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Abstract: In recent years, many methods have been developed to calculate the trajectory of a robotic
arm in the joint-space. These methods have many advantages, such as a soft motion and infinite jerk
avoidance. Nevertheless, these methods present other problems that must be avoided, such as an
unnatural motion while generating the trajectory and producing unsafe planning. In this sense, this
work presents a numerical method named iterative optimal solution trajectory via (ζ)v-homotopy
former (IOSTV (ζ)v-HF). It is proposed to reduce and avoid oscillation while obtaining trajectories
with different shapes to perform better, reliable, smooth, and long-life robotic systems. The algorithm
with the proposed method is described, and examples of the trajectories obtained with different
parameters are presented. In addition, these were mapped and a trajectory with a continuous velocity
and a reduced oscillation and another trajectory with the same restrictions but with a continuous
acceleration and zero oscillations were shown; the method is versatile since it allows for choosing
and finding the most optimal solutions according to the application. Finally, the article ends with a
critical discussion of the experimental results.

Keywords: homotopy; joint-space; moment function generation; trajectory; via point; velocity;
acceleration; jerk; oscillation avoiding; MATLAB

1. Introduction

In recent decades, robot applications have been extensively studied [1] and numerous
improvements have been developed [2]. These advances are becoming more robust today
since they mainly focus on work with repetitive tasks to increase productivity, such as
industrial applications [3,4] and applications in the medical area [5]. Therefore, robot
arms (manipulators) must be precise to be used by these applications and many others [6].
Usually, these robots can work in dangerous environments, in places where humans cannot
access to perform dangerous tasks [7]; at the same time, these robot arms must navigate
obstacles because the environment of a robotic arm is often very complicated.

For these reasons, the robotic arm’s motion must be precise and fulfill some specific
characteristics that are defined depending on the environment and the application. In addi-
tion, it is necessary to thoroughly study trajectories and kinematics (direct and inverse) to
verify that the robotic arm does not show any complications while performing a motion [8].
For example, the most famous methods to calculate the trajectory of a robotic arm [9,10] are
cubic polynomials [11], trapezoidal trajectory [12], and the Euler angles [10], amongst others.
In addition, many studies, methods, algorithms, and designs (electronic and mechanical)
help to obtain a better performance in a robotic arm motion [13–18]. Nevertheless, some of
these methods are complicated to implement. Others are feasible in exhibiting an unnatural
motion, infinite jerk (third time derivative of position), or require other resources, such as
an optimal timing solution or specific PID (proportion-al-integral-derivative) control to
generate the optimal trajectory.

For example, the LSPB method (Linear Segment with Parabolic Blends) has improved
the trajectory’s performance [19]. However, it requires more calculations. This is because
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the LSPB divides the trajectory into segments and may only sometimes produce the most
optimal solution in terms of the executed time [20]. Additionally, using this method can
result in undesirable acceleration profiles, limiting the flexibility of the resulting motion [21].
Concerning n-order polynomials, they also have some disadvantages. According to some
authors [11,22–24], higher-order polynomials are more complex and may require more
computation to evaluate, which can be a drawback in real-time control systems. In addition,
it presents a local minima or maxima, which can lead to unexpected or undesired behavior
if the trajectory is not carefully designed. Finally, this method may not be as flexible as
other types of trajectories, such as splines, in accurately following the desired path. In
summary, high-order polynomials must be carefully designed using other techniques to
optimize this method.

In another example, the authors in [25] present trajectories with a total time of 11 s
using a radial basis function (RBF) neural network. This method is reliable and an excellent
option for performing motion planning. However, the trajectories present many big–long
oscillations through time, which means a greater energy consumption and unsafe motion
planning to avoid collisions [26]. The 3–5–3 interpolation polynomial method presented
in [27] has the same problem mentioned previously in [25].

Other works [28–31] use numerical methods with homotopy continuation to gener-
ate optimal trajectories in manipulators. The authors mentioned that this approach is
a favorable option for generating trajectories because these are versatile and fulfill the
characteristics of the mechanical system. Other related works that use homotopic functions
for optimal trajectory planning focus mainly on mobile robots [32], humanoid robots [33],
dynamics, and control problems [34].

In previous work, a novel algorithm introduced in [35,36] was presented as a trajectory
planning approach with more characteristics which had not been mentioned before and
others which had been overlooked. This algorithm generated homotopic trajectories that
always start in the specified start position and end at the final point, generating enough
iterations to make trajectories that become closer and closer to the desired via point each
time. The algorithm generates the ideal trajectory (the trajectory that passes through the
specified via point) with infinite iterations and prelaminar parameters that determine the
shape of the trajectory desired. However, a finite quantity of iterations obtains an excellent
approximation and can be as accurate as desired.

