
Citation: Alanazi, S.A.; Shabbir, M.;

Alshammari, N.; Alruwaili, M.;

Hussain, I.; Ahmad, F. Prediction of

Emotional Empathy in Intelligent

Agents to Facilitate Precise Social

Interaction. Appl. Sci. 2023, 13, 1163.

https://doi.org/10.3390/app13021163

Academic Editor: Dimitris Mourtzis

Received: 28 November 2022

Revised: 8 January 2023

Accepted: 12 January 2023

Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Prediction of Emotional Empathy in Intelligent Agents to
Facilitate Precise Social Interaction
Saad Awadh Alanazi 1,* , Maryam Shabbir 2, Nasser Alshammari 1, Madallah Alruwaili 3, Iftikhar Hussain 4

and Fahad Ahmad 5

1 Department of Computer Science, College of Computer and Information Sciences, Jouf University,
Sakaka 72341, Saudi Arabia

2 School of Professional Advancement, University of Management and Technology, Lahore 54700, Pakistan
3 Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf

University, Sakaka 72341, Saudi Arabia
4 Center for Sustainable Road Freight and Business Management, Heriot-Watt University,

Edinburgh EH14 4AS, UK
5 Delta3T, Lahore 54700, Pakistan
* Correspondence: sanazi@ju.edu.sa

Abstract: The research area falls under the umbrella of affective computing and seeks to introduce
intelligent agents by simulating emotions artificially and encouraging empathetic behavior in them,
to foster emotional empathy in intelligent agents with the overarching objective of improving their
autonomy. Raising the emotional empathy of intelligent agents to boost their autonomic behavior can
increase their independence and adaptability in a socially dynamic context. As emotional intelligence
is a subset of social intelligence, it is essential for successful social interaction and relationships. The
purpose of this research is to develop an embedded method for analyzing empathic behavior in a
socially dynamic situation. A model is proposed for inducing emotional intelligence through a deep
learning technique, employing multimodal emotional cues, and triggering appropriate empathetic
responses as output. There are 18 categories of emotional behavior, and each one is strongly influenced
by multimodal cues such as voice, facial, and other sensory inputs. Due to the changing social context,
it is difficult to classify emotional behavior and make predictions based on modest changes in
multimodal cues. Robust approaches must be used to be sensitive to these minor changes. Because a
one-dimensional convolutional neural network takes advantage of feature localization to minimize
the parameters, it is more efficient in this exploration. The study’s findings indicate that the proposed
method outperforms other popular ML approaches with a maximum accuracy level of 98.98 percent
when compared to currently used methods.

Keywords: artificial intelligence; deep learning; convolutional neural network; emotional empathy;
intelligent agents; multimodal emotional cues; social interaction; empathetic behavior

1. Introduction

Artificial Intelligence (AI) is computer science’s most empowering and optimistic
branch. Simulated intelligence, which aspires to be one step ahead, focuses on the most
perplexing, complex, cumbersome, and exhausting problems that cannot be easily compre-
hended using conventional algorithmic methods [1]. It cannot obtain proper recognition
in a single domain, which is misleading. Doyle’s definition of AI is as follows: “It is
the science of comprehending intelligent creatures through the development of Intelli-
gent Agents (IA) that are currently affecting the entire world and its living standards.”
With significant advancements in AI and other mechanical domains, IAs are becoming
increasingly coordinated across societal regions. IAs are multifunctional models that can
be reprogrammed/customized [2,3].
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Empathy has a sordid history, marked by disagreement and inconsistency. Although it
has been researched for millennia, with significant contributions from philosophy, theology,
experimental psychology, individual and social psychology, ethology, and neuroscience,
the field struggles with a lack of agreement concerning the phenomenon’s nature. Despite
this difference of opinion, empirical evidence for empathy is completely compatible across
various species [4]. The act of understanding another person’s emotions and sharing their
emotional experiences is known as Emotional Empathy (EE). This profound awareness of
another person’s emotional state usually results from shared experiences [5]. Increasing EE
to improve their instinctive behavior can enhance the independence and adaptability of
IAs in a socially dynamic setting.

Affective Computing (AC) is perhaps the most recent unit of computer science, having
emerged with Rosalind Picard’s paper [6,7]. It is a rapidly growing interdisciplinary field
that combines analysts, researchers, and experts from various fields, including psychology,
sociology, artificial intelligence, natural language processing, and deep learning [8,9].
However, it does not appear easy to imagine how humans can work seamlessly with
machines and IAs. AC enables IAs to process data gathered from various sensors to
assess an individual’s emotional state, ranging from unimodal analysis to increasingly
complex forms of multimodal research [10]. Emotional intelligence (EI) is perplexing
from a human perspective, and there is no exact rational explanation or theory. The
critical foundation for AC is understanding emotions and their role in human behavior
and cognitive processes [11,12]. In the development of AC-based frameworks, pattern
recognition and examination techniques are used to recognize and synthesize facial patterns
and generate an Emotional Response (ER). It encompasses various facets as shown in
Figure 1 [8,13,14].
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Figure 1. Distinct domains of affective computing.

All three of synthesis, evocation, and regulation contain cognitive and non-cognitive
components. The associated ER evokes empathy. It is the capacity to recognize and differ-
entiate among varied social contexts employing cognition and emotions and to respond
properly to the associated emotional state. The human brain accommodates multimodal
cognitive modeling information as shown in Figure 2.

AC has been made possible by AI-enabled systems due to their rule-based architecture
and ability to operate in an interactive and dynamic environment [15–17]. The following
section focuses on developing Social Interaction (SI) by invoking EE in IAs. SI is an
individual’s ability to react appropriately according to the perceived situation from the
surroundings for productive social interaction. On the off chance that we want an IA to be
a primary essential instrument or a gadget, as a partner, a colleague, and a social helper, it
is required to implant SI in those frameworks. In order to support human activities, human
beings are social delegates, and IAs should show enough SI to communicate with humans
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adaptively. If they lacked SI, they would not acquire a secure position in social contexts
despite their extraordinary ability.
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The IAs would not help humans appropriately if they ignore the weaknesses, lacks,
desires, and necessities of humans. In any situation, the sensitive and adaptable response
of IAs to the emotions and sentiments of others reflects EE (fundamentally needed to be a
functioning social being, as presented in Figure 3) in these frameworks. In order to achieve
this, it necessitates the endowment of intellectual capacities in IAs with EI that raise the
SI and have empathetic Human-to-Robot Interaction (HRI) or Robot-to-Robot Interaction
(RRI) [16,18–21].
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Even though IAs engage in SI, going beyond these boundaries requires a high level
of expertise. EE aids in developing various SI-based attributes within these frameworks
and enhancing their capabilities and, as a result, the degree of social acceptance. Generally,
various human cognitive capacities and abilities are integrated into EI. Except when EI is
incorporated into IAs, it is impossible for these systems to respond innovatively, creatively,
imaginatively, psychologically, or rationally in social settings. A meaningful and emotive
response is required for a friendly personality to emerge [22]. To accomplish this goal, an
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IAs must exhibit Empathetic Behavior (EB). Certain researchers focus on facial emotion
detection, speech emotion detection, cognitive modeling, and other related areas, but prior
research has lacked EB detection based on Multimodal Emotional Cues (MECs). However,
this research establishes an EB prediction system based on MECs in order to increase the
degree of HRI or RRI. As such, this research takes facial and vocal emotional cues and other
identified parameters (as input parameters) into account and predicts relevant EB.

We employ a powerful method that has become popular in the literature to handle
this massive amount of multimodal data in terms of parameters and occurrences [22]. The
other strategies, such as user experience and human–computer interaction, are also well
discussed in recent studies highlighting their significance in academia and business [23,24].
Convolutional Neural Networks (CNN) are multi-layer artificial neural networks that
outperform traditional approaches in tasks like pattern recognition. The following are
the main points of the method: high accuracy and performance when compared to other
recognition algorithms on the same dataset in an end-to-end architecture. A CNN is utilized
to recognize EB. There is no need for any pre-processing steps. After getting a minimum
number of frames, the classification process begins. After new raw input samples, the EB
class is predicted almost real-time (sensor data) [25].

