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Abstract: Medical image segmentation is widely used in clinical medicine, and the accuracy of the
segmentation algorithm will affect the diagnosis results and treatment plans. However, manual
segmentation of medical images requires extensive experience and knowledge, and it is both time-
consuming and labor-intensive. To overcome the problems above, we propose a novel interval
iterative multi-thresholding segmentation algorithm based on hybrid spatial filter and region growing
for medical brain MR images. First, a hybrid spatial filter is designed to perform on the original
image, which can make full use of the spatial information while denoising. Second, the interval
iterative Otsu method based on region growing is proposed to segment the original image and its
filtering layer. The initial thresholds can be quickly obtained by region growing algorithm, which
can reduce the time complexity. The interval iterative algorithm is used to optimize the thresholds.
Finally, a weighted strategy is used to refine the segmentation results. The segmentation results of
our proposed algorithm outperform other comparison algorithms in both subjective and objective
evaluations. Subjectively, the obtained segmentation results have clear edges, complete and consistent
regions. We use the uniformity measure (U) for objective evaluation, and the U value is significantly
higher than other comparison algorithms. The proposed algorithm achieved an average U value of
0.9854 across all test images. The proposed algorithm can segment medical images well and expand
the doctor’s ability to utilize medical images.

Keywords: multi-threshold; region growing; interval iteration; medical image segmentation

1. Introduction

Image segmentation is one of the most critical image processing techniques. Image
segmentation is to divide the target pixels with the same features into the same area
and divide the target pixels with different characteristics into different areas [1,2]. Image
segmentation performs an important role in medical image processing, and it is widely used
in various aspects of the medical field [3], such as lesion localization, quantitative analysis
of tissue volume, study of anatomical tissue, and subsequent treatment planning [4,5]. As
the cornerstone of image processing, image segmentation has received extensive research
and attention from scholars.

In recent years, researchers have conducted a lot of study on image segmentation.
Many image segmentation methods have been proposed, including threshold segmenta-
tion methods [6], cluster segmentation methods [7], edge detection methods [8], region
segmentation methods [9], graph cutting methods [10], methods based on artificial neu-
ral network [11–16], etc. The threshold segmentation method has the characteristics of
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simplicity and efficiency, and the most classic algorithms include the Otsu method [17],
the maximum entropy method [18], and the minimum error method [19]. The Otsu’s
thresholding method is a well-known method for medical images segmentation [20]. The
key to the threshold segmentation method is the selection of the threshold, which directly
determines the quality of image segmentation.

The threshold segmentation method is divided into single threshold segmentation and
multi-threshold segmentation. Single threshold segmentation is to divide the image into
two regions: foreground and background [21]. However, a single threshold segmentation
can no longer meet clinical medical needs because of the complexity of medical images.
For example, an MR (magnetic resonance) brain image can be divided into five regions in
general, including gray matter, white matter, cerebrospinal fluid, skull, and background.
Therefore, it is necessary to expand single threshold segmentation to multi-threshold
segmentation [22]. When single threshold segmentation is extended to multi-threshold
segmentation, it often causes a huge increase in time complexity and a decrease in segmen-
tation accuracy. Therefore, how to propose a fast image segmentation method with high
segmentation quality and accuracy is still a challenging task.

To solve the problem of high time complexity, Siyan Liu proposed a method of merging
histogram regions to find the thresholds [23]. The optimal solution can be obtained by
reducing the histogram region number in iterations. This method reduces the time complex-
ity, but the segmentation accuracy is not high enough. Swarm intelligence algorithms can
find optimal solutions in the solution space [24,25]. These methods can overcome the short-
comings of the exhaustive work. Therefore, combining image segmentation algorithms
with swarm intelligence algorithms has become a research hotspot. The swarm intelligence
algorithms include genetic algorithm (GA), ant colony algorithm (ACA), particle swarm
algorithm (PSO), sparrow search algorithm (SSA), wolf swarm algorithm (WSA), Bacterial
Foraging Algorithm (BF), adaptive bacterial foraging algorithm (ABF), Real coded Genetic
Algorithm (RCGA), nelder–mead simplex method (NMS), etc. [26–28]. These algorithms are
classic optimization algorithms. Due to its strong robustness and excellent solving ability,
the Otsu method based on the above optimization algorithm has been expanded [29–33].

