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Abstract: With the development of information extraction technology, a variety of entity-relation
extraction paradigms have been formed. However, approaches guided by these existing paradigms
suffer from insufficient information fusion and too coarse extraction granularity, leading to difficulties
extracting all triples in a sentence. Moreover, the joint entity-relation extraction model cannot
easily adapt to the relation extraction task. Therefore, we need to design more fine-grained and
flexible extraction methods. In this paper, we propose a new extraction paradigm based on existing
paradigms. Then, based on it, we propose SSPC, a method for Span-based Fine-Grained Entity-
Relation Extraction via Sub-Prompts Combination. SSPC first decomposes the task into three sub-
tasks, namely 〈S, R〉 Extraction, 〈R, O〉 Extraction and 〈S, R, O〉 Classification and then uses prompt
tuning to fully integrate entity and relation information in each part. This fine-grained extraction
framework makes the model easier to adapt to other similar tasks. We conduct experiments on joint
entity-relation extraction and relation extraction, respectively. The experimental results show that
our model outperforms previous methods and achieves state-of-the-art results on ADE, TACRED,
and TACREV.

Keywords: joint entity and relation extraction; extraction paradigm; model adaptation; prompt tuning

1. Introduction

Information extraction is an important task in natural language processing, which
aims to extract structured information from unstructured text. This task consists of two
critical subtasks: Named Entity Recognition (NER) and Relation Extraction (RE). The
former identifies various entities in a sentence, and the latter extracts whether and what
relations exist between any two entities in a sentence. To extract complete structured
information (〈Subject, Relation, Object〉, i.e., 〈S, R, O〉), researchers usually handle these
two complementary tasks simultaneously. So far, the resolution process has gone through
three phases, evolving into three kinds of extraction paradigms. The two early paradigms
can be formulated as “S, O→ [R]” ([ ] represents a model) [1–3] and “[S, O]→ [R]” [4–7].
However, neither paradigm considers the connection between entities and relations, leading
to poor extraction results. To address this problem, a lot of current work has focused on
accomplishing both tasks in a single model, which can be called Entity and Relation
Extraction (ERE). Thus, the third type of extraction paradigm evolved. Depending on what
to extract first, it is further divided into the following specific forms, i.e., P1: [S, O→ R],
P2: [S→ R, O] , and P3: [R→ S, O] [8–15].

However, the third paradigm still has some drawbacks. Under the guidance of these
existing paradigms, there are some problems in the extraction process, such as insufficient
information fusion and coarse extraction granularity. Specifically, there is only a one-step
information connection between entities and relations in the extraction process. P1 and P2
first extract the entities in the sentence and then transfer the information of the entities to
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the relation extraction part. P3 first extracts the relations in the sentence and then transfers
the information of the relations to the entity extraction part. Nevertheless, in the first step
of extraction, there is a lack of information supplement from relation information to entity
extraction or entity information to relation extraction. Take the sentence “Neutropenia
and agranulocytosis are risks known to occur with phenothiazines and clozapine.” in
Figure 1 as an example. P1 and P2 are not guided by any relation information when
extracting “Neutropenia”, “agranulocytosis”, “phenothiazines” and “clozapine” in the first
step, even if the pre-defined target relation “Adverse-Effect” has been given in advance.
The “Adverse-Effect” means “The effect was caused by the drug.”. The combination of
“effect”, “drug”, and “was caused by” generates a large amount of information, including
sequential information, causal information, and semantic information, which is very crucial
for entity extraction. So, there is no reason to ignore this information, and we need to find
a way to integrate it into the first step of the extraction process. Another issue is that the
difference between relation extraction and joint entity and relation extraction is whether
the entities in the sentence have been annotated. Therefore, a flexible ERE approach should
ensure that it can quickly adapt to RE.

Figure 1. The example is chosen from the ADE dataset, where subjects are marked in orange, objects
are marked in blue, and relations are marked with red, green, purple, and black lines.

