem Γi is defined by the state-space model below, ẋ(t, i)

z(t, i)
y(t, i)

 =

 ATT(i) ATS(i) BT(i)
AST(i) ASS(i) BS(i)
CT(i) CS(i) DT(i)

 x(t, i)
v(t, i)
u(t, i)

, (1)

in which t and i denote respectively for the temporal variable and the index number of
a subsystem, i = 1, 2, . . . , N. Moreover, x(t, i) is the state vector of the i-th subsystem Γi
at time t. y(t, i) and u(t, i) represent the external output vector and external input vector
of the Γi, respectively. z(t, i) and v(t, i) are the output vector to other subsystems and
input vector from others, which is also called internal output vector and input vector. The
connection relationship among subsystems can be expressed as

v(t) = Φz(t), (2)

here, v(t) = col
{

v(t, i)|Ni=1

}
and z(t) = col

{
z(t, i)|Ni=1

}
. Φ is called the subsystem connec-

tivity matrix. We assume that each row of the matrix Φ has only one non-zero element
equal to one and there are no columns in which all of the items are equal to zero. That
means the internal output channels of a subsystem can affect the internal inputs channels
of other subsystems, and some subsystem internal input channels depend on the internal
output of multiple subsystems. This assumption, as explained in [23], does not jeopardize
the generality of the adopted system model. Approximate power-law degree distribution
widely exists in engineering systems, such as protein interaction networks, gene regulatory
networks, power systems, the Internet, etc. [23]. In these systems, the dimension of the
subsystem connection matrix Φ is usually much smaller than the state dimension of the
system, and the interactions among subsystems are sparse.

In this paper, we assume that the dimensions of vectors x(t, i), v(t, i), z(t, i), u(t, i)
and y(t, i) are mxi, mvi, mzi, mui and myi, respectively. Based on the above assumptions
and Equation (2), the dimension of the matrix Φ is ∑N

i=1 mvi ×∑N
i=1 mzi . Then we can get

ΦTΦ = Σ2 ,where Σ2 = diag
{

Σ2
j

∣∣∣N
j=1

}
, Σ2

j = diag
{

m(i)|Mz,j
i=Mz,j−1+1

}
, Mz,i = ∑i

k=1 mzk ,

m(i) indicates the number of subsystems directly affected by the i-th element of the vector
z(t), i = 1, · · · , ∑N

k=1 mvk, j = 1, · · · , N.
To simplify the mathematical derivation, we define the following matrix, A∗# =

diag
{

A∗#(i)|Ni=1

}
, B∗ = diag

{
B∗(i)|Ni=1

}
,C∗ = diag

{
C∗(i)|Ni=1

}
andD∗ = diag

{
D∗(i)|Ni=1

}
in which ∗, # = T, S. By exploiting the connection relationship among subsystems, the dy-
namic system Γ may be expressed equivalently in the following state-space form,[

ẋ(t)
y(t)

]
=

[
A B
C D

][
x(t)
u(t)

]
, (3)

where
A=ATT + ATSΦ(I − ASSΦ)−1 AST,
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B = BT + ATSΦ(I − ASSΦ)−1BS,

C = CT + CSΦ(I − ASSΦ)−1 AST,

D = DT + CSΦ(I − ASSΦ)−1BS.

Note: Well -posedness is very important in system design, and ill-posed systems are
usually difficult to control or impossible to estimate [25–27]. Therefore, this paper assumes
that System Γ is well-posed, which means that (I − ASSΦ)−1 exists.

This paper intends to establish computationally effective conditions for the dissipa-
tivity analysis of large-scale networked systems Γ. The concept of dissipativity is very
important in the system, whether from the perspective of theoretical research or the per-
spective of practical application. Roughly speaking, dissipative systems can be described
as such properties. At any time, the energy that the system may provide cannot exceed the
energy already supplied. We first describe the definition of dissipativity for System Γ.

The definition is related to the supply function. For the i-th subsystem Γi, its supply
function is defined as

si(u(t, i), y(t, i)) =
[

y(t, i)
u(t, i)

]T

Q(i)
[

y(t, i)
u(t, i)

]
, (4)

where Q(i) is a symmetric matrix of suitable dimensions.