Furthermore, the method proposed in this work makes it possible to obtain a better
trajectory performance by changing the shape of the velocity, acceleration, and jerk profiles.
In this sense, it has coined this algorithm with the name the iterative optimal solution
trajectory via the (ζ)v-homotopy former (IOSTV (ζ)v-HF). In addition, with this algorithm,
some of the disadvantages presented before are lost. For example, generating many options
for obtaining different trajectory shapes with the same initial, via, and final point makes
it possible to obtain the best suitable trajectory for specific applications. Furthermore, the
IOSTV-HF method is flexible because it always achieves a trajectory that passes through
these three points in a defined time, and many options can be generated. Additionally,
oscillations can be reduced or removed by applying the same process and changing the
initial parameters to generate many different shapes of trajectories. In summary, this
method presents versatility as the main characteristic. Many unique advantages introduced
through this work have been given to help obtain better reliable, smooth, and long-life
robotic systems.

The remainder of this paper is organized as follows: Section 2 introduces the prelimi-
nary properties that were taken to construct the trajectory function and define it. Section 3
describes the algorithm and the algorithm’s proof and shows examples to generate a trajec-
tory that converges to the via point. Section 4 presents the results by generating trajectories
with the same initial via point and final position and the obtained trajectory with its velocity,
acceleration, and jerk. Section 5 details a critical discussion of the results obtained with
the proposed algorithm (IOSTV (ζ)v-HF) compared to the sixth-order polynomial method.
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Finally, Section 6 summarizes the conclusions of the work and presents indications for
further work.

2. Preliminary Properties
2.1. Construction of the Function

This method presented in [35] has been tested recently to obtain the velocity, accelera-
tion, and jerk with a smaller gap in the via point time (tv). Although this method presents
non-continuous derivatives, these remain finite without showing an inconvenience. More-
over, the resulting trajectory can be changed to avoid or reduce unnatural oscillation, no
matter how short or long the distance is. This is possible because of the construction of the
function below:

Sζats(t) =



q0 i f t ≤ 0
nt−ζ∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ + q0 i f 0 < t ≤ ts and q0 ≤ S f

− nt−ζ∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ + q0 i f 0 < t ≤ tS and S f < q0

. (1)

where:

n fixed constant greater to 1 (n > 1).
a velocity, acceleration, and Jerk modifier parameter (it is fixed).
ts final trajectory time.
S f final position.
q0 initial position.
ζ objective parameter outcome in the ith iteration.

This function has been shown in [25] and it was used to generate point-to-point
trajectories, but in this work, (1) is added to generate via point trajectories as well (this is
explained deeply in Section 4).

The ideas behind the way this function was constructed are simple. First, we know
that any function with the form nt−ζ , where n > 1, can reach any positive or negative point
(when this function is negative−nt−ζ) monotonically increasing or decreasing, respectively,
by just calculating ζ at any particular time. Still, it cannot start in any position chosen
(when t > 0). Nevertheless, this is solved by multiplying this function with the following(∣∣∣nt+ ts

t −1 − na
∣∣∣)−1

. Then, note that:

lim
t→0+

± nt−ζ∣∣∣nt+ ts
t −1 − na

∣∣∣ = 0. (2)

Once it is verified that the calculation of the function (1) fulfills the essential require-
ment to perform a trajectory with any particular start and final position, the parameter ζ is
required to generate the trajectory starting and ending at a particular point; the formula is
presented in [35,36], but this time the case S f = q0 is added in the definition of ζ. Then:

ζ =


ts − logn

[(
S f − q0

)(
nts − na)] i f S f > q0

ts − logn

[(
q0 − S f

)(
nts − na)] i f q0 > S f

∞ i f S f = q0

(3)

2.2. Further Properties

Another point to consider using this method is uniqueness, more specifically, obtaining
more properties that can help achieve a better understanding and use them to obtain the
best solution. So, another remarkable characteristic of this function is that it can also be
considered to be a generating probability function and inherit its features. For example,
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consider the following probability function where t is any parameter such that t ∈ [0, ts]
and x = 1, 2, 3, . . .

f (x, t) =


0 i f t ≤ 0, n(t−ζ)∣∣∣∣t(nt+ ts−t

t −na+nt−ζ

)∣∣∣∣
x

i f 0 < t ≤ ts
. (4)