To address the challenges above, we propose a new extraction paradigm, which can
be described as [〈S, R〉&〈R, O〉 → 〈S, R, O〉]. It can not only extract entities but also extract
more fine-grained elements under the guidance of relation: 〈S, R〉 and 〈R, O〉. As the
intermediate extraction result, these elements can form triples through logical combination
and specific judgment as the final joint extraction result. To implement it, we propose
SSPC, a model for Span-based Fine-Grained Entity-Relation Extraction with Sub-Prompts
Combination. We introduce the approach of prompt tuning into the model. A typical
prompt consists of a template and a set of label words. This form ingeniously conforms to
our idea of integrating entity and relation information as long as we convert the relation
information into a prompt. Therefore, we first design a set of prompts before extraction,
including the S-R prompt, R-O prompt, and S-R-O prompt, and then begin the extraction
process. Firstly, traverse all spans of the sentence, and extract a set of possible subjects
for each relation through the S-R prompt; Secondly, traverse all spans of the sentence,
and extract a set of possible objects for each relation through the R-O prompt; Thirdly,
combine the above intermediate results through a logic rule to form a set of undetermined
triples, and filter each element in the set through the S-R-O prompt and relation classifier
to identify the triples that indeed exist in the sentence. SSPC can be easily applied to the
relation extraction task as well. Since the entities in the sentence are already annotated,
it is not necessary to traverse all spans of the sentence but place the annotated entity
in the corresponding position of the template. After the same steps, we can achieve
relation extraction.

• We propose a new extraction paradigm. It solves the coarse-grained problem of the
existing paradigm. A method guided by it can fully integrate entity and relation
information in the extraction process to solve the problem of insufficient informa-
tion fusion.

• We adopt the new extraction paradigm and propose SSPC, a model for Span-based
Fine-Grained Entity-Relation Extraction with Sub-Prompts Combination. Moreover,
this model can also be easily adapted to the relation extraction task. SSPC first
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performs the 〈S, R〉 extraction and then performs the 〈R, O〉 extraction, and finally
combines intermediate results through a logic rule to determine whether they are
triples 〈S, R, O〉 that are indeed contained in the sentence.

• We test our model on ADE, TACRED, and TACREV, and the results show that SSPC
can significantly and consistently outperform existing state-of-the-art baselines.

2. Related Work
2.1. Joint Entity and Relation Extraction

The research direction of the joint entity and relation extraction is promising because it
can solve the shortcomings of the previous methods, which ignore the interaction between
sub-tasks and are affected by error propagation [16–20].

Under the guidance of the P1 paradigm, Zeng et al. [8] proposed an end-to-end
model based on sequence-to-sequence learning with copy mechanism, which can jointly
extract relational facts from sentences of any of these classes. Both refs. [9,10] proposed
a span-based joint entity and relation extraction model. The first work showed that with
strong negative sampling, span filtering, and a localized context representation, a search
over all spans in an input sentence becomes feasible for joint entity and relation extraction.
The second work applied MLP attention to capture span-specific features aiming to obtain
semantic rich span representation and calculated task-specific contextual representations
with attention architecture to further reinforce span and relation representations. Unlike
previous work based on BIO labels, these two approaches can identify overlapping entities
and inspire us to think about the feasibility of the span-based approach.

Under the guidance of the P2 paradigm, Li et al. [11] proposed a multi-turn question
answering paradigm for the task of entity-relation extraction and Zhao et al. [12] provided
an effective solution based on the machine reading comprehension models. These two
models cast the entity-relation extraction to a multi-turn question answering (QA) and
machine reading comprehension (MRC) task, enlightening us that joint extraction should
adapt to more extraction paradigms and approaches.

Under the guidance of the P3 paradigm, Chen et al. [13] proposed Patti, a novel pattern-
first pipeline perspective for entity-relation extraction, which applied a Machine Reading
Comprehension (MRC)-based framework to characterize entities and relations better. It
alleviated entity redundancy and the entity overlap problem. Moreover, Takanobu et al. [14]
applied a hierarchical reinforcement learning framework to enhance the interaction between
entity mentions and relation types. Xie et al. [15] proposed a pipeline approach that first
performs sentence classification with relational labels and then extracts the subjects and objects.

Recently proposed, the seq2seq model not only performs well in language generation
but also in NLU tasks. Instead of tackling the joint extraction by training task-specific dis-
criminative classifiers, Paolini et al. [21] framed it as a translation task between augmented
natural languages, from which the task-relevant information can be easily extracted. Cabot
et al. [22] performed relation extraction by representing triples as text sequences.

After analysis, under the guidance of existing paradigms, there is only a one-step
information connection between entities and relations in the extraction process, resulting
in insufficient information fusion. Moreover, these models are challenging to adapt to the
relation extraction task.