Definition 1. The large-scale networked system (1) and (2) with x(0, i) = 0 is said to be dissipative
with supply function si(u(t, i), y(t, i)) if and only if there is a matrix P(i) ≥ 0 , such that,

t1∫
t0

N
∑

i=1
si(u(t, i), y(t, i))dt ≥

N
∑

i=1
xT(t1, i)P(i)x(t1, i)−

N
∑

i=1
xT(t0, i)P(i)x(t0, i) (5)

holds for all t0 ≤ t1.

According to the definition, the supply function can be interpreted as the energy
transferred to the system, which means that within a period of time [t0, t1], as long as
t1∫

t0

N
∑

i=1
si(u(t, i), y(t, i))dt is positive, the system will work normally, otherwise, the system

will not work.
N
∑

i=1
xT(t1, i)P(i)x(t1, i)−

N
∑

i=1
xT(t0, i)P(i)x(t0, i) represents the actual energy

consumption of the system after the time interval t1 − t0. Therefore, Equation (5) shows
that in any time period [t0, t1], the energy change inside the system will not exceed the
energy supplied by the outside.

It can be seen from the following derivation that the definition of dissipativity for the
networked system (1) and (2) are consistent with the one in [28] based on (3).

The supply function based on the large-scale networked system (1) and (2) is as
follows,

s(u(t), y(t))=
N
∑

i=1
si(u(t, i), y(t, i))=



[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]



T

Q



[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]


. (6)

The supply function of System (3) is
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s(u(t), y(t)) =
[

y(t)
u(t)

]T

Q1

[
y(t)
u(t)

]

=




y(t, 1)
y(t, 2)

...
y(t, N)




u(t, 1)
u(t, 2)

...
u(t, N)





T

Q1




y(t, 1)
y(t, 2)

...
y(t, N)




u(t, 1)
u(t, 2)

...
u(t, N)




=



[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]



T

Q



[
y(t, 1)
u(t, 1)

]
[

y(t, 2)
u(t, 2)

]
...[

y(t, N)
u(t, N)

]


,

(7)

in which y(t) = col{y(t, i)|Ni=1}, u(t) = col{u(t, i)|Ni=1}, Q = diag{Q(i)|Ni=1} and

Q =



I 0 0 0

0
... I

...
...

... 0
...

...
...

...
...

0 0 0 0
0 I 0 0
...

...
... I

...
...

...
...

...
...

...
...

0 0 0 0

· · · · · ·

0 0
...

...
...

...

0
...

I 0
0 0
...

...
...

...
... 0
0 I



Q1(∗)T .

For the convenience of the following discussion, we introduce the following prelimi-
nary results that need to be used.

Lemma 1 ([29]). For matrices L and U with compatible dimensions, there is a scalar α > 0
such that,

LU + UT LT ≤ αLLT + α−1UTU. (8)

Lemma 2 ([30]). Given symmetric matrices F and G with appropriate dimensions, if vT Fv > 0
can be obtained for every non-zero vector v satisfying vTGv = 0 , then there must be a real number
r such that F+rG is positive definite, and vice versa.

Lemma 3 ([29]). For an LMI in the form of an M×M(M ≥ 1) block matrix: G(P) < 0, except for
the symmetric independent variable matrix P, other known coefficient matrices or constant matrices
are all block diagonal matrices of appropriate dimensions, and all have N(N > 1) diagonals. If it is
divided into blocks, there is a full block feasible solution P for this LMI, and there must be a feasible
solution for the diagonal division of the appropriate dimension.

3. Dissipativity Analysis

In [28], the dissipativity criterion of System (3) is proposed.

Lemma 4. Assume that the networked system Γ is controllable. Then, System (3) is strictly
dissipative with the supply function s(u(t), y(t)) if and only if there exists a matrix P > 0
such that, [

AT P + PA PB
BT P 0

]
−
[

C D
0 I

]T

Q
[

C D
0 I

]
< 0. (9)

Note that the matrices A, B, C and D in the condition of Lemma 4 all contain
(I − ASSΦ)−1 terms. Although the subsystem connection matrix Φ is sparse and the system
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parameter A∗#, B∗, C∗ and D∗ with ∗, # = T, S are block diagonal, the matrix (I − ASSΦ)−1 is
generally dense. When there are a large number of subsystems in large-scale networked sys-
tems, the calculation of matrices A, B, C, and D involves the inversion of high-dimensional
matrices. Therefore, when the scale of the networked system increases, the computational
complexity of Equation (9) will become very high.

Lemma 4 is a dissipative analysis condition based on lumped networked model. Due
to the establishment of the lumped model, the connection relationship among subsystems
is hidden inside the parameters, and its structural information is not effectively utilized. As
a result, for large-scale networked systems, the use of this condition for dissipative testing
will inevitably bring computational difficulties and even cannot be calculated.