The following is calculated using the definition of the probability generating function.
The parameter t is considered to be the same parameter t from f (x, t) and the definition of
the probability generating function:

∞

∑
x=0

tx f (x), (5)

Then:

G(t) =
∞
∑

x=0
tx f (x, t) =

∞
∑

x=0
tx

 n(t−ζ)∣∣∣∣t(nt+ ts−t
t −na+nt−ζ

)∣∣∣∣
x

=
∞
∑

k=1
tx

 (nt−ζ)
x(

|tx |
∣∣∣∣nt+ ts−t

t −na+nt−ζ

∣∣∣∣)x


= nt−ζ− nt−ζ∣∣∣∣∣nt+ ts−t

t −na+nt−ζ

∣∣∣∣∣
+1

(∣∣∣∣nt+ ts−t
t −na+nt−ζ

∣∣∣∣)

= nt−ζ(∣∣∣∣−nt−ζ+nt+ ts−t
t −na+nt−ζ

∣∣∣∣) = nt−ζ(∣∣∣∣nt+ ts−t
t −na

∣∣∣∣) .

(6)

Function (6) is a probability generating function for when ζ = 1− logn
∣∣nts − na

∣∣ and
because it must fulfill that lim

t→1−
G(t) = 1. Taking into account the example of Figure 1,

n = 2, ts = 3, a = 0, S f = 4, and q0 = 0, a trajectory is obtained, being Sζats(t), function (1),
a probability generating function:

Making Sζats(t) a Probability-Generating Function (PGF) can provide us with many
benefits that will be discussed in future works. For example, one of these remarkable bene-
fits is that a PGF could potentially be used as a tool to analyze the probability distribution
of the joint-space trajectory, which could be useful in understanding the characteristics of
the trajectory and optimizing the performance and reliability of the robot arm by providing
a way to analyze and understand the probability distribution of the joint angles as the
arm moves through its range of motion. For example, it can be used to obtain an average
velocity through the trajectory for a better performance and then choose a suitable motor
that can work with this velocity average, but this must be studied deeply. Additionally, it
could be interesting to note that, without losing generality, if Sζats(t) is a PGF, it is easy to
see that every derivative starts at zero when t = 0 (since f (x, 0) = 0 and the preposition
that indicates for every generating function to occur that P(X = x) = 1

x! G
x(0)), which

is impossible for some current methods. Any trajectory with a start and final position
can be obtained by calculating ζ, as mentioned before, with its derivatives starting at
0 (when t = 0). So, these are some prelaminar ideas that were considered to construct
function (1) and to avoid some disadvantages presented in the current works and stated in
the introduction part of this article.
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Figure 1. Trajectory example where Sζats (t) is a probability generating function with parameters
n = 2, ts = 3, a = 0, S f = 4, and q0 = 0.

3. Algorithm Description

The trajectory function obtained by applying the method (IOSTV (ζ)v-HF) is denoted
as Si(ζats)v

(t), where i represents the number of iterations. While these iterations increase,
the trajectory becomes closer and closer to the via point, forming a homotopy with a family
of functions with different parameters ζi and ζvi calculated in every iteration until a solution
for these two parameters fits to generate the desired via point trajectory. This happens
because ζi and ζvi converge when i tends to infinity ( i→ ∞ ) by calculating the sequence
Svi for every iteration, making Si(ζats)v

(t) pass through the specified via point in the desired
via point time (tv). Then, the function is defined as Si(ζats)v

(t) : [0, ts]→ R and with the
following conditions (Svi is defined in (9)), each condition is provided with an example:

Si(ζats)v
(t) =



q0 i f t ≤ 0

1stcond


nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ +
n

t−ζvi
v∣∣∣∣∣nt+ tv

t −1
v −nav

v

∣∣∣∣∣
+ q0 i f 0 < t ≤ tv and q0 ≤ Svi ≤ S f

nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ +
n

tv−ζvi
v∣∣∣ntv−1

v −nav
v

∣∣∣ + q0 i f tv < t ≤ ts and q0 ≤ Svi ≤ S f

2ndcond


− nt−ζi∣∣∣∣nt+ ts

t −1−na
∣∣∣∣ +

n
t−ζvi
v∣∣∣∣∣nt+ tv

t −1
v −nav

v

∣∣∣∣∣
+ q0 i f 0 < t ≤ tv and q0 < Svi , S f < Svi

− nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ +
n

tv−ζvi
v∣∣∣ntv−1

v −nav
v

∣∣∣ + q0 i f tv < t ≤ ts and q0 < Svi , S f < Svi

. (7)