Furthermore, we evaluated a method for recognizing emotions from multimodal data,
tested on a dataset gathered from various sources. Multimodal emotional cues are used in a
social context to identify IA’s emotional behavior. Independent prediction models are used
to combine these modalities. In addition, we developed a complete evaluation method to
compare impacts on the same dataset under specified and well-defined settings in order
to guarantee consistency in various situations and adaptation to real-world conditions.
Cross-validation, on the one hand, enables the evaluator to demonstrate the statistical
significance of several models, as opposed to depending on the chance that the system
works well for one or two cases. On the other hand, the system enables us to analyze its
performance in real-world contexts, such as when it is difficult to obtain annotated data
from a new user, and the system must rely on information acquired from learning in similar
contexts. We examined Machine Learning (ML) and Deep Learning (DL) techniques for
dealing with data obtained from multimodal cues, leveraging embeddings from pre-trained
deep neural networks, and fine-tuning these models to fit our dataset for categorization and
later prediction of EB. During a SI, the representation of emotions undergoes an intensity
transition that traverses numerous phases, posing a significant learning challenge for non-
temporal models. To the best of our knowledge, just few published data combine MECs
with the other EB-influencing parameters described in this work.

1.1. Problem Statement

Human intelligence is an amalgamation of logical reasoning and emotional states.
Humans are relatively more induced and motivated by emotional states than by rational
thinking. Human emotional activation is elicited by internal and external stimuli and
is expressed by physiological signs, e.g., expressions, voice tone, energy, pitch, etc. The
better the emotional interaction, the better the interpersonal relationship, and the more it
will be sociable. Since IAs do not have to endure and tolerate human-like awkwardness,
hardness, severity, tediousness, hungriness, torture, and other such problems, they are
better replacements and more adaptable in challenging human working fields. However,
due to the lack of understanding of human affective states, they only perform what they
are instructed and exhibit brutal, insensitive, and unfriendly behavior. A meaningful
and dynamic response is essential for exhibiting a friendly personality. Attainment of
this goal requires an IAs to possess EB. In prior studies, some studies dealt with facial
emotion detection only or speech emotion detection only, and some deal only with cognitive
modeling, etc., and lack skills in providing EB detection based on MECs [26,27]. However,
this research caters to MECs (as input parameters) and predicts the respective EB.
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1.2. Purpose of the Research

One of the primary goals of AC is empathy: the ability to understand and recognize
others’ emotional states and respond accordingly. The IA’s sensitized acceptance and
adaptive behavior towards the other user’s emotional state results in more productive and
delightful interaction. AC directs the computational modeling of EI to achieve genuineness
in HRI collaboration. This SI helps IAs securely coexist and be in touch with humans
to control the potency of social interaction with humans. Accordingly, this research is
intended to provide a model for EB prediction in response to the inputs through MECs.
These models help can work in the future to generate EE-based abilities in the modern
IAs, which would be pivotal for enhancing emotional adaptiveness and, consequently,
increasing their social acceptance level.

2. Literature Review

This section presents a literature review to shed light on various researchers’ efforts to
improve EE in IAs. Several studies on ML and DL highlight their applications in several
fields; they have proven to be an excellent source of guidance for the proposed idea.

Various researchers’ efforts shed light on managing EE prediction in IAs to precisely
cater to SI through diverse, intelligent techniques. Numerous related studies demonstrated
the applications experimentally, which served as an excellent guide for developing the
proposed concept of EI and EB into IAs in order to increase their degree of interaction. A few
models were provided to aid in developing machine consciousness models with varying
degrees of control in execution. Furthermore, AC characteristics, such as emotion, etiquette,
and personality traits, have not been a primary focus of machine-consciousness-based
models. IAs are deficient in these domains and other programming-based applications. The
authors of the study [28] reviewed several existing models of machine consciousness and
proposed an AC-based model capable of developing human-like mechanical frameworks.
Machine consciousness presented an AC-based model intending to incorporate the emotive
characteristics that give AI systems a human-like skill. It is critical for the establishment of
AC-based IAs in order to facilitate HRI.

Another study proposed various methods to improve HRI, including emotional af-
fordances. Those are methods that take emotions into account to capture and transmit
emotional signals in any situation; they may help to consolidate physical interaction and
social norms. For example, with this rich thought, they uncovered the optimal strategy for
dealing with EI’s multimodal and unpredictable nature. What are humans’ emotional pro-
cesses, and how are they related to broader or possibly environmental and social conditions?
This effort aimed to develop a framework for the emotional affordances’ structural taxon-
omy that enables a better understanding of HRI. Along these lines, this research provided
an EA-oriented taxonomy to experts in IAs, allowing for the HRI to be upgraded [29].

The identified research presented an AI-based model expected to improve HRI based
on the dice game’s situation. It provided an analytical approach based on a case study to
address some challenges of this domain: Does an IA with a socially engaging character
offer a higher degree of acceptance than a focused one? The presented system possesses
the adaptability to create and credit two distinctive qualities to any socially IA possessing
a humanoid mien; social engagement attributes increase its degree of interaction and
cooperation. A concentrating character focuses on playing and being the game-winner. The
two attributes were assessed, and the humans and IAs played the dice game on a turn basis.
Throughout the game, each feature was assessed to investigate the members’ emotional
facial states. The results indicated that the IA’s interaction was considered better as a friend
than a competitor. It was concluded that, in HRI, emotional engagement prompts a high
degree of social acceptance [30].

The coordinated effort in HRI settings is receiving continuous importance. Accord-
ingly, there is a growing interest in improving systems that can advance and upgrade the
association and collaboration among humans and IAs. One of the pivotal analyses in the
HRI field is giving IAs affective and psychological capacities to develop an empathetic rela-
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tionship with humans. Various models were proposed to meet this challenge. This research
provides an outline of the most significant activities through a literature review of the
frameworks focusing on specific HRI constituents: the cognitive and adaptive frameworks
with the ability to build better interaction and relation with human beings [31].

To have smooth interaction with humans, it is demanded that the IAs perceive and do
interactions and adjust and modify behavior according to the learning frameworks. HRI re-
quires human-centered observation to detect and model human actions, the objectives and
goals behind such activities, and the factors portraying the SI. The IA’s conduct should be
adjusted to achieve a coordinated effort, and the liaison should be characterized by param-
eter balancing. In the wake of profiling, for social adaptivity in conduct, the classification
technique includes contact from cognitive, social, and physical viewpoints [32].

Dialogue’s emotion recognition is fundamental for the advancement of empathetic
models. The presented work did not cater to the interpersonal influences that twist dia-
logue’s emotion recognition. The study suggested an onteractive conversational memory
network focused on dialogue-based continuous self-modeling and the global memories-
based emotional effects of the interspeaker. Context-aware highlights were generated by
these memories that help in detecting emotional signs in a recordings [33,34].

Recently, a thorough analysis of 1427 IEEE and ACM publications on robots and
emotion was carried out. First, the survey generally classified significant emotional input
and output trends. An extensive examination of 232 publications focusing on the internal
processing of emotion, wherein emotion was handled through some algorithm rather than
just as an input or output, was then conducted. This analysis identified the three basic
categories of the emotional model, the implementation, and emotional intelligence. This
study summarizes the most important findings, looks to the future at potential applications,
and discusses the inherent issues arising from the fusion of emotion and robotics [35,36].