Accurate segmentation of medical images is a very difficult work problem due to
the weaknesses of strong noise, complex tissue structure, blurred area boundaries, etc.
To overcome this problem, Liu et al. extended Otsu to become two-dimensional, which
fully considers the spatial information of image pixels and their neighborhoods [34]. It can
achieve ideal segmentation results even when the original images with low contrast and
low signal-to-noise ratio. Wang et al. proposed a 3D Otsu algorithm which comprehen-
sively considers the original image, the neighborhood median and neighborhood mean
information of the original image [35]. This method has stronger anti-noise performance
and achieves better performance than 2D Otsu. Suhas S et al. proposed a method which
combines image neighborhood mean and neighborhood median to suppress noise. It can
reduce the noise well in MR images and preserve the structure of medical images detail [36].
Cai et al. proposed an iterative threshold segmentation method, which can segment weak
objects and fine details well [37]. Inspired by this method, our team proposed a new interval
iteration method and extended it to multiple thresholds [38]. However, the time complexity
is too high. At present, there is no algorithm that can adapt to all images and achieve
good segmentation results with low time complexity. For medical images, the structure is
complex, the shape is irregular, and a lot of noise is easily generated during the acquisition
process. In recent years, many scholars have proposed various methods to overcome these
shortcomings, but medical image segmentation is still a challenging task [39,40].

To improve the segmentation accuracy of medical images and reduce the time com-
plexity, we propose a novel interval iterative multi-thresholding algorithm based on hybrid
spatial filter and region growing. The proposed method fully considers the neighborhood
information in original image. It reduces the impact of noise on the quality of image
segmentation, and significantly reduces the time complexity. The contributions of this
paper can be summarized as follows:
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(1) A hybrid spatial filter is proposed to achieve image multi-scale decomposition which
denoising while preserving more details. The proposed filter makes full use of the
spatial information in the original image. It can improve the accuracy of image
segmentation and make the algorithm more powerful and robust.

(2) We proposed an interval iterative Otsu method based on region growing (RGIIM). It
quickly obtains the growth threshold through the region growing method (RGM) and
uses the idea of interval iteration to optimize the thresholds. This method achieves
satisfactory segmentation results with minimal time cost.

(3) A weighted strategy is used to fuse the segmentation result of the original image and
its hybrid layers to make the final segmentation result more accurate.

The rest of the paper is organized as follows: Section 2 details the interval iterative Otsu
method based on region growing. Section 3 describes our proposed algorithm. Section 4
depicts segmentation results and analysis on MR brain images. Conclusions and future
work are presented and discussed in Section 5.

2. Interval Iterative Otsu Method Based on Region Growing
2.1. Otsu Method

The Otsu method refers to a criterion function which uses the maximum inter-class
variance as the threshold selection. Assuming that the size of an image is M × N, the value
range of gray level is [0, 255]. The number of thresholds is K, ti(0 ≤ ti ≤ 255, i = 1, . . . , K)
represent the thresholds and it is a variable. The image will be divided into K + 1 categories,
ci (i = 1, . . . , K + 1) represent each category. The between-class variance is calculated
as follows:

σ2(t1, . . . , tK) =
k+1

∑
i=1

ωi(µi − µT)
2 (1)

where µi represents the average gray level of each type of pixels, and µT represents the
average gray level of the entire image. ωi represents the class probability of the i-th class
(1 ≤ i ≤ K + 1).