For when Svi < q0, the next conditions are followed:
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Si(ζats)v
(t) =



3rdcond


nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ −
n

t−ζvi
v∣∣∣∣∣nt+ tv

t −1
v −nav

v

∣∣∣∣∣
+ q0 i f 0 < t ≤ tv and Svi < q0, Svi < S f

nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ −
n

tv−ζvi
v∣∣∣ntv−1

v −nav
v

∣∣∣ + q0 i f tv < t ≤ ts and Svi < q0, Svi < S f

4thcond


− nt−ζi∣∣∣∣nt+ ts

t −1−na
∣∣∣∣ −

n
t−ζvi
v∣∣∣∣∣nt+ tv

t −1
v −nav

v

∣∣∣∣∣
+ q0 i f 0 < t ≤ tv and Svi < q0, S f < Svi

− nt−ζi∣∣∣∣nt+ ts
t −1−na

∣∣∣∣ −
n

tv−ζvi
v∣∣∣ntv−1

v −nav
v

∣∣∣ + q0 i f tv < t ≤ ts and Svi < q0, S f < Svi

. (8)

where:

nv fixed constant greater to 1 (nv > 1).
av velocity, acceleration, and Jerk modifier parameter (it is fixed).
tv via point time.
θv via point.
Svi feedback iterative sequence

ζi and ζvi converge if the feedback iterative sequence (Svi ) is defined as follows:

Svi =


θv − ntv−ζi−1∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣ f or the 1st and 3rd cond

θv +
ntv−ζi−1∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣ f or the 2nd and 4th cond

, (9)

For every i = 1, 2, 3, 4, . . . and when i = 0, Sv0 is any real number that fulfills any of
the conditions presented before in (7) and (8).

Svi is called the iterative feedback sequence and is used to calculate ζvi and ζi as follows:

ζvi =


tv − lognv

[
(|Svi − q0|)

(∣∣∣ntv
v − na

v

∣∣∣)] i f q0 < Svi

tv − lognv

[
(|q0 − Svi |)

(∣∣∣ntv
v − na

v

∣∣∣)] i f Svi < q0

∞ i f Svi = q0

,

ζi =


ts − logn

[(∣∣∣S f − Svi

∣∣∣)(∣∣nts − na
∣∣)] i f Svi < S f

ts − logn

[(∣∣∣Svi − S f

∣∣∣)(∣∣nts − na
∣∣)] i f S f < Svi

∞ i f Svi = S f

.

(10)

Now, with everything mentioned before, the algorithm to obtain a trajectory with an
initial point, a via point at tv, and a final point at ts is introduced:

Proposition 1. Let n, nv > 1, ts > tv > 0, a < ts, av < tv, defining Svi as in (9) for every
i = 1, 2, 3, 4, 5, . . . and taking any Sv0 that achieves any of the conditions presented before in (7) and
(8), there exist ζvi and ζi for when i tends to infinity, such that Si(ζats)v

(0) = q0, Si(ζats)v
(tv) = θv,

and Si(ζats)v
(ts) = S f .

Proof. The constraints Si(ζats)v
(0) = q0 and Si(ζats)v

(ts) = S f for every i = 0, 1, 2, 3, . . . are
easily fulfill by the definition:
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Now, let any Sv0 be S f > Sv0 and q0 < Sv0 , then ζ0 = ts− logn

[(∣∣∣S f − Sv0

∣∣∣)(∣∣nts − na
∣∣)]

and ζv0 = tv − lognv

[
(|Sv0 − q0|)

(∣∣∣ntv
v − na

v

∣∣∣)], the trajectory functions (11) at the iteration
i = 0 is the following:

S(ζats)v0
(t) =

nt−ζ0∣∣∣nt+ ts
t −1 − na

∣∣∣ + n
t−ζv0
v∣∣∣∣nt+ tv

t −1
v − nav

v

∣∣∣∣ + q0. (11)

Then, making:

n
tv−ζv2
v∣∣∣ntv

v − nav
v

∣∣∣ + q0 = Sv2 = θv −
ntv−ζ0∣∣∣ntv+

ts
tv −1 − na

∣∣∣ . (12)

Using the new feedback sequence in the second iteration Sv2 to calculate ζ2 = ts −
logn

[(∣∣∣S f − Sv2

∣∣∣)(∣∣nts − na
∣∣)] and ζv2 = tv − lognv

[
(|Sv2 − q0|)