Then, to reduce the computational difficulty caused by the increase of system scale,
we establish a computationally efficient sufficient, and necessary condition for the strict
dissipativity analysis of large-scale networked systems. This condition effectively utilizes
the sparse structure of the subsystem connection matrix Φ in the networked system, that is,
each subsystem is only connected to a limited number of other subsystems.

Theorem 1. Assume that the networked system Γ is controllable. Then, System Γ is strictly
dissipative with the supply function si(u(t, i), y(t, i)) if and only if there exists a symmetric positive
definite matrix P and a positive scalar h such that,

(∗)T

 [
0 P
P 0

]
−Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


−h× (∗)T

[
I −Φ
−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(10)

Proof of Theorem 1. Equation (9) can be expressed equivalently as follows,

(∗)T

 [
0 P
P 0

]
−Q



[

I 0
A B

]
[

C D
0 I

]
 < 0. (11)

We express Equation (11) in the following equivalent form,

(∗)T

 [
0 P
P 0

]
−Q




I 0 0 0
0 0 I 0
0 0 0 I
0 I 0 0



[

I 0
0 I

]
[

A B
C D

]
 < 0. (12)

Matrices A, B, C, and D can be written as follows,[
A B
C D

]
=

[
ATT BT
CT DT

]
+

[
ATS
CS

]
Φ(I − ASSΦ)−1[ AST BS

]
. (13)

Substituting the above formula into Equation (12), we can get that,

(∗)T

 [
0 P
P 0

]
−Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


×

 Φ(I − ASSΦ)−1 AST Φ(I − ASSΦ)−1BS
I 0
0 I

 < 0.

(14)
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Then we define matrices F, M, and K as follows,

F = (∗)T

 −[ 0 P
P 0

]
Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I

, (15)

M =

 Φ(I − ASSΦ)−1[ AST BS
][

I 0
0 I

] , (16)

K =
[

I −Φ
][ I

[
0 0

]
ASS

[
AST BS

] ]. (17)

Obviously, MT(−F)M < 0 .When v = Mζ , ζ ∈ R# , for any v 6= 0 , we can get that
Kv = 0, which means vT Fv > 0. According to Lemma 2, there must be a real number h
such that,

(∗)T

 −[ 0 P
P 0

]
Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


+h× (∗)T

[
I −Φ
−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] > 0.

(18)

That is,

(∗)T

 [
0 P
P 0

]
−Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


−h× (∗)T

[
I −Φ
−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(19)

The characterization of the left term of Equation (19) shows that if the inequality has a
solution, then there must be h > 0. So far, the necessity has been proved. Then, multiply
the left and right sides of Equation (10) by the matrices M and MT respectively, and direct
algebraic operations can complete the sufficiency proof.

(∗)T

 [
0 P
P 0

]
−Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


 Φ(I − ASSΦ)−1[ AST BS

][
I 0
0 I

] 

−h× (∗)T
[

I −Φ
−ΦT Σ2

][
I

[
0 0

]
ASS

[
AST BS

] ] Φ(I − ASSΦ)−1[ AST BS
][

I 0
0 I

]  < 0.

(20)

The proof is completed.

It can be seen that the condition in Lemma 4 hides the connection relationship among
subsystems inside the parameters, while the left side of Equation (10) in Theorem 1 lin-
early depends on the symmetric matrix P, and the structure of the system is specifically
reflected in it, which can effectively make use of the sparse structure of the subsystem
connection matrix. Furthermore, the matrices A∗#, B∗, C∗ and D∗ with ∗, # = T, S are all
block diagonal, and large-scale networked systems are sparse. Combined with the research
on sparse semi-definite programming problems [31–33], when the system is relatively large,
the computational complexity of solving the above sparse LMI is frequently lower than
the condition in Lemma 4. This aspect can also be explained in subsequent numerical



Appl. Sci. 2023, 13, 1214 8 of 12

simulations. It is worth noting that the condition of Theorem 1 does not bring conservatism
compared with Lemma 4, a dissipative criterion based on the lumped description.

When there are a huge number of subsystems, the strict dissipativity analysis using
the condition in Theorem 1 may still encounter computational difficulties. To overcome
this difficulty, we further explore the structural characteristics of the subsystem connection
matrix Φ, and put forward the conditions for strictly dissipative analysis based on the
parameters of each subsystem.