We define ni(1 ≤ i ≤ K + 1) as the number of pixels whose intensity in the interval of

[ti−1, ti−1], and pi as the probability of pixels in category ci, and
255
∑

i=0
pi = 1. pi, µi, µT and

ωi can be calculated as follows:

pi =
ni

M ∗ N
µi = ∑

j∈ci

jpj µT =
255

∑
j=0

jpj ωi = ∑
j∈ci

pj (2)

The Otsu threshold segmentation method is to find the optimal thresholds t1, . . . , tK
by traversing the entire gray level to maximize the inter-class variance. It can be defined
as follows:

t∗1 , . . . , t∗K = argmax
0≤t1<···<tK≤255

{σ2(t1, . . . , tK)} (3)

where t∗1 , . . . , t∗K are the optimal thresholds.

2.2. Interval Iterative Otsu Method Based on Region Growing

The region growing method (RGM) is to treat each gray level in the image as a small
area. By comparing each small area, useless areas are selected to merge with adjacent areas.
By continually merging small regions, it stops growing until the number of remaining areas
meet our preset conditions. Figure 1 shows the grayscale histogram of an original image
and the process of region growing. Figure 1a displays the initial grayscale histogram of
image I. Figure 1b–d depict the process of region growing. For image I, each gray level is
regarded as an area. We can divide the image into 256 areas according to the histogram and
calculate the information entropy H(i) of the initial 256 areas. It can be defined as follows:

H(i) = −p(i)× lg(p(i)) i = 0, 1, 2, · · · , 255 (4)
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where p(i) denotes the probability of gray i.
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and main area selection for the next.

2.2.1. The First Stage

In the first stage, the area with the smallest information entropy, H(i), is selected as
the main area, which is merged with its adjacent areas. As shown in Figure 1b, the red
area is the main area. The yellow areas are to merge into the red one, and the green areas
are unselected.

The maximum inter-class variance W of the main area and the area to be merged with
are computed separately, and we will select the area with smaller W for merging. The
amount of information Dk is taken as the information entropy of the new area, and it will
participate in the next main area selection. The calculation of the amount of information Dk
as follows:

ωk =
tk+1

∑
i=tk+1

Pi µk =
tk+1

∑
i=tk+1

iPi
ωk

σ2
k =

tk+1

∑
i=tk+1

(i− µk)
2Pi

ωk
Dk = ωkσ2

k (5)
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where Pi is probability of the gray level i, ωk is the probability of each area, µk is the average
gray level of each area, tk is the threshold, and σ2

k is the variance of each area. The definition
of the maximum inter-class variance W as follows:

P0 =
m
∑

i=k
p(i)

P1 =
n
∑

i=m
p(i) m < n


u0 =

m
∑

i=k
i× p(i)

u1 =
n
∑

i=m
i× p(i) m < n


u = P0 × u0 + P1 × u1

W = P0 × (u0 − u)2 + P1 × (u1 − u)2
(6)

where p(i) is the probability of gray level i, u is the average value of the area, and W is the
maximum inter-class variance of the new area.

We take Figure 1c,d as an example to illustrate the process of region growing in the
first stage. In Figure 1c, it can be seen that the main area selected for the first time is merged
with the area on the right to form a new area. Then, the area with the smallest information
entropy H(i) is selected as the main area, which is marked in red. Its two adjacent areas are
marked in yellow. The results of the last region growing are shown in Figure 1d. The newly
generated area is selected as the main area. The area adjacent to the main area is selected as
the area to be merged with. If the main area is an edge area, that is, the main area has only
one adjacent area, then it is directly merged with the adjacent area without calculating W.

The above operations are repeated. The number of thresholds gradually decreases
with region growing, and region growing will stop until it meets our pre-set threshold
number. The final thresholds obtained by region growing are shown in Figure 2.
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2.2.2. The Final Stage

According to the final thresholds (T1, T2, . . . , Tk−1, Tk) obtained by region growing
methods, the pixels of the original image are divided into K + 1 categories, and the mean
of each category is recorded as µ1,I (i = 1, . . . , K + 1). Pixels whose gray value pi ≤ µ1,1
are divided into class C1, while pixels whose gray value pi ≥ µ1,K+1 are divided into
class CK+1. The remaining pixels are divided into K intervals [µ1,1, µ1,2], [µ1,2, µ1,3], . . . ,
[µ1,K−1, µ1,K], and [µ1,K, µ1,K+1]. Figure 3 depicts an example of interval iteration. Figure 3a
shows the grayscale interval, and Figure 3b shows the updated grayscale interval after
the first interval iteration. In Figure 3a, the intervals filled with different colors are to be
iterated continuously next.