(∣∣∣ntv
v − na

v

∣∣∣)].
S(ζats)v2

(t) =
nt−ζ2∣∣∣nt+ ts
t −1 − na

∣∣∣ + n
t−ζv2
v∣∣∣∣nt+ tv

t −1
v − nav

v

∣∣∣∣ + q0 (13)

Now, taking any value of Sv1 such that Sv1 < S f and q0 > Sv1 , then ζ1 = ts −
logn

[(∣∣∣S f − Sv1

∣∣∣)(∣∣nts − na
∣∣)] and ζv1 = tv − lognv

[
(|q0 − Sv1 |)

(∣∣∣ntv
v − na

v

∣∣∣)], it obtains
the following trajectory function (14) at i = 1:

S(ζats)v1
(t) =

nt−ζ1∣∣∣nt+ ts
t −1 − na

∣∣∣ − n
t−ζv1
v∣∣∣∣nt+ tv

t −1
v − nav

v

∣∣∣∣ + q0. (14)

Additionally, making:

− n
t−ζv3
v∣∣∣ntv

v − nav
v

∣∣∣ + q0 = Sv3 = θv −
ntv−ζ1∣∣∣ntv+

ts
tv −1 − na

∣∣∣ (15)

Using Sv3 in (15) to calculate ζ3 and ζv3 using formula (10), then, the following trajec-
tory function (16) at i = 3 is

S(ζats)v3
(t) =

nt−ζ3∣∣∣nt+ ts
t −1 − na

∣∣∣ − n
t−ζv3
v∣∣∣∣nt+ tv

t −1
v − nav

v

∣∣∣∣ + q0. (16)

Then, for the 4th iteration (i = 4), the following sequence (17) is obtained:

n
tv−ζv4
v∣∣∣ntv

v − nav
v

∣∣∣ + q0 = Sv4 = θv −
ntv−ζ2∣∣∣ntv+

ts
tv −1 − na

∣∣∣ . (17)

With ζ4 = ts − logn

[(∣∣∣S f − Sv4

∣∣∣)(∣∣nts − na
∣∣)] and

ζv4 = tv − lognv

[
(|Sv4 − q0|)

(∣∣∣ntv
v − na

v

∣∣∣)] by using formula (10).
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Additionally, for the 5th iteration, then:

− n
tv−ζv5
v∣∣∣ntv

v − nav
v

∣∣∣ + q0 = Sv5 = θv −
ntv−ζ3∣∣∣ntv+

ts
tv −1 − na

∣∣∣ . (18)

With ζ5 = ts − logn

[(∣∣∣S f − Sv5

∣∣∣)(∣∣nts − na
∣∣)] and

ζv5 = tv − lognv

[
(|q0 − Sv5 |)

(∣∣∣ntv
v − na

v

∣∣∣)] by using formula (10).
Repeating this process k times, it has:

n
tv−ζvk
v∣∣∣ntv

v − nav
v

∣∣∣ + q0 = Svk = θv −
ntv−ζk−2∣∣∣ntv+

ts
tv −1 − na

∣∣∣ . (19)

Using formula (10), ζk = ts − logn

[(∣∣∣S f − Svk

∣∣∣)(∣∣nts − na
∣∣)] and

ζvk = tv − lognv

[(∣∣Svk − q0
∣∣)(∣∣∣ntv

v − na
v

∣∣∣)] and (20) is obtained representing the trajectory
in in the k-iteration:

S(ζats)vk
(t) =

nt−ζk∣∣∣nt+ ts
t −1 − na

∣∣∣ + n
t−ζvk
v∣∣∣∣nt+ tv

t −1
v − nav

v

∣∣∣∣ + q0, (20)

Such that:

S(ζats)vk
(tv) =

ntv−ζk∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
n

tv−ζvk
v

|ntv
v −nav

v | + q0 = ntv−ζk∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
(
Svk

)
= ntv−ζk∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣ +

θv − ntv−ζk−2∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣
,

(21)

Additionally, for the k + 1 time, it has:

− n
tv−ζvk+1
v∣∣∣ntv
v − nav

v

∣∣∣ + q0 = Svk+1 = θv −
ntv−ζk−1∣∣∣ntv+

ts
tv −1 − na

∣∣∣ . (22)

Then, using formula (10), ζk+1 = ts − logn

[(∣∣∣S f − Svk+1

∣∣∣)(∣∣nts − na
∣∣)] and ζvk+1 =

tv − lognv

[(∣∣q0 − Svk+1

∣∣)(∣∣∣ntv
v − na

v

∣∣∣)] and the trajectory function (23) is obtained:

S(ζats)vk+1
(t) =

nt−ζk+1∣∣∣nt+ ts
t −1 − na

∣∣∣ − n
t−ζvk+1
v∣∣∣∣nt+ tv
t −1

v − nav
v

∣∣∣∣ + q0, (23)

Such that:

S(ζats)vk+1
(tv) =

ntv−ζk+1∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ −
n

tv−ζvk+1
v

|ntv
v −nav

v | + q0 = ntv−ζk+1∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
(
Svk+1

)
= ntv−ζk+1∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣ +

θv − ntv−ζk−1∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣
.

(24)
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Then, because ntv−ζk−2∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ and ntv−ζk−1∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ are always finite for every ζk−2 and ζk−1,

and the way ζk−2, ζk−1 and the subsequent Svk and Svk+1 have been defined, this mean that

when k tends to infinity ( k→ ∞ ) then lim
k→∞

Svk = θv − ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ = lim
k→∞

Svk+1 , this limit

is finite too, making:

S(ζats)v∞
(tv) =

ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
ntv−ζv∞

v

|ntv
v −nav

v | + q0 = ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ + (Sv∞)

= ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
θv − ntv−ζ∞∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣
 = θv,

(25)

Additionally,

S(ζats)v∞
(tv) =

ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ −
ntv−ζv∞

v

|ntv
v −nav

v | + q0

= ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
(
− ntv−ζv∞

v

|ntv
v −nav

v | + q0

)
= ntv−ζ∞∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣ + (Sv∞)

= ntv−ζ∞∣∣∣∣ntv+ ts
tv −1−na

∣∣∣∣ +
θv − ntv−ζ∞∣∣∣∣ntv+ ts

tv −1−na
∣∣∣∣
 = θv.

(26)

Therefore, S(ζats)vi
(tv) = θv for when i→ ∞ . An analog proof can be constructed for

the other conditions. �

Examples

Now, considering a trajectory with q0 = −12, θv = 5, and S f = 30 with the next
parameters nv = 2, av = 0.05, tv = 1.5 with a final ζvi = 5.4327 . . . and n = 2.5, a = −1.4,
ts = 3, and a final ζi = −4.0586 . . . at the iteration number 40 and Svi = −11.9635. The
following trajectories are presented in Figure 2.
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Figure 2. Homotopy trajectories are approaching to the via point θv = 5 at tv = 1.5 and initial
position q0 = −12 and S f = 30 using the first and second condition.
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As noted in Figure 1, the trajectory avoids oscillation with a soft start and reaches
the final position with a sharp end (non-zero velocity). Nevertheless, the trajectory can
be softer at the end position, changing the parameters av and a, and produce switching
between the abovementioned conditions. For example, by considering the parameters
presented before but changing av = 1.2481 and Svi = −27.2749. The obtained results are
shown in Figure 3.
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Figure 3. Homotopy trajectories are approaching the via point θv = 5 at tv = 1.5 and initial position
q0 = −12 and S f = 30 using the first, second, and third condition and changing its shape.

As can be seen in Figure 3, the last trajectory passes through the three desired positions
presented in Figure 2 but with a different shape. This is because different parameters have
been chosen, and a velocity too close to zero at ts has been obtained by repeating the process
that this algorithm defines, making the trajectory have an S-shape as a result.

Now, taking a much more difficult trajectory to perform, the algorithm can be run
for a longer time, and sometimes this is much more difficult to guess the complexity of
the trajectory. In other words, it is much more challenging to know exactly where an
oscillation is and is not occurring. For example, Figure 4 presents a trajectory with this
behavior, considering the following values: q0 = 10, θv = 25, and S f = 62. Taking
nv = 1.7, av = 0.05, tv = 2.6 with a final ζvi = −16.6294 . . . and n = 1.8, a = 1.2, ts = 3 and
ζi = −14.8052 . . . in the iteration 7067th.

This trajectory can be modified by changing some preliminary parameters such as
nv, n, av, and a. However, these are difficult to guess. Currently, there is not an existing
analytic formula or definition to obtain these parameters for a particular trajectory shape,
so these parameters are changed manually to achieve complex trajectories. For example,
Figure 5 shows the trajectories that were obtained while changing some of the parameters
mentioned before.
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Figure 4. Example of complex trajectories approaching the via point θv = 25 at tv = 2.6 and initial
position q0 = 10 and S f = 62 at ts = 3.
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Figure 5. Example of complex trajectories approaching the via point θv = 25 at tv = 2.6 and initial
position q0 = 10 and S f = 62 at ts = 3, reducing the spikes of the oscillations changing the parameters
nv, av, and n, a.