2.2. Prompt Tuning

Recently, with the development of pre-trained language models, such as GPT [23],
BERT [24], RoBERTa [25], T5 [26] and GPT-3 [27], the usage has also evolved from fine-
tuning to prompt tuning. Prompt tuning has been widely used in various natural language
processing tasks. Schick et al. [28] proposed an approach, PET, which consists of defining
pairs of cloze question patterns and verbalizers that help leverage the knowledge contained
within pre-trained language models for downstream tasks. It has achieved outstand-
ing performance in widespread NLP tasks [29–31], especially in information extraction
tasks [3,32–35]. Cui et al. [32] proposed a template-based method for NER, treating NER as
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a language model ranking problem in a sequence-to-sequence framework, where original
sentences and statement templates filled by candidate named entity span are regarded
as the source sequence and the target sequence, respectively. Lee et al. [33] proposed
demonstration-based learning, a simple-yet-effective way to incorporate automatically
constructed auxiliary supervision. Instead of reformatting the NER task into the cloze-style
template, they augment the original input instances by appending automatically created
task demonstrations. Ma et al. [34] proposed a template-free prompt tuning method, EntLM,
for few-shot NER. In this way, not only the complicated template-based methods can be
discarded, but also the few-shot performance can be boosted since the model objective re-
duces the gap between pretraining and fine-tuning. These works demonstrate the diversity
of prompt learning in information extraction tasks.

On the relation extraction task, refs. [3,35] give us the best inspiration. The first work
proposed prompt tuning with rules for many-class text classification and applied logic rules
to construct prompts with several sub-prompts. In this way, it can encode prior knowledge
of each class into prompt tuning. Although this work is defined on the relation extraction
task, we apply it to our framework through transformation. The second work incorporated
knowledge among relation labels into prompt-tuning for relation extraction and proposes a
knowledge-aware prompt-tuning approach with synergistic optimization. This approach is
flexible. In the experiment, we also use this approach as a robust baseline.

3. Methodology

The overall framework of our approach is shown in Figure 2, in which different
pre-trained language models (PLMs) are selected as the core according to the dataset char-
acteristics.

Given a sentence:

Sent = {w1, w2, w3, ..., wn},

we will focus on all spans in the sentence:

Span = {wi, wi+1, wi+2, ..., wi+l},

where w denotes tokens, n denotes the sentence length and l denotes the span width. In
this way, we will extract which span is the subject (S) of a relation (R) (〈S, R〉), which span
is the object (O) of a relation (R) (〈R, O〉), and which two elements (〈S, R〉 and 〈R, O〉) can
form a triple (〈S, R, O〉).

For example, the relation “Adverse-Effect” in the ADE dataset means “The effect was
caused by the drug.”. This explanation can guide joint entity and relation extraction and
decompose the extraction process into:

1. If span1 is of type “Effect” and the sentence indicates that it was caused by a type of
“Drug”, then span1 can be the subject of the relation:

〈span1, Adverse− E f f ect〉.

2. If span2 is of type “Drug” and the sentence indicates that it resulted in an “Effect”,
then span2 can be the object of the relation:

〈Adverse− E f f ect, span2〉.

3. If the sentence expresses that span1 and span2 have a “Cause” relation in the sentence,
they can form a triple:

〈span1, Adverse− E f f ect, span2〉.

Based on the above considerations, we propose SSPC, an approach for Span-based
Fine-Grained Entity-Relation Extraction with Sub-Prompts Combination. In the following
sections, we describe each part of the framework in detail.
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Figure 2. Our framework SSPC consists of three parts, 〈S, R〉 Extraction (1), 〈R, O〉 Extraction (2),
and 〈S, R, O〉 Classification( (3-1) and (3-2) ).

3.1. Sub-Prompts Design

In order to achieve the extraction and classification tasks of the three parts and fully
integrate the information of entities and relations, we naturally introduce the approach
of prompt tuning. We design a set of prompts, including the S-R prompt, R-O prompt,
and S-R-O prompt. Similar to the conventional prompt setting, each sub-prompt consists
of a template and a set of label words.

We still take the ADE dataset as an example. Firstly, in preparation, we add the
“no_relation” relation, which means “The nothing is irrelevant to the nothing”. Then,
the S-R Template, R-O Template, and S-R-O Template can be formalized as:

S-R Template(span1) = “ The [MASK]1 span1[MASK]2 the [MASK]3 . ′′ (1)

R-O Template(span2) = “ The [MASK]1 [MASK]2 the [MASK]3 span2 . ′′ (2)
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S-R-O Template(span1, span2) = “ The [MASK]1 span1[MASK]2 the [MASK]3 span2 . ′′ (3)

The position of [MASK]1 can tell us the property of span1; the position of [MASK]3 can
tell us the property of span2; the position of [MASK]2 can tell us the action of span1 or span2
and the interaction of span1 and span2 in the sentence. Therefore, to ensure grammatical
correctness and semantic integrity, we design label words for [MASK]1, [MASK]2 and
[MASK]3, respectively, according to the characteristics of ADE dataset. The aggregated
sets of label words are given as:

Labels_[MASK]1 =
{′′e f f ect′′, ′′nothing′′

}
(4)

Labels_[MASK]2 =
{′′was caused by′′, ′′is irrelevant to′′

}
(5)

Labels_[MASK]3 =
{′′drug′′, ′′nothing′′

}
(6)

Note that the set of label words of [MASK]1 is the same in the three templates, as are
[MASK]2 and [MASK]3. These three prompts will be applied to 〈S, R〉 Extraction, 〈R, O〉
Extraction, and 〈S, R, O〉 Classification, respectively.

3.2. 〈S, R〉 Extraction

Given a sentence, we will traverse all spans of the sentence. We first put the current
span {wi, wi+1, wi+2, ..., wi+l} in the corresponding position of the S-R template and splice
the sentence and the template to form

{[CLS], Sentence, Template, [SEP]},

and use the PLM to encode all tokens of the input sequence into responding vectors.
Then, we take out the responding vectors h[MASK1 ], h[MASK2 ], and h[MASK3 ] of [MASK]1,
[MASK]2, and [MASK]3 and calculate the possibility of each label word in the correspond-
ing labels set to fill in the position:

p([MASK] = w) =
exp(h[MASK] ·w)

∑w̃∈Labels_[MASK]h[MASK] · w̃)
(7)

where w is the embedding of the label word w in the PLM. Finally, we calculate the
possibility of this span as the subject S of a relation R̂:

p(
〈
span, R̂

〉
) = p([MASK]1 = labels_[MASK]1[i])

+p([MASK]2 = labels_[MASK]2[j])

+p([MASK]3 = labels_[MASK]3[k])

(8)

where i is the index of the word of the R̂ at the [MASK]1 position in the Labels_[MASK]1; j
is the index of the word of the R̂ at the [MASK]2 position in the Labels_[MASK]2; k is the
index of the word of the R̂ at the [MASK]3 position in the Labels_[MASK]3.

Thus, after traversing all spans, we will extract a set of possible subjects for each rela-
tion.

3.3. 〈R, O〉 Extraction

Similar to Section 3.2, we calculate the possibility of this span as the object O of a
relation R̂ :

p(
〈

R̂, span
〉
) = p([MASK]1 = labels_[MASK]1[i])

+p([MASK]2 = labels_[MASK]2[j])

+p([MASK]3 = labels_[MASK]3[k])

(9)
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where i is the index of the word of the R̂ at the [MASK]1 position in the Labels_[MASK]1; j
is the index of the word of the R̂ at the [MASK]2 position in the Labels_[MASK]2; k is the
index of the word of the R̂ at the [MASK]3 position in the Labels_[MASK]3.

Thus, after traversing all spans, we will extract a set of possible objects for each relation.

3.4. 〈S, R, O〉 Classification

After calculation and reasoning in Sections 3.2 and 3.3, we obtain all the
〈
S, R̂

〉
el-

ements and
〈

R̂, O
〉

elements in the sentence as intermediate results. We apply a simple
strategy of using a logic rule and directly concatenate

〈
S, R̂

〉
and

〈
R̂, O

〉
of the same R̂ to

form
〈
S, R̂, O

〉
as the element in the set of pending triples. Then, we filter each element

through the S-R-O prompt and relation classifier to identify the triples that really exist in
the sentence.

On the one hand, we put S and O in the positions of span1 and span2 in the S-R-O
template. Similar to Sections 3.2 and 3.3, we calculate the possibility of S and O as the
subject and object of a relation R̂, respectively:

p(< span1, R̂, span2 >) =p([MASK]1 = labels_[MASK]1[i])

+p([MASK]2 = labels_[MASK]2[j])

+p([MASK]3 = labels_[MASK]3[k])

(10)

where i is the index of the word of the R̂ at the [MASK]1 position in the Labels_[MASK]1; j
is the index of the word of the R̂ at the [MASK]2 position in the Labels_[MASK]2; k is the
index of the word of the R̂ at the [MASK]3 position in the Labels_[MASK]3.

Thus, we will give the first relation prediction Rpred1 about this entity pair span1 and
span2.

On the other hand, we fuse the information of S and O and input them into the relation
classifier to predict whether they have a relation and what kind of relation they have. The
input consists of five parts:

1. The embedding of span1 . All the token embeddings are combined using a fusion,
f (ei, ei+1, ei+2, ..., ei+l). Regarding the fusion function f , we choose max-pooling,
obtaining the span1’s representation e(span1).