Despite the progress in facial-mimicry-oriented systems, their association with socially
interactive systems is a matter of concern. The authors investigated the association among
cognition, emotions, and mimicry. For seventy individuals, mimicry valuation and facial
electromyography were conducted when they performed the multi-prospect empathy
test, showing context-aware emotional elicitation. As anticipated, an individual differs in
cognitive and emotional empathy related to the degree of facial mimicry. While talking
about the positive types of emotions, the extremity of the response of mimicry scaled with
the degree of the state regarding EE. Using ML schemes, the specific empathy state could
be adequately perceived by facial muscles’ movement. Such results also evoked the idea
that mimicry acts as an affiliation instrument in a social context related to cognitive and
EE [37].

This study measured the performance of various types of DL algorithms for gesture
detection on the HAART dataset, which contains seven distinct gestures. Two Dimensional
Convolutional Neural Networks (TDCNN), Three-Dimensional Convolutional Neural
Networks (ThDCNN), and LSTMs were among the neural network topologies used in
the algorithms. On the social touch gestures recognition test, GM-LSTMs, LRCNs, and
ThDCNNs were compared. When applied to the HAART dataset, though, the suggested
ThDCNN technique achieved a recognition accuracy of 76.1 percent, significantly exceeding
the other proposed methods [25,38].

On the CoST and HAART datasets, a group of experts used three distinct DL algo-
rithms for social touch recognition. In order to effectively train the CNN-RNN model,
the CoST data was partitioned into CNN and CNN-RNN windows. They restricted the
number of windows within a training sample, splitting certain gesture captures into two
or three training samples. The durations of gestures in the HAART dataset were uniform,
and each training sample comprised a full capture. They used seven unique features in
the Autoencoder-Recurrent Neural Network (ARNN). The CNN classification ratios for
the CoST and HAART datasets were 42.34 percent and 56.10 percent, respectively. The
CNN-RNN classification ratios were 52.86 percent and 61.35 percent, respectively. The
categorization ratios for ARNN and ARN were 33.52 percent and 61.35 percent, respec-
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tively. The three DL techniques utilized achieve a similar degree of recognition accuracy
and anticipate gestures quickly [39].

The following is the paper’s organization: Section 3 discusses the materials and
methods. Section 4 analyzes and discusses the experiments and results. The comparative
analysis will be presented in Section 5. Finally, Section 5 will conclude the research and
define future work.

3. Materials and Methods

The proposed model for the EB elicitation of an IA is presented below in this section
(see Figure 4).
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3.1. Stimulus

Stimulation is how one discerns an approaching stimulus, something we observe in
our environment that can undulate our attention and that affects how to operate it. In order
to adapt a variation/change in the environment, one must have the ability to identify it
first, and this identification/detection of stimulus is known as susceptibility or sensitivity.
Stimulus can be discriminated by acquiring the ability to respond only to necessary stimuli
while avoiding irrelevant ones.

3.1.1. Distal Stimulus

It is the actual physical stimulus around us that reaches our senses.

3.1.2. Proximal Stimulus

The stimulus that has been registered/entered through sensory receptors.
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3.2. Types of Stimulus
3.2.1. Exteroceptive

It is gleaned from outside the IA. Undeviating emotional stimuli are the consequences
of a sensorial stimulus operating by intellectual processes. When some event happens in
the environment, it will be received as a sensorial stimulus to the IA. The exteroceptive
stimulus can be detected due to two types of sensory receptors in the case of an IA, i.e.,
visual, and auditory. All stimulus modalities operate together to originate stimuli sensation.
This research will proceed with the exteroceptive stimulus.

3.2.2. Interoceptive

It is gleaned from inside the IA, greatly influence the operating potential activation
level.

3.3. Stimulus Quality

The sensory modality may comprise quality differences on the sensory impression
level, e.g., the sound quality, composed of frequency and pitch.

3.4. Stimulus Quantity

It refers to the strength/intensity of a sensory impression, e.g., sound intensity.

3.5. Receptors

Sensors for the reception of inputs, also known as a primary messenger. IA demands
to be in contact with or to interact with environmental changes according to context. They
are the faculty through which an external stimulus is perceived. They enable the IA to
capture the details of that change in the environment. They are proficient and sensitive to
the identification of a specific stimulus modality.

3.5.1. Visual Receptors

The IA may be equipped with vision sensors for detecting the presence or absence of
any object. Identifying different faces with their properties requires assembling features
from the captured images of every face at distinct orientations and angles.

3.5.2. Auditory Receptors

The acoustic sense demands no illumination and enables an IA to operate in low light
or dark. Obstacles negatively influence hearing, so an IA can discern auditory data from
any origin beyond the barrier.

3.6. Sensory Memory

A visual stimulus’ mental representation is known as an icon (fleeting image). It acts
as a buffer for storing visual sensory input for 2–3 s. Another part of sensory memory
specializes in maintaining acoustic information. These memories are retained for a bit
longer than iconic memory. It is like a holding tank and stores acoustic input for 3–4 s for
proper processing.

3.7. Action Potential

The Sensory-Neuro-System (SNS) is responsive to the conversion of external stimuli
from the environment to internal neural spikes. Visual and auditory contents captured
through a stimulus are converted into action potentials or called sensory transduction or
graded potentials. Transduction alludes to a stimulus alerting to events for the conversion of
a stimulus to action potentials. Both sensory inputs assist in generating sensory perception.
SNS joins to the motor-neuron systems through interneuron processes. It means these
sensory inputs will help in exciting the interneuron processes whence signals will send out
to the motor-neuron system for activation. Continual sequential spikes generate a spike
train to elicit a response.



Appl. Sci. 2023, 13, 1163 9 of 36

3.8. Reinforcement

Reinforcers are closely related to variation in the response rate. In behavioral theories,
reinforcement is termed the response probability—primary re-enforcer, also known as
unconditioned reinforcement. Primary and secondary reinforcers are a great cause of our
emotional behavior. The presentation of a stimulus followed by a response will increase the
probability of the same response in the future through this process. It has a great influence
on the elicitation of ER.

3.9. Perceptual Associative Memory

A relaying module sorts the approaching sensory information and acts as a director
of information. It is accountable for the reception of sensory information, processing and
interpreting the information, and adequately transmitting it. It is considerably involved in
sensory perception. Perceptual associative memory is how IA takes in a stimulus through
its senses.

3.10. Emotional Empathy

The capacity to sense and feel with others is known as emotional empathy. It is the
capacity to obtain the experiences, ideas, thoughts, and feelings from other’s perspectives.
Such emotions and implications are more hidden in comparison to to clear articulations.

3.11. Appraisal

Appraisal is a factor in determining emotional experience. Emotions are gleaned from
evaluation (which resides between a stimulus and an ER). An appraisal is in charge of
creating and maintaining an emotional state after it has evoked certain emotions. In various
circumstances, it leads to different ERs. There are two steps in an appraisal.

3.12. Primary Appraisal

It is the sensation of feelings. Negative appraisal leads to a miserable condition,
whereas positive appraisal leads to a satisfying condition.

3.13. Secondary Appraisal

IA is motivated to be expressed via secondary appraisal. Motivation is the overarching
propensity to act; it is a collection of psychological variables that push IA to do something.
Extrinsic motivation is an external driver of IA for an ER. Internal motivation, or intrin-
sic motivation, contributes to mood generation. Both intrinsic and extrinsic motivation
contribute to behavior. It is a general term that encompasses both emotions and moods.
Motivating the IA to respond in opposition to the emotional state identified by secondary
appraisal activates actuators.

3.14. Coupling

It is contended that, much of the time, the coupling of emotions and feelings in a single
mind to another mind occurs, employing empathetic understanding. An IA’s coupling to
a human mind compels and improves the IA’s emotional and social conduct, prompting
sophisticated joint practices that could not have developed in conventional intelligent
systems.