Finally, obtaining a trajectory with the same constraints with no oscillations is possible.
For example, Figure 6 shows the trajectories obtained with the following values nv = 125,
av = −100, n = 70, and a = 2.2 with a final ζvi = −0.7130 . . . and ζ = −1.0328 and a
Svi = −21.2603 . . . at the iteration number 58th.
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Figure 6. Example of complicated trajectories approaching the via point θv = 25 at tv = 2.6 and
initial position q0 = 10 and S f = 62 at ts = 3, reducing the spikes of the oscillations changing the
parameters nv, av, and n, a.

In Figure 6, it can be observed that the trajectory avoids any oscillation. This is possible
because the parameters mentioned before have been changed. The trajectory made between
the initial point (q0) and the via point (θv) has a different velocity, acceleration, and jerk
trajectory than the trajectory made between the via point (θv) and the final point S f . In other
words, it has C0 continuity for the cases presented before. Hence, avoiding any oscillation
for any via point time tv and final time ts is possible. This is another advantage gained
by taking IOSTV (ζ)v-HF, therefore versatile and complex trajectories can be obtained by
applying this method, and this is not always possible with the other current methods.

Additionally, note that in Figures 4–6, the trajectory ends with a sharp end position.
This is because the velocity has a short period (which is 2.6 ≤ t ≤ 3) to be well distributed
through that period of time. Nevertheless, the trajectory always presents finite velocity,
acceleration, and jerks, and the trajectory at the end position can be softer over a more
significant period.

4. Results: Velocity, Acceleration, and Jerk Function

The velocity, acceleration, and jerk functions have been presented in [36]. This work
requires a retaking of the topic of these functions because it is crucial for a long-life robotic
system to exist. As shown in the previous examples, the trajectories presented obtain no
continuous velocity, acceleration, and jerk at the via point time (tv). Nevertheless, every
value is bounded, and the gap between the velocity, acceleration, and jerk in tv can be
reduced as much as desired, making a safe motion in the joint-space. Moreover, the IOSTV
(ζ)v-HF is not the first method that presents no-continuous velocity, acceleration, or jerk.
Some methods mentioned before in the introduction and many others often used currently
present no-continuous velocity, acceleration, or jerk. For example, [37] used trapezoidal
velocity profiles to generate trajectories and presents a no-continuous jerk profile, which is
bounded and ready for implementation.
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Additionally, Refs. [38,39] present not-zero velocity at the final point, but this method
is a perfect tool for obstacle avoidance, as they wanted to show using IOSTV (ζ)v-HF.

In [36], the via point trajectory taken from [9] has been used to compare it with the
IOSTV (ζ)v-HF method by presenting a trajectory shape with a continuous velocity and
another with a continuous acceleration. In [9], the trajectory compared was not optimal,
and a significant gap in the velocity was presented. In this work, the via point trajectory
taken from [9] is retaken to obtain a better trajectory than the one that was presented in [36]
and compared with the result from [35]. The values are q0 = 30, θv = 180 at tv = 1.5 s, and
S f = 120 at ts = 3 s, and the sixth order polynomial from [9] is:

θ(t) = −9.22t6 + 85.19t5 − 265.56t4 + 282.22t3 + 30 (27)

Plotting this trajectory in MATLAB, it is shown that the trajectory obtains 185.4 degrees
as a maximum value, and tv = 1.5 the trajectory reaches θv = 180 degrees.

As shown in Figure 7, the trajectory presents a maximum value at t = 1.74 s. The
method proposed in this work tried to reduce this oscillation, so this one would not be
greater than 181 degrees. The algorithm IOSTV (ζ)v-HF was run several times until it
obtained some solutions that fulfilled the requirements. First, it tested the trajectory result
by finding values on the parameters to obtain a continuous velocity, for example, by using
the parameters nv = 1.91, av = 0.8734, ζvi = −6.0657 . . ., n = 81.7467, a = 2.4, and
ζi = −0.9204 in the iteration number 12; the following profiles are obtained and are shown
in Figure 8.
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point θv = 180 and S f = 120.