A simple derivation leads to the following relationship,[
I −Φ
−ΦT ΦTΦ

]
≤ 2

([
I
0

][
I 0

]
+

[
0

ΦT

][
0 Φ

])
. (21)

Combined with Lemma 4 and the properties of the subsystem connection matrix, on
the basis of Equation (10), the necessary condition for the strict dissipativity analysis that
only depends on the parameters of a single subsystem can be obtained.

Theorem 2. Assume that the networked system Γ is controllable. A necessary condition for the
strict dissipativity of System Γ with the supply function si(u(t, i), y(t, i)) is that each subsystem
has a symmetric positive definite matrix P(i) and a positive scalar h such that,

(∗)T

 [
0 P(i)

P(i) 0

]
−Q(i)




0
ATS(i)
CS(i)

0

I
ATT(i)
CT(i)

0

0
BT(i)
DT(i)

I


−h× (∗)T

[
I

Σ2
i

][
I

[
0 0

]
ASS(i)

[
AST(i) BS(i)

] ] < 0.

(22)

For large-scale networked systems, sometimes the parameters of multiple subsystems
are the same. In this case, using Theorem 2 is more efficient. A sufficient condition for
strict dissipativity analysis which only depends on the parameters of a single subsystem is
given below.

Theorem 3. Assume that the networked system Γ is controllable. Then, System Γ is strictly
dissipative with the supply function si(u(t, i), y(t, i)) if there exists a symmetric positive definite
matrix P(i) and real number h2 ≥ h1 ≥ 0 (or h1 ≤ h2 ≤ 0) for each subsystem such that,

(∗)T

 [
0 P(i)

P(i) 0

]
−Q(i)




0
ATS(i)
CS(i)

0

I
ATT(i)
CT(i)

0

0
BT(i)
DT(i)

I


−(∗)T

[
h1 I

−h2Σ2
i

][
I

[
0 0

]
ASS(i)

[
AST(i) BS(i)

] ] < 0.

(23)

Proof of Theorem 3. From Lemma 1, we can get[
I −Φ
−ΦT ΦTΦ

]
≥ (1− α)

[
I
0

]
(∗)T +

(
1− 1

α

)[ 0
ΦT

]
(∗)T . (24)

Using the above formula and the conclusion in Theorem 1, one can obtain a sufficient
condition for System Γ to be strictly dissipative is the existence of a symmetric positive
definite matrix P and two real numbers h > 0, α > 0, such that,
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(∗)T

 [
0 P
P 0

]
−Q




0
ATS
CS
0

I
ATT
CT
0

0
BT
DT
I


−h× (∗)T

(
(1− α)

[
I
0

]
(∗)T +

(
1− 1

α

)[ 0
ΦT

]
(∗)T

)[
I

[
0 0

]
ASS

[
AST BS

] ] < 0.

(25)

Let h1 = (1− α)h, h2 = −
(
1− α−1)h, we can get h2 = α−1h1. Therefore, when α ≤ 1,

h2 ≥ h1 ≥ 0; when α ≥ 1, h1 ≤ h2 ≤ 0. The proof can be completed by combining
Lemma 3.

Compared with Theorem 1, the left side of Equation (23) in Theorem 3 is linearly related
to the matrix P(i), and its dimension is entirely governed by the dimension of the subsystem
Γi. When the state dimension of each subsystem is fixed, the computational complexity of
Equation (23) only linearly depends on the number of subsystems N. Therefore, Theorem 3
has a substantially higher computing efficiency than Theorem 1 for large-scale networked
systems. However, it should be noted that Theorems 2 and 3 are conservative.

4. Numerical Simulations

Several numerical simulations are employed in this section to demonstrate the efficacy
of the strict dissipativity conditions presented in this paper. The simulation experiments
are performed on a laptop computer with an Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz
2.60 GHz and 6 G RAM. In these simulations, we assume that mui = mxi = mvi = mzi =
myi = 2. Furthermore, all the parameters of the subsystem are independent of each other, and
the parameters of each subsystem are randomly generated according to a continuous uniform
distribution with an interval of [−0.9, 0.9]. The subsystem connection matrix is randomly
generated, but there is only one non-zero element 1 in each row and column.