2. The size embedding of span1. Given the span size l, we look-up a size embed-
ding from a dedicated embedding matrix, obtaining the span1’s size representation
s(span1 size). These size embeddings are learned by backpropagation.

3. The embedding of context. Obviously, words from the context are essential indicators
of the expressed relation. We use a more localized context drawn from the direct
surrounding of the spans: Given the span ranging from the end of the span1 to the
beginning of the span2, we combine its embeddings by max-pooling, obtaining a con-
text representation c(span1, span2). If the range is empty (e.g., in case of overlapping
entities), we set c(span1, span2) = 0.

4. The embedding of span2. Similar to the span1’s embedding, we obtain the span2’s
representation e(span2).

5. The size embedding of span2 . Similar to the span2’s size embedding, we obtain the
span2’s size representation s(span2 size).

The final input to the relation classifier is (whereas ◦ denotes concatenation):

X(span1,span2)
= e(span1) ◦ s(span1 size) ◦ c(span1, span2) ◦ e(span2) ◦ s(span2 size) (11)

Then, it was passed through a single-layer classifier:

ŷ(span1,span2)
= σ(w · X(span1,span2)

+ b) (12)

where σ denotes a softmax function or a sigmoid function. The highest response in the
layer indicates that the corresponding relation Rpred2 holds between span1 and span2.



Appl. Sci. 2023, 13, 1159 8 of 15

Finally, if R̂, Rpred1 , and Rpred2 are equal, we will choose this
〈
S, R̂, O

〉
as one of the

results of the entity relation extraction of the sentence.
Thus, after traversing all pending triples, we will obtain a set of actual triples in the

sentence, which completes the entire entity relation extraction process.

3.5. Joint Training

Our proposed framework consists of three parts, which are trained jointly. We define
the loss function of the overall framework:

L = L<S,R> + L<R,O> + L<S,R,O> (13)

The first term is defined on the < S, R > Extraction. It includes two parts, one is the
sum of cross-entropy loss of each masked position label, the other is the cross-entropy loss
of span label. The second term is defined on the < R, O > Extraction, the loss is the same
as the first term. The third term is defined on the < S, R, O > Extraction. It includes two
parts, one is the same as the first term, the other is the cross-entropy loss of the relation
label of span1 and span2.

For all these three parts, we construct many within-sentence negative examples
to train:

• For the 〈S, R〉 Extraction and 〈R, O〉 Extraction, We construct n within-sentence nega-
tive examples (“no_relation”) by

1. replacing the subject and object of the R (the subject acts as the object, and the
object acts as the subject),

2. blurring the subject or object’s boundary of the R (expanding or narrowing the
starting and ending positions of a span), and

3. generating another unrelated span as the subject or the object of the R.

These negative examples are combined with the existing positive examples to form a
training set.

• For the 〈S, R, O〉 Extraction, We construct n within-sentence negative examples (“no_
relation”) by

1. replacing the subject and object of a single triple,
2. cross replacing the subjects and objects of multiple triples,
3. blurring the subject or object’s boundary of a single triple, and
4. generating other unrelated spans as subjects and objects to form triples.

These negative examples are combined with the existing positive examples to form a
training set.

• For example, given the sentence, “Adriamycin—induced cardiomyopathy aggravated
by cis—platinum nephrotoxicity requiring dialysis.”, we will construct negative samples

〈Adriamycin, no_relation〉, 〈platinum nephrotoxicity, no_relation〉,
〈aggravated, no_relation〉, etc.

for the 〈S, R〉 Extraction;

〈no_relation, cardiomyopathy〉, 〈no_relation, platinum〉,
〈no_relation, dialysis〉, etc.

for the 〈R, O〉 Extraction;

〈Adriamycin, no_relation, cardiomyopathy〉,
〈cardiomyopathy, no_relation, cis−−− platinum〉,

〈nephrotoxicity, no_relation, platinum〉, 〈induced, no_relation, dialysis〉, etc.

for the 〈S, R, O〉 Extraction.
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3.6. Adapt to the Relation Extraction Task

The difference between relation extraction and joint entity relation extraction is
whether entities in the sentence have been annotated. Therefore, a flexible ERE approach
should ensure that it can quickly adapt to the RE. Our proposed SSPC guarantees this.
Since the entities in the sentence are already annotated, it is not necessary to traverse all
spans of the sentence but place the annotated entity in the corresponding position of the
template. After the same steps, we can achieve relation extraction.