3.15. Empathetic Response

A feeling’s complex state is known as an empathetic response, expressed through
actuators in IAs. It plays an adaptive role in the selection and the conscious state display
interpersonally (socially) and intentionally reported. An emotional, empathetic response
influences the IA’s behavior.
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3.16. Deep Learning Architecture

A convolutional neural network uses the idea of learning patterns and correlations on
numerous data points. If the data points are numeric, then it is significant that data points
must show any real-life information. For instance, a picture can be encoded as a TD pixel
matrix with the red–green–blue channel’s values as additional color data dimensions. A
word-to-vector encoding form shows a word’s configuration as a series of words generating
sentences. Moreover, TensorFlow has implicit libraries to deal with considerable numbers
of multi-dimensional matrices and vectors, the convenient usage of ML and DL schemes to
implement real-life problems, and to check their performance level.

Another benefit is that preprocessing is avoided, which reduces case dependency and
improves real-time performance. The research presents a multimodal emotion recognition
and prediction model that does not require any data preprocessing. Furthermore, using sen-
sory data without preprocessing is a problematic endeavor, necessitating the development
of a powerful technique to classify EB classes as described in Algorithm 1 efficiently.

Algorithm 1: Empathetic Behavior Detection (EBD)
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One-Dimensional Convolutional Neural Network (ODCNN) works on basic array
functions. This implies that the computational power requirements of ODCNN are lower
than TDCNN. An ODCNN with a generally shallow framework (for example, fewer neu-
rons and hidden layers) can classify one-dimensional signals and data. Then again, a
TDCNN typically demands more profound models to deal with such operations. Shallow
network structures are a lot simpler when training and actualizing them. Usually, prepar-
ing profound TDCNN requires exceptional setup and hardware (GPU-farms and cloud
computing).

On the other hand, a standard PC-oriented CPU execution is possible and moderately
quick for preparing an ODCNN, for instance, neurons (less than fifty) and a small number
of hidden layers (for example, two or fewer). Due to their low computational necessities,
ODCNNs are appropriate; for example, such applications are less expensive and operate
in real-time, particularly on hand-held and mobile gadgets. ODCNNs have shown the
unrivaled execution of those applications with a restricted labeled dataset and many sign
varieties obtained from various sources (i.e., power engines or motors, high-power circuitry,
mechanical or aviation systems, civil, sensor data, and so forth.

The CNNs are intended to work solely on TD information, for example, images and
videos. It is the reason they are regularly alluded to as TDCNNs. Another option, an
adjusted rendition of a TDCNN called an ODCNN, has been created recently [40].
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3.17. System Specifications

On the multimodal dataset, the anticipated ODCNN was evaluated for emotional
behavior detection and the prediction of emotion during interaction in a dynamic environ-
ment. The Lenovo Mobile Workstation used for the experiments was outfitted with a 10th
generation Intel Core i7 processor, Windows 10 Pro 64-Bit, 64 GB of DDR4 memory, a 1 TB
SSD hard drive, and NVIDIA RTX A4000 graphics. To explain and present the findings of
our suggested strategy, we used the Anaconda Prompt (Jupiter notepad) tool.

For the experimentation of the proposed work, the dataset was acquired from various
sources, i.e., Github projects, and online repositories were utilized for obtaining empathy-
oriented multimodal prospects [41,42]. A sample of the dataset is given in Table 1.

Table 1. Sample dataset.

MFCCs Energy Zero Crossing
Rate Pitch Facial

Expression Gender Speaker Sentence TimeScale Extremity Valence Empathic
Behavior

−683.607 3437.97 0.037567 231.9255 0 1 1 0 2 2.87 1.55 0
−725.935 4219.594 0.054187 332.8988 0 1 2 0 2.2 3.86 1.4 0
−730.242 1449.509 0.036597 115.3349 0 1 3 0 2.6 3.43 1.35 0

Different examinations have indicated that ODCNNs are advantageous and desirable
for specific applications over their TDCNN partners in managing OD datasets for the
accompanying reasons. For our proposed work, the input dimension is set as 110, including
100 diverse MFCCs, energy, zero crossing rate, pitch, facial expression, gender, speaker,
sentence, timescale, extremity, and valence, and the output dimension is set as 1, which
is emotional behavior, wherein the input length is 3078. The training dataset consists of
70% of the instances, and the rest of the 30% is used for testing purposes. The ‘Hinge’ loss
function and the ‘Adam’ optimizer are used. The accompanying parameters shape the
arrangement of the ODCNN [41–43]. As previously explained in Algorithm 1, Figure 5
shows the different types of layers that are utilized in ODCNNs:

• Convolution layer (with 56 filters, the kernel size is set as 3, and the rectified linear
unit (ReLu) activation function is used, and the padding is set as valid);

• Pooling layer (sub-sampling);
• Dropout layer (the dropout rate is set as 0.5);
• Fully Connected Layers (FCL) that are indistinguishable from the Multi-layer Percep-

tron (MLP);
• Several neurons and hidden layers in the ODCNN are 1 and 2 MLP and hidden layers;
• In each CNN layer, the subsampling factor is 2.

A CNN is an artificial neural network that requires a convolutional layer but can
have other layers, such as nonlinear, pooling, and fully connected layers, to create a deep
convolutional neural network. CNN may be useful, depending on the application, but
it also adds more training factors. The back-propagation technique trains convolutional
filters in a CNN. The filter structure’s forms are determined by the task being performed.

For the given input data, a number of filters are slid over the convolutional layer. The
output of this layer is then calculated as the sum of an element-by-element multiplication of
the filters and the receptive field of the input. The next layer’s component is the weighted
summation. We can then slide the focus area and fill in the other aspects of the convolution
result.

Stride, filter size, and zero padding are the parameters for each convolutional oper-
ation. Stride, a positive integer number, determines the sliding step. Filter size must be
fixed across all filters used in the same convolutional operation. To control the size of
the output feature map, zero padding adds zero rows and columns to the original input
matrix. The primary goal of zero padding is to include the data at the input matrix’s edge.
Without zero padding, the convolution output is smaller than the input. Therefore, the
network size shrinks by having multiple layers of convolutions, which limits the number



Appl. Sci. 2023, 13, 1163 12 of 36

of convolutional layers in a network. Zero padding, however, prevents networks from
contracting and offers limitless deep layers in our network architecture.
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The main task of using nonlinearity is to adjust or cut off the generated output. In
CNN, a variety of nonlinear functions can be used. However, one of the most prevalent
nonlinearities is the ReLu. The dimension of the inputs is roughly reduced by the pooling
layer. The most common technique, max pooling, outputs the highest value found inside
the pooling filter. A SoftMax layer is considered an excellent method to demonstrate
categorical distribution. The SoftMax layer is thought to be very effective for displaying
a categorical distribution. The SoftMax function is a normalized exponent of the output
values and is primarily used in the output layer. This differentiable function represents the
probability of the output. Additionally, the exponential component raises the probability of
the highest value.

3.18. Mathematical Model of One-Dimensional Convolutional Neural Network

As expressed previously, an ODCNN is utilized in this work to select features. Con-
sidering a training dataset’s matrix y = [y1, y2, . . . , ym]′, where the length of the training
dataset is represented by m, and every yi vector is shown in the k-dimensional vector-space.
We can likewise represent X = [X1, X2, . . . , Xm]′, which is the actual intput. The target
vector (TV) is related to Y. The ODCNN comprises Q-layers, with every layer (q = 1, . . . ,
Q) made out of nq, including features, and carries out the subsampling and convolution
functions. The subsampling factor (SSF) is supposed to be consistently equivalent to two
(SSF = 2). The above Figure 5 represents an overall ODCNN structure. The below section
describes the mathematical formulation of forwarding propagation (FP).