Next, Otsu single-threshold segmentation is performed in intervals [µ1,1, µ1,2], [µ1,2, µ1,3],
. . . , [µ1,K−1, µ1,K], and [µ1,K, µ1,K+1], respectively, to obtain the thresholds T2,i (i = 1, . . . , K)
and the corresponding class means µ2,2i−1, µ2,2i (i = 1, . . . , K). Pixels whose gray value is
located in the interval [µ2,i, µ2,i+1] (i = 2, . . . , 2K − 2) are divided into Cj(j = 2, . . . , K), as
shown in Figure 3b.
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grayscale interval after interval iteration.

Repeat the above process in class Cj (j = 2, . . . , K) to obtain the threshold and class
mean, and re-divide Cj (j = 2, . . . , K) until the threshold is satisfied

∣∣Th,r − Th−1,r
∣∣ < δ,

(where δ > 0). The final obtained Th,r (r = 1, . . . , K) is the optimal threshold T′r (r = 1, . . . , K).
Figure 4 shows all the optimal thresholds obtained by RGIIM.
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3. The Proposed Algorithm
3.1. The Framework

The framework of the proposed algorithm is shown in Figure 5. It can be described as
follows:

(1) The original image is processed with the proposed hybrid spatial filter to obtain the
hybrid layer.

(2) The proposed RGIIM is executed on the original image and the hybrid layer separately
to obtain different sets of segmentation thresholds.

(3) The weighted strategy is performed on the segmentation thresholds to obtained the
optimized segmentation thresholds.
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3.2. Hybrid Spatial Filter

In our algorithm, we designed a hybrid spatial filter to improve the accuracy and
robustness of image segmentation. The proposed hybrid spatial filter integrates four filters,
including Gaussian filter, median filter, mean filter, and mean-median filter. These four
filters have been proved by time and experiments, can remove the noise in the image very
well, and retain the edge information in the image. It also can make full use of the spatial
information of the original image while eliminating noise [30,41]. The common Gaussian
filtering, median filter and mean filter are not repeated here. The mean-median filter is
defined as follows:

mean-median(x, y) =

a∗b
∑

i=1
average(u,v)∈Sxy{gi(u, v), median }

a ∗ b
(7)

where Sxy represents the set of pixels in the rectangular sliding window with size a∗b,
“median” represents the median gray value of pixels in the window centered on the point
(x, y), and gi(u, v) represents the gray value of the i-th pixel (u, v) in the window.

We sum up and find the average for the above four filters to form our proposed hybrid
spatial filter. Hybrid spatial filter is defined as follows:

H(x, y) =εG(x, y) + φmedian(x, y) + γmean(x, y) + ηmean-median(x, y) (8)

where H(x, y) represents the hybrid spatial filter; G(x, y) denotes the Gaussian filter;
median(x, y) represents the median filter; mean(x, y) represents the mean filter; mean-median(x,
y) represents the mean-median filter; ε, φ, γ and η are four weights to balance G(x, y),
median(x, y), mean(x, y), mean-median(x, y); and ε + φ + γ + η = 1. Here, we set ε = φ = γ =
η = 1/4 empirically.

Figure 6 shows the results of two test images processed by the proposed hybrid
spatial filter. It can be seen that the images after hybrid spatial filtering are smoother. The
noise has been removed, and the details and structural information in original images are
well preserved.
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3.3. Weighted Strategy

A weighted strategy is proposed to obtain the final segmentation thresholds for further
refinement of segmentation results. The weighted strategy is simple and effective. It is
defined as follows:

Ti
f = αTi

o + βTi
h (i = 1, . . . , K) (9)

where Ti
f (i = 1, . . . , K) denotes the final optimized segmentation thresholds, Ti

o and Ti
h refer

to thresholds of the original image and its hybrid filtering layer, respectively, and α and β
are two weights to balance Ti

o and Ti
h, α + β = 1. Here, we set α = β = 1/2 empirically.