4. Experiments
4.1. Datasets

Our experiments are conducted on three widely used benchmarks: ADE, TACRED
and TACREV.

• ADE: The ADE dataset [36] is about drugs and their adverse effects. A sentence
contains entities of drug type and adverse effect type and expresses the corresponding
relation between them. It consists of 4,272 sentences, of which 1,695 contain overlap-
ping phenomena. As shown in Table 1, there are triples in the ADE dataset. It can be
seen that even if only one relation is involved, entities and relations have become com-
plex, mainly including multiple triples (1), subjects and 〈R, O〉 many-to-one (2), 〈S, R〉
and objects one-to-many (3), and subjects and objects crossing (4). As in previous
work, we conduct 10-fold cross-validation. The core pre-trained language model is
“microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext”; the maximum
length of a sentence is set to 128; the maximum length of a span is set to 5; the number
of within-sentence negative samples is set to 70. The experiments are conducted on an
NVIDIA Geforce RTX 3090 24GB GPU. Other hyperparameters are shown in Table 2.

• TACRED and TACREV: The TACRED datatset [37] is a sizeable relation extraction
dataset with 106,264 examples (68,124 for training, 22,631 for validation, and 15,509
for testing). These examples are created by combining available human annotations
from the TAC KBP challenges and crowdsourcing. It contains 42 relation types,
such as “per:parents”, “org:website”, and “no_relation”. The TACREV dataset [38]
is built based on the original TACRED dataset. It finds out and corrects the errors
in the original development set and test set of TACRED, while the training set is
left intact. To experiment, we set entity types according to relation types, including
“person”, “organization”, “religion”, “country”, “state”, “city”, “title”, “number”,
“URL”, “event”, and “date”. For few-shot learning, consistent with the previous work,
we sample K training and K validation instances per class from the original training
and development set and evaluate models on the original test set. We set K from
{8, 16, 32}, respectively. The core pre-trained language model is “roberta-large”; the
maximum length of a sentence is set to 256; the maximum length of a span is set to 5.
The experiments are conducted on an NVIDIA Geforce RTX 3090 24GB GPU. Other
hyperparameters are shown in Table 2.
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Table 1. Triples in the ADE dataset, including multiple triples (1), subjects and 〈R, O〉many-to-one
(2), 〈S, R〉 and objects one-to-many (3), and subjects and objects crossing (4). The subjects are marked
in orange, and the objects are marked in blue.

1

Adriamycin—induced cardiomyopathy aggravated by cis—platinum nephrotoxicity
requiring dialysis .
{ <cardiomyopathy, Adverse-Effect, Adriamycin>,

<nephrotoxicity, Adverse-Effect, cis—platinum> }

2

Possible interaction between lopinavir / ritonavir and valproic Acid exacerbates
bipolar disorder .
{ <bipolar disorder, Adverse-Effect, lopinavir>,

<bipolar disorder, Adverse-Effect, ritonavir>,
<bipolar disorder, Adverse-Effect, valproic Acid> }

3

Listeria brain abscess , Pneumocystis pneumonia and Kaposi ’s sarcoma
after temozolomide .
{ <Listeria brain abscess, Adverse-Effect, temozolomide>,

<Pneumocystis pneumonia, Adverse-Effect, temozolomide>,
<Kaposi ’s sarcoma, Adverse-Effect, temozolomide> }

4

Neutropenia and agranulocytosis are risks known to occur with phenothiazines
and clozapine .
{ <Neutropenia, Adverse-Effect, phenothiazines>,

<Neutropenia, Adverse-Effect, clozapine>,
<agranulocytosis, Adverse-Effect, phenothiazines>,
<agranulocytosis, Adverse-Effect, clozapine> }

Table 2. Hyperparameters for the different datasets. (Setting:few-shot = †)

Max epochs Learning rate Warm-up Weight decay Batch size Time per epoch

ADE 20 5× 10−5 10% 0.01 1 46 min× 10
TACRED 20 3× 10−5 10% 0.01 8 102 min
TACREV 20 3× 10−5 10% 0.01 8 102 min
TACRED † 50 3× 10−5 10% 0.01 8 0.5–2 min
TACREV † 50 3× 10−5 10% 0.01 8 0.5–2 min

4.2. Comparison with the State-of-the-Art Model of the ADE Dataset

In this part, we compare SSPC with other joint entity relation extraction models,
including the state-of-the-art model:

• Natural Language Understanding (NLU) models, including “CNN + Global features”
proposed by [16], “BiLSTM + SDP” proposed by [17], “Multi-head” proposed by [18],
“Multi-head + AT” proposed by [19], “Relation-Metric” proposed by [20], “SpERT”
proposed by [10], “SPAN” proposed by [9].
“SpERT” and “SPAN” are both span-based joint entity and relation extraction models.
“SpERT” is a span-based joint entity and relation extraction with transformer pre-
training model; “SPAN” is a span-based joint entity and relation extraction with
attention-based span-specific and contextual semantic representations model and is
the current span-based state-of-the-art model on the ADE dataset.