Supposing that during FP, for current layer q, the input features of the q-layer is the
acquisition of the last yield (after the sub-sampling) of the prior features (q − 1) convolved
with the respective kernels and proceeded through a nonlinear activation function (AF) as
given below in Equations (1) and (2):

bq
j = aq

j +∑nq−1

l = 1 con1D (sq
j,l , wq−1

l ) (j = 1, . . . ., nq) (1)

= f(bq
j ) (2)

For q-layer, the input to the jth feature is represented by bq
j , and this feature’s bias is

represented by aq
j , and wq

j is the yield, on the prior layer (q − 1), wq−1
l is the yield of the lth
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feature, sq
j,l is the kernel weight-vector between the lth feature on the (q − 1) layer and the

jth feature on the qth layer, and the AF is represented by f(·). Ordinarily, the sigmoid AF is
utilized, and the below Equation (3) communicates that:

f (y) =
1

1 + e−y (3)

Concerning the vector’s dimension on each piece of the ODCNN, if it is supposed
that cq is the dimension of each feature’s yield on the q-layer and gq is the corresponding
kernel’s length, the last yield of the next coming layer’s features q + 1 (q + 1 ≤ Q) is
expressed by Equation (4):

cq+1 =
cq − gq + 1

2
(4)

In the last layer, the feature’s outputs are stacked in one h-vector, and the feature of
the ODCNN with the size m is equivalent to cQ × nQ. This layer’s neurons are completely
connected to the resulting layer. In most cases, we have to tackle regression problems. Each
y-input has one x-output, and only a single neuron shapes the yield layer, and its yield
x = wq + 1 is generated as given below in Equation (5):

x = wq+1 = f (aQ+1 + ∑m
j = 1( sQ+1

1,j X h)) (5)

The below section provides details about Back-Propagation (BP). ODCNN training
is required to calculate the output layer’s error at layer I(x) and the ‘gradient’ ∂I/∂x. The
aim of computing this error is to perform weight estimation for error minimization while
carrying out the learning process. Herein, according to each weight, it is required to
compute the error-derivative denoted by Equation (6):

∂I
∂sq

j,l
= ∆ sq

j,l (6)

Applying the chain rule to the below-given Equation (7):

∂I
∂sq

j,l
=

∂I
∂bq

j
×

∂bq
j

∂sq
j,l

(7)

By Equation (1), it can be deduced in the form of Equation (8):

∂bq
j

∂sq
j,l
= wq−1

l (8)

We obtain Equation (9), as given below, by putting the value in Equation (7):

∂I
∂sq

j,l
=

∂I
∂bq

j
× wq−1

l =
∂I

∂bq
j

f(bq−1
l ) (9)

By knowing the values of w, for gradient calculation, it is required to understand the
qualities ∂I

∂bq
j
. By applying the chain rule again, we obtain Equation (10)

∂I
∂bq

j
=

∂I
∂wq

j
×

∂wq
j

∂bq
j
=

∂I
∂wq

j
× ∂

∂bq
j

f (bq
j ) =

∂I
∂wq

j
× f (bq

j ) (10)
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At the current layer, the derivative ∂I
∂bq

j
can be determined by calculating the derivative

of AF f (bq
j ). The derivation of sigmoid AF is given below in Equation (11):

f ′(y) = f(y) × (1−f (y)) (11)

Furthermore, as we know, the current layer’s error is ∂I
∂wq

j
; according to the weights (the

gradient can be calculated), the convolutional layer is utilized. The upcoming operation
comprises the error proliferation to the prior layer. After applying the chain rule, it can be
seen in Equation (12):

∂I

∂wq−1
l

=
∂I

∂bq
j
×

∂ bq
j

∂wq−1
l

(12)

From Equation (12), it can be deduced in the form of Equation (13):

∂ bq
j

∂wq−1
l

= sq
j, l (13)

Presently, it is required to calculate ∆ sq
j, l ; the weights need to be updated as given

below in Equation (14):
sq∗

j, l= sq
j, l × η ∆ sq

j, l (14)

Herein sq∗
j, l relates to the upcoming iteration’s weights, and the learning rate is repre-

sented by η.

4. Experimental Results

As a robust and entirely Python-based environment for the DL framework, we em-
ployed Python and other libraries mentioned below for EB identification. The batch size
is set to 250, and the number of epochs is set to 400. As a learning function, the simple
Adam is utilized. In contrast, the momentum term is set to 0.9, and the learning rates are 1,
0.5, 0.1, 0.05, and 0.001. Every 10 epochs, we look for a new learning rate across a batch of
data, and we select the learning that generates the lowest loss. A grid search determines
the optimal frame lengths. We tested 10-, 20-, 50-, and 100-frame lengths to discover the
best. For the hold-out validation test, five random subjects were chosen. The appropriate
frame length was determined by cross-validation accuracy.

Despite the extensive techniques to model emotions and sentiment analysis, these
schemes characterize distinct emotional states vital to the IAs, as now they permit robust
and interpretable predictions. However, this research provides an EB prediction based
on MECs. We performed the empathetic behavior prediction using a DL algorithm, i.e.,
ODCN, and comparative analysis was performed using different ML-based classification
algorithms. Only the optimized results of each classifier are presented herein after the
simulation process has been completed. The system dependencies are given in Table 2.

Table 2. System dependencies.

Libraries Versions

Anaconda Navigator 3.7
Python 3.8.1

Git 2.24.1.2
TensorFlow 1.6.0

Pandas 1.1.5
NumPy 1.14.5
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4.1. One-Dimensional Convolutional Neural Network (ODCNN)

The below graph shows the loss and accuracy curve obtained against the testing of
an ODCNN, and Table 3 presents the specification of the experiment with 98% accuracy
achieved (Figure 6).

Table 3. Specifications of one-dimensional convolutional neural network.

Parameters Values

Accuracy 98%
Loss 0.05

Activation Function Elu
Loss Function Hinge

Time Consumption 47.93 s
Model Type Convolutional Neural Network
Optimizer Adam

A Scatter plot (SP) or dissipate outline is a 2D graphical portrayal of a dataset.
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The a/b variable on the graph is shown as a cross or dot. This graph can be utilized
to depict connections (relation) between any two features or to show the distribution.
SP uses a dot to communicate values for two diverse parameters. The dot’s vertical and
horizontal axis position demonstrates values for a single data point. The SP below (Figure 7)
shows the heights and diameters for an example of anecdotal trees. The graph shows the
correlation plot between the two different Mel Frequency Cepstral Coefficient (MFCCs)
values. MFCCs’ values are used for voice-oriented emotion detection. As the dataset
contains 110 parameters, for SP, just two parameters have been picked.

In the presented parallel coordinates plot (see Figure 8), different parameters are
plotted parallel to one another (with their axis). Every axis has an alternate scale, as every
factor works off a distinct measurement unit. Moreover, all the axes can be standardized to
keep all the scales uniform. The values of these parameters are placed as the collection of
lines that are associated with the overall axis. This implies that every line (on each axis) is
a series of points (all joined). The correlation between MFCCs is shown (according to the
value of the mean and standard deviation) by the parallel coordinates plot.
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4.2. Deep Neural Network

Table 4 presents the results and specifications of a deep neural network to show the
performance.

Table 4. Specifications of deep neural network.

Parameters Values

Accuracy 84%
Loss 23.24

Activation Function Sigmoid
Loss Function Hinge
Model Type Neural Network
Optimizer Adam

4.3. Decision Tree

A decision tree is a generic, prescient demonstrating approach with applications
traversing various regions. Decision trees are built through an algorithmic scheme wherein
the dataset is split dependent on multiple conditions. For supervised learning, it is the
most generally utilized and pragmatic approach. It is a non-parametric supervised learning
approach utilized for both regression and classification. To control the tree depth, the



Appl. Sci. 2023, 13, 1163 17 of 36

maximum number of splits is specified. Its growth can be easily managed based on
predictive power and simplicity. The below section presents an analytical view of the
different variants of the decision tree.

4.3.1. Fine Tree

Table 5 presents the fine tree specifications used while predicting EB. The accuracy
obtained is 61.4%. The best-suited split criterion found by the hit-and-trial approach is
the Gini Diversity Index (GDI), with 100 maximum splits required. A diversity index
(DI) (likewise called Simpson or phylogenetic DI) is a quantitative approach representing
various kinds in the dataset. GDI is a proportion of variety that considers the number of
detected instances and the overall abundance of every instance. With the increment in
uniformity and evenness, the DI increments.