4. Experimental Results and Analysis
4.1. Experimental Protocols

The test images we used in the experiments are from “The Whole Brain Atlas” of
Harvard Medical School Image Library (http://www.med.harvard.edu/aanlib/home.html
(accessed on 20 September 2021)). Due to limited space, we chose ten brain slices #022~#112
to demonstrate the performance of our proposed algorithm. These ten brain slices are
shown in Figure 7. All the experiments in this paper are run on Intel(R) Core (TM) i7-
7700HQ CPU @ 2.80 GHz 2.80 GHz, 16 GB RAM, windows 10 and programming language is
Python3.6. The parameter settings of the proposed algorithm and the number of thresholds
are shown in Table 1.

Table 1. Parameter settings of the proposed algorithm.

Parameter Settings Description

δ = 0.01 Value that stops the iteration for RGIIM
W = 3 filter window size

K = 2, 3, 4, 5 Number of the thresholds

http://www.med.harvard.edu/aanlib/home.html
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4.2. Evaluation Measure

We use the uniformity measure as the objective evaluation index in the experiments [42].
The uniformity measure is used to quantitatively evaluate the degree of similarity in different
classes divided by the segmentation algorithm. It is defined as follows:

U = 1− 2 ∗ n ∗

K
∑

j=1
∑

i∈Rj

(
Ii − µRj

)2

Num ∗ (Imax − Imin)
(10)

where n represents the number of thresholds; Num represents the number of all pixels
in the original image I; Imax and Imin, separately, represent the maximum gray value and
minimum gray value of the pixels in the image I; Rj denotes the jth segmented area; Ii
represents the gray value of pixel i; and µRj represents the grayscale mean of the pixels in
the segmented region Rj. The value range of U is [0, 1]. The larger the U value, the better
the regional uniformity in the segmentation results, and the better the segmentation effect
and vice versa.

4.3. Comparison between the Proposed Method and Other Methods

To verify the performance of the proposed algorithm, five representative multi-
threshold segmentation algorithms are selected for comparative experiments. The five
comparative experimental algorithms are: (1) image threshold segmentation algorithm
based on particle swarm optimization (PSO), (2) image threshold segmentation algorithm
based on bacterial foraging (BF), (3) image threshold segmentation algorithm based on
adaptive bacterial foraging (ABF), (4) image threshold segmentation algorithm based on
Nelder-Mead simplex (NMS), (5) image multi-threshold segmentation algorithm based
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on real coded genetic algorithm (RCGA) [43]. The number of thresholds is set to K =
2, 3, 4, and 5, respectively. Due to the limited space, we only show the segmentation
results of the proposed algorithm in this paper. Figure 8 shows the segmentation results
of Slice#022~#112 when the threshold K = 2, 3, 4, 5. Intuitively, the proposed algorithm
can better segment each region of the experimental image, and the continuity of different
regions is well guaranteed. At the same time, the visual effects are satisfactory.
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Figure 8. Segmentation results obtained by the proposed algorithm for brain slices #022~#112; (a1–j1)
display the results of 2-thresholding; (a2–j2) display the results of 3-thresholding; and (a3–j3) display
the results of 4-thresholding; (a4–j4) display the results of 5-thresholding.

The uniformity measures (U) values of the proposed algorithm and other comparison
algorithms with K = 2, 3, 4, 5, respectively, are shown in Table 2. The highest U values are
marked in bold. In general, our proposed algorithm achieves the best or better evaluation
results on all test images. For #042, #052, #062, #082, #112, the proposed algorithm achieves
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suboptimal results when K = 5. The difference of the objective evaluation U value is small
and acceptable. Overall, our proposed algorithm achieves the best segmentation results in
test images, outperforming five different contrasting algorithms.