• Natural Language Generation (NLG) models, including “TANL” proposed by [21]
and “REBEL” proposed by [22].
Recently, the seq2seq model not only performs well in language generation but also
in NLU tasks. “TANL” is generative as it translates from an input to an output in
augmented natural languages. “REBEL” is a seq2seq model based on BART that
performs end-to-end relation extraction and is the current state-of-the-art model on
the ADE dataset.

Table 3 shows our experimental results. The second column is the names of the baseline
models. On the ADE dataset, we use standard Precision, Recall, and F1 for evaluation.
Furthermore, when S and O’s boundaries are correct, we treat a 〈S, R, O〉 as correct. We
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report the mean performance over 10-fold cross-validation to compare results to established
work. From the results, we can see that SSPC consistently outperforms both NLU and NLG
SOTA models. Compared with SPAN in entity recognition, Precision increases by 0.78%
and F1 increases by 0.4%. Compared with SPAN in relation extraction, Precision increases
by 1.23%, Recall increases by 0.93%, and F1 increases by 1.06%. Compared with REBEL in
relation extraction, F1 increases by 0.1%. We owe these performance increases to our new
extraction paradigm and fine-grained extraction framework.

Table 3. Main experimental results on the ADE dataset. The best results are bold.

Dataset Model
Entity Relation

Precision Recall F1 Precision Recall F1

ADE

CNN + Global features [16] 79.50 79.60 79.50 64.00 62.90 63.40
BiLSTM + SDP [17] 82.70 86.70 84.60 67.50 75.80 71.40
Multi-head [18] 84.72 88.16 86.40 72.10 77.24 74.58
Multi-head + AT [19] - - 86.73 - - 75.52
Relation-Metric [20] 86.16 88.08 87.11 77.36 77.25 77.29
SpERT [10] 88.99 89.59 89.28 77.77 79.96 78.84
SPAN [9] 89.88 91.32 90.59 79.56 81.93 80.73
TANL [21] - - 90.20 - - 80.60
REBEL [22] - - - - - 81.70
SSPC (ours) 90.66 91.32 90.99 80.79 82.86 81.79

4.3. Comparison with the State-of-the-Art Model of Relation Extraction

In this part, we compare SSPC with several recent relation extraction models using
prompts. Moreover, we validate the model’s capabilities in two settings, including standard
supervised training and few-shot learning.

• ENT MARKER and TYP MARKER: [39] uses prompt tuning for relation extraction.
ENT MARKER injects special symbols to index the positions of entities. It is similar to
prompting by introducing extra serial information to indicate the position of special
tokens, i.e., named entities. TYP MARKER additionally introduces the type informa-
tion of entities. It could be regarded as a type of template for prompts but requires
additional annotation of type information.

• PTR: [3] proposes prompt tuning with rules (PTR) for many-class text classification
and applies logic rules to construct prompts with several sub-prompts.

• KnowPrompt: [35] incorporates knowledge among relation labels into prompt-tuning
for relation extraction and proposes a knowledge-aware prompt-tuning approach
with synergistic optimization. It is the current state-of-the-art model on TACTED and
TACREV in few-shot learning scenarios.

Table 4 shows our experimental results. The first column is the names of the baseline
models. We use micro-averaged F1 (excluding “no_relation” type) for evaluation and treat
a 〈S, R, O〉 as correct when S and O’s boundaries are correct. From the results, we can see
that our model performs well. In the standard supervised setting, F1 increases by 0.3% on
the TACRED dataset and 0.7% on the TACREV dataset. In the few-shot setting, F1 increases
by 0.3% on the TACRED dataset and 1.6% on the TACREV dataset on average. Note that
when K is set to 32, the effect is the best, and F1 increases by 3.0%. The experimental
results prove that SSPC has fully adapted to the relation extraction task and is very effective
in few-shot learning scenarios. Without introducing additional knowledge, SSPC still
outperforms other robust baseline models. We owe these performance increases to our
sub-prompts combination method.
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Table 4. Our experimental results on the datasets TACRED and TACREV. F1 scores of various models
with different sizes of training instances.The best results are bold.