Table 5. Specifications of fine tree, medium tree, and coarse tree.

Fine Tree Medium Tree Coarse Tree

Parameters Values Values Values
Accuracy 61.4% 61.4% 66.2%

Total Misclassification
Cost 77 77 69

Prediction Speed ~2500 obs/s ~3000 obs/s ~3900 obs/s
Training Time 2.4654 s 1.2583 s 1.2256 s
Model Type Fine Tree Medium Tree Coarse Tree

Maximum number of
splits 100 20 4

Split Criterion Gini’s Diversity
Index Gini’s Diversity Index Gini’s Diversity Index

4.3.2. Medium Tree

Table 5 determines the medium tree specifications utilized when performing the
experimental verification. The acquired accuracy rate is 61.4%, with the 20 maximum splits
required, and the split criterion selected is GDI.

4.3.3. Coarse Tree

Table 5 also specifies the specifications of the coarse tree. The accuracy rate achieved
is 66.2%. With the maximum four splits required, the split criterion selected is GDI.

4.3.4. Optimizable Tree

With an optimizable tree, the accuracy rate achieved is 68.1%, with two maximum
splits required, and the chosen split criterion is GDI, whereas to show optimality, some
hyper-parameters are utilized. Hyper-parameters are the parameters that are used for
controlling the learning process. In hyper-parameter settings, 1–209 splits are required,
and the split criterion chosen is the hybrid of Gini’s Diversity Index (GDI), Towing Rule
(TR), and Maximum Deviance Reduction (MDR), whereas, for optimization purposes, the
Bayesian Optimizer (BO) is used. The Bayesian optimizer uses a sequential approach
for the objective function; the probability model is generated. This optimizer uses the
acquisition function that describes the expected improvement during optimization. A total
of 30 iterations are used, with no time limit for training (Table 6).

Figure 9 presents the classification tracking for the optimizable tree, and the 18th
iteration is the best-point hyper-parameter. The minimum-error hyper-parameters with a
maximum of two splits are required, and the selected split criterion is MDR.



Appl. Sci. 2023, 13, 1163 18 of 36

Table 6. Specifications of optimizable tree.

Parameters Values

Accuracy 68.1%
Total Misclassification Cost 65

Prediction Speed ~3500 obs/s
Training Time 58.738 s
Model Type Coarse Tree

Maximum Number of Splits 2
Split Criterion Gini’s Diversity Index

Hyper-Parameter Search Range

Maximum Number of Splits 1–209

Split Criterion Gini’s Diversity Index, Towing Rule, Maximum
Deviance Reduction

Optimizer Options

Optimizer Bayesian Optimization
Acquisition Function Expected Improvement Per Second Plus

Iterations 30
Training Time Limit False
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4.4. Naïve Bayes

The naïve Bayes algorithm is a Bayes’ theorem-oriented group of classification ap-
proaches. It is not an individual but a collection of schemes wherein all of them share a
general principle, and each classified feature is unconstrained and not dependent on one
another.

4.4.1. Gaussian Naïve Bayes

Table 7 presents the specification of Gaussian naïve Bayes, with an achieved accuracy
of 56.7%. Different distribution functions are used according to the nature of the data.
For numeric parameters, the Gaussian distribution function is used. The multi-variate
multinomial distribution function is used for categorical parameters.
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Table 7. Specifications of Gaussian naïve Bayes.

Parameters Values

Accuracy 56.7%
Total Misclassification Cost 106

Prediction Speed ~1700 obs/s
Training Time 3.4423 s
Model Type Gaussian Naïve Bayes

Distribution Name for Numeric Predictors Gaussian

Distribution Name for Categorical Predictors Multi-Variate Multi-Nomial
Distribution Function

4.4.2. Kernel Naïve Bayes

The kernel naïve bayes can be applied to numerical data. It is a weighting operation
utilized in non-parametric estimation schemes. These are utilized to compute the kernel
density, calculate the density function of the arbitrary parameters, and calculate the arbitrary
parameter’s conditional expectation. The accuracy rate achieved is 45.2%. The kernel
distribution is used for numeric parameters, and the multi-variate multinomial distribution
function is used for categorical parameters (see Table 8).

Table 8. Specifications of kernel naïve Bayes.

Parameters Values

Accuracy 45.2%
Total Misclassification Cost 115

Prediction Speed ~120 obs/s
Training Time 23.439 s
Model Type Kernel Naïve Bayes

Distribution Name for Numeric Predictors Kernel

Distribution Name for Categorical Predictors Multi-Variate Multi-Nomial Distribution
Function

Kernel Type Gaussian

4.4.3. Optimizable Naïve Bayes

For optimizable naïve bayes, a 56.7% accuracy rate is achieved; the Gaussian distri-
bution function is used, and the Epanechnikov Kernel Type (EKT) is used. This kernel
provides optimal results in terms of Mean Square Error (MSE). As hyper-parameters, both
kernel and Gaussian distribution functions are used, and a hybrid of four different ker-
nels is utilized with the expectation of optimal results. With the focus on optimality, a
Bayesian Optimizer (BO) is used, with 30 iterations, and no time limit for training purposes
is provided (see Table 9).

4.5. Support Vector Machine

Support vector machine are supervised learning approaches with associated learning
schemes that investigate the dataset utilized for regression and classification. They utilize
the kernel trick to perform the data transformation, and afterward, according to the poten-
tial outputs, an optimal boundary is generated (based on the transformation). Numerous
individuals profoundly favor support vector machine, which generates high-level accuracy
with fewer computational requirements.

4.5.1. Linear Support Vector Machine

The specifications of the linear support vector machine are presented in Table 10. The
linear kernel function achieves an accuracy rate of 59.0 %, and automatic kernel scaling is
used. Using linear support vector machine, linear (one-to-one) mapping is done.
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Table 9. Specifications of optimizable naïve Bayes.

Parameters Values

Accuracy 56.7%
Total Misclassification Cost 106

Prediction Speed ~2000 obs/s
Training Time 266.21 s
Model Type Optimizable Naïve Bayes

Distribution Name Gaussian
Kernel Type Epanechnikov

Hyper-parameter Search Range

Distribution names Gaussian, Kernel
Kernel Type Gaussian, Box, Epanechnikov, Triangle

Optimizer Options

Optimizer Bayesian Optimization
Acquisition Function Expected improvement per second plus

Iterations 30
Training Time limit False

Table 10. Specifications of linear support vector machine, quadratic support vector machine, and
cubic support vector machine.

Linear Support
Vector Machine

Quadratic Support
Vector Machine

Cubic Support
Vector Machine

Parameters Values Values Values
Accuracy 59.0% 60% 58.6%

Total Misclassification
Cost 79 75 82

Prediction Speed ~1300 obs/sec ~1300 obs/sec ~1100 obs/sec
Training Time 2.542 sec 1.8336 sec 2.2445 sec
Model Type Linear SVM Quadratic SVM Cubic SVM

Kernel Function Linear Quadratic Cubic
Kernel Scale Automatic Automatic Automatic

Multi-Class Method One-Vs-One One-Vs-One One-Vs-One

4.5.2. Quadratic Support Vector Machine

Table 10 presents the specifications of the quadratic support vector machine, with an
accuracy rate of 60%. It uses a quadratic kernel with automatic kernel scaling, and the
mapping criterion is one-to-one.

4.5.3. Cubic Support Vector Machine

Table 10 determines the specifications of the cubic support vector machine. The
accuracy rate of 58.6% is achieved using the cubic kernel function, and automatic kernel
scaling is used. Using cubic support vector machine, a one-to-one mapping is done.

4.5.4. Fine Gaussian Support Vector Machine

Acceptable discrimination among the classes is done using a fine Gaussian support
vector machine. Table 11 presents the specifications of the fine Gaussian support vector
machine, with an accuracy rate of 51.4 %. It uses a Gaussian support vector machine kernel
with a kernel scaling rate of about 2.6, and the mapping criterion is one-to-one.
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Table 11. Specifications of fine Gaussian support vector machine, medium Gaussian support vector
machine, coarse Gaussian support vector machine.