Regarding the acceleration and jerk, it can be observed that they were discontinuous
in tv. However, these do not present discontinuities at the start and end, like the method
presented in [9]. Therefore, the discontinuities have been reduced to one by using IOSTV
(ζ)v-HF, and these are also kept finite. Additionally, the differences between the acceleration
at t approaches to the left-approximation and the right-approximation to tv are insignificant,
about 219.824 degrees/s2 of difference, and obtaining 180.4 degrees as a leading position in
the trajectory.

Then, Figure 9 shows a trajectory with a continuous acceleration but a discontinuous
velocity and jerk using the following values nv = 5, av = 0.5865, and ζvi = −3.0399 and
n = 5, a = 1.95, and ζi = −2.6193 in the iteration number 28.

With the above parameters, the trajectory obtains an even smaller jerk than the one
that was found while using the sixth-order polynomial function from [9]. The acceleration
function using OISTV (ζ)v-HF starts at 0 degrees/s3 and ends too close at 0 degrees/s3,
which means that the trajectory shown presents a finite jerk. The maximum value in
the jerk function using OISTV (ζ)v-HF was 1394 degrees/s3, and the lowest value was
−1177 degrees/s3 while using the sixth-order polynomial function, the maximum value
jerk was 1693 degrees/s3, and the lowest value was −1294 degrees/ s3. Additionally, the
trajectory using IOSTV (ζ)v-HF or the sixth-order polynomial function from [9] presents a
finite jerk; this one is not continuous, though, but this characteristic, according to [9], obeys
the rule of thumb for a mechanical design/motion.
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5. Discussion

This paper presents the idea of obtaining a trajectory to achieve the best performance
or a motion in the joint-space that fulfills some preliminary conditions that a user can
state. This idea is reached by using the method presented and named after this work as
OISTV (ζ)v-HF. Some of these many essential conditions have been tested that make a
safe trajectory while controlling a robotic arm. First, the method OISTV (ζ)v-HF avoids
and reduces any undesired oscillation through the trajectory. The trajectory retains a finite
velocity, acceleration, and jerk that obeys the rule of thumb for a mechanical design/motion;
the algorithm OISTV (ζ)v-HF works by iteration. This method creates a trajectory that is
as accurate as wanted, generating many trajectories. In contrast, the number of iterations
increases until a trajectory passes through the initial position q0 at t = 0, then θv at the via
point time tv, and finally reaches the final position S f at ts at the end time.

Nevertheless, we have found some disadvantages while using this method. First, a
desirable trajectory can be obtained, but some drawbacks must be made; for example, a
trajectory can obtain a no-continuous velocity and more significant spikes in the acceleration
or jerk. At this time, there is not an existing method to obtain the best parameters that can
allow us to generate a trajectory that fulfills all the desirable conditions. Therefore, we
had to run this algorithm many times to obtain these parameters and obtain the desired
trajectory, which means much time is spent on tests. Moreover, the algorithm can run
for an extended period, and the time the convergence occurs can vary depending on the
parameters. For example, in these results, the longest-running time was about 17.5 s,
and the shortest-running time was about 0.052 s (the running time was obtained using a
function of MATLAB called the tic toc function). So, a method to generate trajectories with
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a faster running time and find the best parameters to generate a trajectory that fulfills all
the desired conditions must be developed in future works.

6. Conclusions

According to the results obtained in this work, it can be hypothesized that only one
or several sets of parameters can work to obtain the desired trajectory. In addition, one or
several sets of parameters can make a trajectory with a continuous velocity, acceleration,
and jerk.

The method converges to a via point θv at any via point time tv. The method proposed
has been tested, and according to the results and all characteristics introduced in this
work, the IOSTV (ζ)v-HF method presents some advantages, such as avoiding unwanted
oscillations. In addition, several options are generated to choose the best trajectory or, in its
case, the one that meets the desired conditions. It can reduce the complexity of trajectories
by setting new parameters and generating infinity options of generating a trajectory that
fulfills basic constraints. Furthermore, the method generates trajectories with a finite jerk
and continuous acceleration that avoids infinite jerks. All the derivatives while using the
IOSTV (ζ)v-HF start at 0, which is a uniqueness of this method and is advantageous for
reliable, smooth, and long-life robotic systems.

Although this method has to be improved, at this time, it is a confident tool for
generating safe and reliable trajectories; meanwhile, a new algorithm has to be designed to
obtain a trajectory that converges to the via point by iterations in a faster way. Additionally,
in future works, finding a solution to obtain a set of suitable parameters that makes a
continuous velocity, acceleration, and jerk without presenting undesirables oscillations
could make a complete method to generate safe trajectories in the joint-space.
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