Model
TACRED TACREV

Standard
Setting Few-Shot Setting Standard

Setting Few-Shot Setting

All
Data 8 16 32 Mean All

Data 8 16 32 Mean

ENT
MARKER [39] 69.4 27.0 31.3 31.9 30.1 79.8 27.4 31.2 32.0 30.2

TYP
MARKER [39] 71.0 28.9 32.0 32.4 31.1 80.8 27.6 31.2 32.0 30.3

PTR [3] 72.4 28.1 30.7 32.1 30.3 81.4 28.7 31.4 32.4 30.8

KnowPrompt [35] 72.4 32.0 35.4 36.5 34.6 82.4 32.1 33.1 34.7 33.3

SSPC (ours) 72.7 32.7 34.9 37.0 34.9 83.1 32.7 34.2 37.7 34.9

4.4. Ablation Study

As shown in Table 5, we conduct ablation experiments to further evaluate the con-
tribution of each part of the “〈S, R, O〉 Classification ” in our proposed SSPC. “w/o (3-2)”
denotes ablating the part of (3-2) in Figure 2, leaving only the part of (3-2) to filter the
elements in the intermediate result set of the triple; “w/o (3-1)” denotes ablating the part of
(3-1) in Figure 2, leaving only the part of (3-2) to filter the elements in the intermediate result
set of the triple; “w/o (3-1) and (3-2)” denotes ablating the part of (3-1) and (3-2) in Figure 2,
regarding all the elements in the intermediate result set as the actual triples in the sentence
without filtering. we observe that both (3-1) and (3-2) are helpful for the joint extraction.
When we ablate (3-1) and (3-2) simultaneously, Recall increases significantly, and Precision
decreases significantly, indicating that we need these two parts to filter intermediate results.

Table 5. Ablations on the ADE dataset.

Method Precision Recall F1

Full 80.79 82.86 81.79
w/o (3-2) 68.33 80.18 73.78
w/o (3-1) 73.84 81.25 77.37

w/o (3-1) and (3-2) 60.40 87.79 71.56

4.5. 〈S, R〉 and 〈R, O〉 Extraction Inspection

Since our model can extract more fine-grained elements 〈S, R〉 and 〈R, O〉, we also
observed their extraction results on the ADE dataset. The experimental results are shown in
Table 6. The Precision of 〈E f f ect, Adverse− E f f ect〉 extraction reaches 85.27%, the Recall
reaches 86.72%, and the F1 reaches 85.99%; the Precision of 〈Adverse− E f f ect, Drug〉
extraction reaches 96.05%, the Recall reaches 95.92%, and the F1 reaches 95.99%. By
analyzing the results, we can make the following observations. Firstly, SSPC can not only
complete the entity recognition task, but also achieve more fine-grained extraction by
integrating entity and relation information, which is critical for subsequent tasks. Secondly,
SSPC has a solid ability to capture Drug-type entities. However, the extraction ability of
E f f ect-type entities is unsatisfactory. We speculate that the pre-trained model has more
and better knowledge of drugs.
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Table 6. Detailed experimental results on the ADE dataset.

K 〈E f f ect, Adverse− E f f ect〉 〈Adverse− E f f ect, Drug〉
Precision Recall F1 Precision Recall F1

1 86.75 85.69 86.22 94.97 94.38 94.67

2 84.40 90.05 87.13 95.97 96.75 96.36

3 85.57 87.37 86.46 96.95 95.01 95.97

4 85.56 85.41 85.49 95.66 95.07 95.37

5 85.87 87.07 86.47 95.92 97.53 96.72

6 84.81 84.39 84.60 97.73 94.23 95.95

7 84.88 87.20 86.02 95.61 95.61 95.61

8 82.72 85.89 84.27 96.75 95.21 95.98

9 86.44 88.08 87.25 96.33 97.52 96.92

10 85.71 86.01 85.86 94.61 97.93 96.24

Mean 85.27 86.72 85.99 96.05 95.92 95.99

5. Conclusions

In this paper, we propose a new extraction paradigm. Based on it, we propose SSPC,
an approach for Span-based Fine-Grained Entity-Relation Extraction via Sub-Prompts
Combination. Experiments show that SSPC, under the guidance of the new paradigm, can
comprehensively model the information fusion of entities and relations in the extraction
process, extract all triples in sentences, and adapt to relation extraction. In future work, we
will design more advanced model structures to extract information under the guidance
of the new paradigm. We also plan to explore more advanced methods for stimulating
knowledge in pre-trained language models.
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