Table 2. Comparison of the uniformity measure for different segmentation algorithms.

Test Images Number of
Thresholds (K)

Uniformity Measure (U)

Proposed PSO BF ABF NMS RCGA

#022

2 0.9870 0.9552 0.9569 0.9569 0.9569 0.9569
3 0.9894 0.9672 0.9708 0.9696 0.9769 0.9769
4 0.9904 0.9420 0.9765 0.9698 0.9824 0.9824
5 0.9917 0.9435 0.9786 0.9785 0.9752 0.9788

#032

2 0.9845 0.9368 0.9342 0.9342 0.9342 0.9342
3 0.9886 0.9619 0.9716 0.9600 0.9796 0.9801
4 0.9891 0.9144 0.9697 0.9766 0.9848 0.9848
5 0.9905 0.9422 0.9668 0.9767 0.9851 0.9843

#042

2 0.9827 0.9271 0.9246 0.9246 0.9246 0.9246
3 0.9812 0.9585 0.9721 0.9689 0.9548 0.9548
4 0.9868 0.9465 0.9752 0.9821 0.9865 0.9865
5 0.9871 0.9348 0.9724 0.9766 0.9845 0.9877

#052

2 0.9837 0.9158 0.9128 0.9128 0.9068 0.9128
3 0.9860 0.9523 0.9713 0.9673 0.8800 0.9467
4 0.9854 0.9372 0.9764 0.9834 0.8982 0.9856
5 0.9880 0.9240 0.9735 0.9782 0.9842 0.9868

#062

2 0.9759 0.9192 0.9047 0.9049 0.9015 0.9015
3 0.9799 0.8777 0.9135 0.9029 0.9030 0.9030
4 0.9849 0.9236 0.8856 0.8988 0.8989 0.8989
5 0.9851 0.8505 0.9527 0.9325 0.9835 0.9855

#072

2 0.9723 0.9068 0.9041 0.9041 0.9041 0.9041
3 0.9788 0.9034 0.9084 0.8985 0.8992 0.8992
4 0.9830 0.8809 0.8876 0.8804 0.8666 0.8666
5 0.9878 0.9531 0.8881 0.8876 0.9818 0.9825

#082

2 0.9782 0.9120 0.9091 0.9091 0.9091 0.9091
3 0.9734 0.8852 0.8621 0.8661 0.8849 0.8849
4 0.9816 0.8619 0.8479 0.8622 0.8695 0.8695
5 0.9847 0.9372 0.9188 0.9105 0.9854 0.9857

#092

2 0.9870 0.9131 0.9156 0.9131 0.9131 0.9131
3 0.9877 0.8607 0.8751 0.8827 0.8786 0.8786
4 0.9863 0.9490 0.8583 0.8514 0.8240 0.8641
5 0.9887 0.8684 0.8923 0.8401 0.9880 0.9876

#102

2 0.9864 0.9383 0.9250 0.9250 0.9250 0.9250
3 0.9851 0.8768 0.8977 0.9097 0.9179 0.9179
4 0.9888 0.9256 0.9410 0.9050 0.9871 0.9871
5 0.9921 0.8446 0.9180 0.9181 0.9907 0.9895

#112

2
3
4
5

0.9875 0.9356 0.9403 0.9404 0.9404 0.9404
0.9906 0.9147 0.9666 0.9769 0.9863 0.9890
0.9899 0.9751 0.9824 0.9825 0.9885 0.9896
0.9887 0.9735 0.9822 0.9830 0.9915 0.9914

Table 3 shows optimal threshold values obtained by different segmentation algorithms
on the test images. Additionally, the final thresholds selected by different algorithms are
different from each other.
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Table 3. Comparison of optimal threshold values obtained by applying different segmentation algorithms to the test images.