Fine Gaussian
Support Vector

Machine

Medium Gaussian
Support Vector

Machine

Coarse Gaussian
Support Vector

Machine

Parameters Values Values Values
Accuracy 51.4% 55.2% 51.4%

Total Misclassification
Cost 102 97 102

Prediction Speed ~1200 obs/s ~1200 obs/s ~1200 obs/s
Training Time 1.8659 s 2.1035 s 2.0044 s

Model Type Fine Gaussian SVM Medium Gaussian
SVM Coarse Gaussian SVM

Kernel Function Gaussian Gaussian Gaussian
Kernel Scale 2.6 11 42

Multi-Class Method One-Vs-One One-Vs-One One-Vs-One

4.5.5. Medium Gaussian Support Vector Machine

Using a medium Gaussian support vector machine, relatively more minor discrimina-
tion among the classes is done. Table 11 determines the specifications of a medium Gaussian
support vector machine with an accuracy rate of 55.2%. It uses a medium Gaussian support
vector machine kernel with a kernel scaling rate of about 11, and the mapping criterion is
one-to-one.

4.5.6. Coarse Gaussian Support Vector Machine

Coarse discrimination among the classes is done using a coarse Gaussian support
vector machine. Table 11 signifies the specifications of the quadratic support vector machine,
with an accuracy rate of 51.4%. It uses a coarse Gaussian support vector machine kernel
with a kernel scaling rate of about 42, and the mapping criterion is one-to-one.

4.5.7. Optimizable Support Vector Machine

For an optimizable support vector machine, the 54.8% accuracy rate is achieved; the
Gaussian distribution function is used, and the linear kernel type is used (Table 12). This
kernel provides one-to-one mapping. As hyper-parameters, both one-vs.-one and one-vs.-
all mapping functions are used; the kernel scaling rate is from 0.001–1000, and a hybrid of
four different kernels is utilized with the expectation of obtaining the optimal results. With
the focus on optimality, a Bayesian optimizer is used, with 30 iterations, and no time limit
for training purposes is provided.

Table 12. Specifications of optimizable Gaussian support vector machine.

Parameters Values

Accuracy 54.8%
Total Misclassification Cost 86

Prediction Speed ~1700 obs/s
Training Time 298.91 s
Model Type Optimizable SVM
Kernel Scale 1

Multi-Class Method One-Vs-One

Optimized Hyper Parameters

Kernel Function Linear
Multi-Class Method One-Vs-One
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Table 12. Cont.

Parameters Values

Hyper-Parameter Search Range

Multi-Class Method One-Vs-All, One-Vs-One
Kernel Scale 0.001–1000

Kernel Function Gaussian, Linear, Quadratic, Cubic

Optimizer Options

Optimizer Bayesian Optimization
Acquisition Function Expected Improvement Per Second Plus

Iterations 30
Training Time Limit False

Figure 10 presents the classification tracking for the optimizable support vector ma-
chine and the 17th iteration to be the best-point hyper-parameters and the minimum error
hyper-parameters. It uses one-to-one mapping alongside a linear kernel function; data
standardization is kept accurate (required for parameter’s rescaling to obtain the 0 mean
value and 1 standard deviation, and it helps in decreasing the ambiguity and equalizing
the variability and range of data), and the box constraint level was about 0.1081 (its high
value may lead to a high misclassification rate).
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4.6. Ensemble Algorithms
4.6.1. Ensemble Boosted Trees

It is the aggregation of a complex decision tree. It may provide more accuracy, but
sometimes it can be prolonged. Table 13 presents the ensemble-boosted trees’ specifications,
with an accuracy rate of 65.7%. It uses the AdaBoost ensemble scheme, using a decision
tree as the learner type; 30 learners are used, with a maximum of 20 splits required, and the
learning rate is set around 0.1.

4.6.2. Ensemble Bagged Trees

This model may demand more ensemble fellows. It generates an ensemble of simple
decision trees using the bag method. It may provide more accuracy, but sometimes it can be
prolonged. Table 13 signifies the specifications of ensemble boosted trees, with an accuracy
rate of 65.2%. It uses the bag ensemble scheme, using a decision tree as the learner type;
30 learners are used, with a maximum of 207 splits required, and the learning rate is set
around 0.1.
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Table 13. Specifications of ensemble boosted trees, ensemble bagged trees, ensemble RUSBoosted trees.

Ensemble Boosted
Trees

Ensemble Bagged
Trees

Ensemble RUSBoosted
Trees

Parameters Values Values Values
Accuracy 65.7% 65.2% 67.1%

Total Misclassification Cost 75 69 72
Prediction Speed ~800 obs/s ~750 obs/s ~880 obs/s

Training Time 6.3271 s 3.9996 s 4.5867 s
Model Type Boosted Trees Boosted Trees Boosted Trees

Ensemble Method Adaboost Bag RUSboosted
Learner Type Decision Tree Decision Tree Decision Tree

Maximum Number of Splits 20 209 20
Number of Learners 30 30 30

4.6.3. Ensemble RUSBoosted Trees

It generates an ensemble of simple decision trees using the RUSBoosted method. It
may provide more accuracy (the accuracy rate varies according to the data). Table 13
determines the specifications of ensemble RUSBoosted trees, with an accuracy rate of
67.1%. It uses the RUSBoosted ensemble scheme, using a decision tree as the learner type;
30 learners are used, with a maximum of 20 splits required, and the learning rate is set
around 0.1.

4.6.4. Optimizable Ensemble

It generates an ensemble of simple decision trees using the AdaBoost method. The
accuracy rate varies according to the data. Table 14 presents the specifications of an
optimizable ensemble with an accuracy rate of 74.3%. It uses the AdaBoost ensemble
scheme, using a decision tree as the learner type; 20 learners are used, with a maximum
of 2 splits required, and the learning rate is set around 0.99987. For hyperparameters-
oriented learning, a hybrid of three ensemble schemes is utilized, as are 10–500 learners,
and the learning rate is about 0.001–1. A maximum of 1–209 splits are required with
1–111 predictors. With the focus on optimality, a Bayesian optimizer is used, with
30 iterations, and no time limit for training purposes is provided.

Figure 11 presents the tracking of the classification for the optimizable ensemble. The
29th iteration is the best-point hyper-parameters, and the 21st is for minimum-error hyper-
parameters. It uses the AdaBoost ensemble scheme, with 20 learners, with a maximum of 2
splits. The learning rate recorded is around 0.99987.
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Table 14. Specifications of optimizable ensemble.

Parameters Values

Accuracy 74.3%
Total Misclassification Cost 54

Prediction Speed ~1300 obs/s
Training Time 303.83 s
Model Type Optimizable Ensemble
Kernel Scale 1

Multi-Class Method One-Vs-One

Optimized Hyper Parameters

Ensemble Method Adaboost
Maximum Number of Splits 2

Number Of Learners 20
Learning Rate 0.99987

Hyper-Parameter Search Range

Ensemble Method Bag, Adaboost, RUSBoosted
Number Of Learners 10–500

Learning Rate 0.001–1
Maximum Number of Splits 1–209

Number Of Predictors to Sample 1–111

Optimizer Options

Optimizer Bayesian Optimization
Acquisition Function Expected Improvement per Second Plus

Iterations 30
Training Time Limit False

All previously deployed classifiers are compared through the area under the curve to
show their performance (Figures 12–31).
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Table 15, given below, presents the experimental results.

Table 15. Summary of the experiments.