The conditions in Lemma 4, Theorem 1, and Theorem 3 are used to verify the strict
dissipativity of the system. Among them, the conditions in Lemma 4 and Theorem 3 are
calculated by the LMI toolbox provided by MATLAB, and the condition in Theorem 1
is calculated by the sparse solvers DSDP. For System Γ introduced in this paper, we
generate 10 systems for calculation, and the average value and standard deviation of
system dissipativity analysis calculation time are obtained. Tables 1 and 2 give some results
when the number of subsystems is among 2 and 45.

Table 1. Average of calculation time.

Subsystem Number Lemma 4 (s) Theorem 1 (s) Theorem 3 (s)

2 0.256809 0.113630 0.280457
10 0.506572 0.357334 0.332980
20 4.718364 1.825162 0.550354
30 49.843413 10.102070 1.132749
38 160.804551 25.194260 1.990903
40 201.484656 31.942283 2.235822

Table 2. Standard deviation of calculation time.

Subsystem Number Lemma 4 (s) Theorem 1 (s) Theorem 3 (s)

2 0.005145 0.019887 0.003355
10 0.017458 0.038721 0.005182
20 0.035518 0.051297 0.005435
30 0.585151 0.160743 0.011004
38 1.305206 0.317135 0.017758
40 1.806196 0.389699 0.092795
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The tables show that the calculation time of the above three methods all increases with
the increase of the number of subsystems. When the number of subsystems is 10 or less,
the computational efficiency based on Lemma 4 is comparable to that of Theorem 1 and
Theorem 3. This is because the dimensionality of the matrix inequality in Theorem 1 is
higher than that in Lemma 4, and Theorem 3 requires several inequalities to be verified.
With the expansion of the number of subsystems, when the number of subsystems is 20, 30,
40, 45, the ratio of calculation time based on the conditions in Lemma 4 and Theorem 1 is
1.0957, 1.3414, 1.3911, 1.4581. The ratio of the average computation time becomes larger
and larger, which means that the computational efficiency of Theorem 1 is improved to
some extent. Because the condition in Lemma 4 requires operations such as inversion
of high-dimensional matrices. Clearly, Theorem 3 is more computationally efficient than
both Lemma 4 and Theorem 1. This is due to the fact that the conditions of Theorem 3
are tested based on individual subsystem parameters, and their computational complexity
only increases linearly with the number of subsystems N. In addition, due to the limitation
of computer memory, the conditions in Lemma 4 and Theorem 1 may not be calculated,
but Theorem 3, which is tested independently for each subsystem, can still be calculated.
Therefore, Theorem 3 has more computational advantages in the dissipativity analysis of
large-scale networked systems. It should be noted that Theorem 3 is conservative compared
to Lemma 4 and Theorem 1.

5. Conclusions

This paper investigates the strict dissipativity of networked systems composed of a
large number of subsystems. At first, according to the model of large-scale networked
systems, the definition of the dissipativity of networked systems is given in this paper.
Then, we study the dissipative criteria of networked systems. For large-scale networked
systems, when the number of subsystems is large, the performance analysis using the
existing linear system theory will encounter computational difficulties. Some LMI-form
conditions for dissipativity analysis of large-scale networked systems are derived. Among
them, Theorem 1 is a necessary and sufficient condition, which effectively utilizes the
block diagonal structure of the system parameter matrix and the sparsity of the subsystem
connection matrix. Combined with the use of sparse semidefinite programming tools, it
is more efficient than the lumped analysis method for medium-scale networked systems.
In addition, the proposed sufficient condition, and necessary condition only depend on the
parameters of a single subsystem, which are more suitable for the dissipative analysis of
networked systems with a large number of subsystems, but they are conservative compared
with other conditions.

Regarding large-scale networked systems, the design of distributed controllers to
ensure the dissipativity of large-scale networked systems will be investigated in further
research. For instance, in UAV formation flight, relying on a centralized controller to
observe the entire formation and control all UAVs at once is both impractical and increases
operational costs in engineering applications. A more reasonable option would be to decen-
tralize the controller to each UAV platform and achieve the overall objective by interacting
and sharing information between platforms. Therefore, if the structural information of the
network topology is capable of being fully utilized and a distributed control strategy that
relies on local information sharing is adopted, the amount of data transmission in the net-
work will be greatly reduced and the computational efficiency will be raised. Furthermore,
the presence of quantization errors, time delays, data packet loss, and other phenomena
when communicating networked among subsystems or among subsystems and their local
controllers will be explored. In practical engineering applications, network connections
would possibly be non-idealized, and the arrival of information delivered is frequently
unable to be achieved immediately.
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