Test Images Number of Thresholds (K)
Optimal Threshold Values

Proposed PSO BF ABF NMS RCGA

#022

2 33, 92 97, 184 96, 184 95, 184 96, 184 96, 184
3 17, 56, 110 69, 138, 207 65, 131, 186 69, 114, 185 58, 116, 185 58, 115, 185
4 13, 37, 74, 116 83, 116, 175, 207 52, 99, 148, 186 58, 113, 174, 208 43, 87, 132, 185 44, 87, 131, 186
5 13, 37, 74, 108, 134 76, 119, 154, 184, 214 44, 90, 127, 170, 208 43, 88, 130, 176, 208 44, 104, 140, 176, 214 44, 86, 127, 174, 208

#032

2 32,90 107, 185 110, 185 110, 185 110, 185 109, 185
3 24, 70, 116 74, 157, 192 72, 120, 198 81, 134, 187 56, 115, 186 53, 116, 185
4 13, 43, 87, 127 95, 125, 164, 194 63, 119, 173, 208 58, 102, 142, 190 39, 83, 132, 189 39, 84, 131, 189
5 11, 37, 67, 94, 125 80, 112, 139, 186, 213 63, 101, 140, 175, 207 52, 87, 128, 167, 198 29, 75, 124, 173, 207 34, 78, 123, 174, 207

#042

2 46, 107 111, 183 114, 184 114, 184 113, 184 114, 183
3 18, 60, 107 80, 148, 178 70, 136, 188 74, 130, 185 84, 132, 188 84, 132, 187
4 18, 58, 100, 140 81, 125, 164, 197 62, 112, 156, 194 50, 100, 143, 190 29, 76, 128, 187 30, 75, 127, 188
5 18, 55, 86, 112, 142 82, 115, 142, 184, 214 58, 114, 151, 188, 218 53, 97, 144, 184, 218 31, 76, 126, 178, 217 25, 69, 114, 156, 194

#052

2 48, 97 119, 186 117, 186 117, 186 118, 185 118, 185
3 44, 87, 122 89, 113, 187 102, 156, 206 107, 158, 204 109, 166, 207 109, 165, 203
4 42, 80, 105, 130 79, 111, 141, 208 93, 124, 171, 210 90, 129, 173, 210 94, 132, 175, 210 91, 131, 174, 209
5 26, 55, 80, 105, 130 65, 85, 131, 162, 203 56, 112, 144, 175, 209 56, 95, 133, 167, 203 20, 67, 120, 167, 207 24, 67, 118, 166, 203

#062

2 66, 109 109, 186 119, 190 119, 186 121, 187 121, 187
3 53, 89, 125 112, 167, 187 97, 133, 183 102, 147, 199 101, 148, 195 101, 147, 196
4 33, 76, 108, 149 85, 134, 180, 203 98, 140, 182, 218 93, 135, 175, 212 94, 134, 176, 211 94, 134, 175, 211
5 33, 76, 98, 125, 156 99, 119, 157, 181, 203 73, 104, 139, 184, 213 79, 111, 145, 179, 212 28, 68, 120, 168, 208 20, 65, 113, 158, 200

#072

2 47, 91 116, 177 117, 179 117, 179 118, 179 117, 179
3 47, 89, 123 96, 178, 207 95, 147, 202 99, 150, 190 100, 142, 188 99, 141, 187
4 25, 73, 106, 145 96, 124, 161, 187 94, 129, 173, 214 95, 134, 174, 214 100, 140, 179, 214 99, 140, 179, 213
5 25, 72, 99, 129, 174 72, 112, 151, 178, 197 87, 109, 139, 178, 210 87, 119, 150, 180, 214 10, 64, 120, 172, 211 14, 64, 119, 171, 211

#082

2 48, 96 110, 170 112, 169 111, 170 112, 169 111, 169
3 20, 72, 100 103, 136, 198 114, 155, 210 111, 155, 201 103, 146, 189 103, 146, 190
4 20, 72, 98, 134 100, 129, 167, 188 103, 139, 175, 214 99, 135, 170, 210 98, 134, 169, 210 98, 133, 169, 210
5 20, 72, 94, 116, 152 78, 105, 151, 180, 201 81, 122, 150, 182, 212 84, 113, 146, 178, 214 14, 62, 115, 168, 210 10, 62, 107, 148, 190