Performance Indicators

Classification
Techniques

Technique Accuracy Area
Under Curve Precision Recall F1-Score

One -Dimensional Convolutional
Neural Network 98.98 0.99 0.92 0.95 0.91

Deep Neural Network 84 0.90 0.87 0.88 0.86
Fine Tree 61.4 0.69 0.62 0.71 0.66

Medium Tree 61.4 0.69 0.62 0.71 0.66
Coarse Tree 66.2 0.92 0.64 0.84 0.72

Optimizable Tree 68.1 0.83 0.95 0.84 0.89
Gaussian Naïve Bayes 56.7 0.66 0.55 0.78 0.65

Kernel Naïve Bayes 45.2 0.62 0.5 0.5 0.61
Optimizable
Naïve Bayes 56.7 0.66 0.55 0.78 0.68

Linear Support Vector Machine 59 0.87 0.52 0.93 0.67
Quadratic

Support Vector Machine 60 0.80 0.56 0.89 0.69

Cubic Support Vector Machine 58.6 0.77 0.53 0.86 0.65
Fine Gaussian Support Vector

Machine 51.4 0.61 0.5 1 0.66

Medium
Gaussian Support Vector Machine 55.2 0.83 0.5 1 0.66

Coarse Gaussian Support Vector
Machine 51.4 0.91 0.5 1 0.66

Optimizable Support Vector
Machine 54.8 0.82 0.52 0.93 0.66

Ensemble
Boosted Trees 65.7 0.88 0.64 0.86 0.73

Ensemble Bagged Trees 65.2 0.82 0.68 0.8 0.73
Ensemble RUSBoosted Trees 67.1 0.91 0.74 0.75 0.74

Optimizable
Ensemble 74.3 0.83 0.77 0.78 0.72
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5. Discussion

This paper explored EE paradigms to understand better how we can create more
life-like social AI in time-constrained, task-oriented environments. EE paradigms offer
an ideal setting to examine the interplay of the interaction context with agent behavior
during human–agent or agent–agent interaction, since both are interdependent, particularly
when the human and agent must collaborate to achieve some goal under some specific
circumstances [44]. To this end, we focused on exploring methods for developing modifiable
components of an EE and SI to enable the simultaneous manipulation of both the agent and
the environment. We also evaluated how a data-driven and model-driven approach could
be used to develop various components of EE, utilizing interaction data. Results showed
success as well as areas of improvement for different components [45].

Emotional intelligence is an essential component of human intellect and one of the
most crucial factors for social success. However, endowing machines with this level of intel-
ligence for affective human–machine interaction is not straightforward [46]. Complicating
matters is that humans use multiple MECs concurrently to evaluate affective states, as
emotion influences nearly all modes of audio-visual, physiological, and contextual stimuli.
Compared to conventional unimodal techniques, multimodal emotion detection presents
several unique challenges, particularly in the fusion architecture of multimodal input.
Studies reveal that visual expressions of emotion are more universal than prosody across
cultures [47]. The multimodal interpretation of cross-cultural emotions could thus be more
effective than verbal interpretation alone. Literature indicates that the application space for
MECs is broad and diverse.

There are 18 classes for the EB that certainly depend upon the multimodal cues con-
sisting of vocal, facial, and other sensory inputs. The classification of EB and prediction
based on slight changes in multimodal cues is challenging and requires robust techniques
sensitive to the minor changes in the multimodal cues due to the dynamic social environ-
ment. In this study, we used an ODCNN, and more efficiency is achieved as it reduces the
parameters by using the benefit of feature locality. The locality-preserving feature analysis
of ODCNN makes it more robust in classification problems based on historical data. This
feature predicts the diverse configurations related to EE in a dynamic environment. The
experimental results and comparison of different classifiers show that ODCNN performed
better EB classification and prediction based on performance measures, such as accuracy,
area Under the curve, precision, recall, and F1-score, in a socially dynamic environment by
representing the relative EB based on the multimodal inputs. ODCNNs are the extended
form of conventional DL-based algorithms and outperform classical ML approaches. Given
below, Table 16 presents a comparison of the current study technique with previous similar
studies’ designs.

Table 16. Comparison with previous research.

Algorithms Accuracy

Hilbert–Huang Transform and Fusion Based [48] 44%
Hilbert–Huang Transform and Fission Based [48] 52%

Kim’s Approach [48] 61%
K-Nearest Neighbors [48] 64%

Sequential Floating Forward Search [48] 92%
AFFDEX [49] 95%

Model-Agnostic Meta-Learning [50] 81.69%
Gaussian Mixture Model and K-Nearest Neighbor [51] 83%

Decision Trees [52] 80%
Logistic Regression [53] 90.57%

Gaussian Process Regression [54] 95.23%
Cubic Support Vector Machine [55] 98.01%

Proposed study (ODCNN) 98.98%
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6. Conclusions and Future Work

Artificial intelligence has been widely utilized in the industrial and commercial sectors
to reduce repetitive, time-consuming, and complex human labor. However, this area is
typically restricted to particular industries and workplaces. IAs do not receive the attention
they deserve due to a lack of awareness of the emotions of others and a disregard for
the interlocutor’s affective cues. As a result, the affective domain of AI seeks to enhance
the social acceptability of IAs. Emotional and empathic IA development is currently
confronted with a range of obstacles. Due to these deficiencies, various IAs that can
detect human attention, communicate with and interact with humans, and display an
amazing comprehension of human behavior have been developed. Without identifying
MECs, interaction, communication, and a high level of comprehension are impossible.
This comprehension of MECs is required for effective and empathic connection in order
to strengthen the human-machine relationship. The primary objective of this study is to
create a model capable of predicting the emotional, empathic behavior of IAs in response
to a variety of input factors (multimodal emotional facets). The proposed technique aids in
displaying the convincing behavior of IAs in a social environment and provide IAs with a
friendly and empathic interaction capability. Experiments to analyze empathic behavior
are conducted in Python using a DL algorithm, i.e., ODCNN. The results of this study
suggest that the proposed approach outperforms other widely employed ML methods
with a 98.98 percent accuracy level, which is the maximum accuracy level when compared
with already existing techniques (Table 16). Both internal factors in agents and external
factors play their roles during the interaction. Internal characteristics, such as MECs in
agents, and external factors, such as opponent behavior, play a role during socially dynamic
interactions. Future studies might build on this foundation by expanding the dataset with
additional variables known to affect affective behavior in social settings. They can apply
alternative classification and prediction methods and then compare their results with the
ones reported in the paper to see where precise modifications are required.

Recognizing the limitations of this study, it can be concluded that current classical
systems require substantial resources (a great deal of time and computational power, as
well as storage requirements, particularly if emotion classification includes image analysis)
to address the exhaustive procedures associated with affective computing. Future systems
for emotion detection, recognition, and behavior elicitation may benefit from quantum
computing’s ability to increase efficiency and precision. Quantum computing has the
potential to create solutions in several sectors that are simple, quick, and efficient.

Author Contributions: Conceptualization: S.A.A., N.A., M.S.; writing original draft: M.A., I.H.,
F.A.; software: S.A.A., N.A., M.S.; investigation: M.A., I.H., F.A.; validation: S.A.A., N.A., M.S.;
visualization: M.A., I.H., F.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Jouf University under
Grant Number (DSR2022-RG-0102).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is publicly available.

Acknowledgments: Thanks to our institutes who supported us throughout this work.

Conflicts of Interest: There is no conflict of interest among authors.



Appl. Sci. 2023, 13, 1163 34 of 36

Abbreviations

Full Form Acronyms
Artificial Intelligence AI
Affective Computing AC
Intelligent Agents IAs
Empathetic Behavior EB
Emotional Empathy EE
Emotional Response ER
Social Interaction SI
Emotional Intelligence EI
Deep Learning DL
Machine Learning ML
Sensory-Neuro-System SNS
Convolutional Neural Network CNN
One-Dimensional Convolutional Neural Network ODCNN
Two-Dimensional Convolutional Neural Network TDCNN
Three-Dimensional Convolutional Neural Network ThDCNN
Multimodal Emotional Cues MECs
Human-to-Robot Interaction HRI
Robot-to-Robot Interaction RRI
Mel Frequency Cepstral Coefficients MFCCs
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