#092

2 58, 98 109, 175 108, 174 109, 174 109, 173 109, 174
3 35, 79, 107 115, 134, 178 107, 144, 209 104, 158, 207 106, 158, 206 105, 158, 206
4 24, 63, 83, 107 77, 107, 149, 194 100, 129, 164, 208 102, 138, 171, 212 112, 152, 186, 220 97, 136, 211, 173
5 24, 63, 82, 101, 121 90, 113, 165, 185, 206 85, 114, 147, 175, 212 96, 128, 158, 186, 216 10, 64, 110, 160, 205 5, 62, 109, 159, 205
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Table 3. Cont.

Test Images Number of Thresholds (K)
Optimal Threshold Values

Proposed PSO BF ABF NMS RCGA

#102

2 55, 97 98, 166 108, 174 108, 174 108, 173 107, 174
3 25, 64, 97 113, 145, 180 103, 148, 189 98, 146, 189 94, 142, 189 94, 142, 190
4 25, 62, 86, 118 84, 124, 165, 189 79, 122, 164, 200 90, 127, 164, 198 2, 64, 119, 173 1, 63, 120, 174
5 25, 62, 86, 112, 140 99, 128, 147, 194, 218 81, 113, 147, 187, 220 82, 114, 148, 184, 218 9, 62, 106, 147, 190 1, 62, 104, 145, 189

#112

2 54, 100 109, 162 105, 165 105, 164 106, 163 106, 163
3 29, 76, 111 104, 163, 216 79, 134, 180 71, 123, 175 3, 49, 145 1, 70, 142
4 25, 61, 90, 111 63, 130, 153, 206 54, 117, 156, 192 58, 105, 146, 182 4, 63, 132, 178 1, 65, 123, 172
5 18, 49, 76, 94, 111 58, 128, 155, 187, 213 48, 112, 137, 161, 200 47, 108, 142, 171, 197 2, 44, 79, 131, 175 1, 49, 95, 139, 183
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4.4. Ablation Experiment

To verify the necessity of each step of the proposed algorithm, we conduct ablation
experiments. Non-F-RGM means that the image is segmented directly by RGM and without
being processed by the hybrid spatial filter. F-RGM means that RGM is only performed on
the original image and the filtering layer. Non-F-RGIIM means that the original image is
directly segmented using the RGIIM. Proposed represents our proposed complete algorithm.
We perform ablation experiments on the 10 test images described in Figure 7. The number
of thresholds is set to K = 2, 3, 4, 5, respectively.

Table 4 shows the results of the ablation experiments. The best results are marked
in bold. Comparing with Non-F-RGM, the average U value of F-RGM is larger. It means
that our proposed hybrid spatial filter has significantly influence on the improvement of
segmentation results. Comparing with Non-F-RGM, the average U value of Non-F-RGIIM
is improved more significantly. It indicates that the proposed RGIIM is equally important
for the improvement of segmentation results, and the idea of optimizing the threshold with
interval iteration is effective. Unsurprisingly, the proposed algorithm has achieved the
highest average U value. Compared with Non-F-RGIIM, the improvement brought by the
hybrid spatial filter is significant especially when K = 2, 5. The improvement is not obvious
when K = 3, 4, but the result is also acceptable. In summary, every step of our proposed
algorithm is indispensable for medical image segmentation.

Table 4. Ablation experimental results.

Number of
Thresholds (K)

Average Uniformity Measure (U)

Non-F-RGM F-RGM Non-F-RGIIM Proposed

2 0.9696 0.9729 0.9795 0.9825
3 0.9723 0.9775 0.9838 0.9840
4 0.9677 0.9820 0.9864 0.9866
5 0.9791 0.9850 0.9877 0.9884

4.5. Time Complexity Analysis
4.5.1. Proposed Method Time Complexity Analysis

The time consumption of our proposed algorithm includes three parts: first, the
original image is processed by the hybrid spatial filter, and the time complexity is O(L2∗W)
level (W is the filter window size). Second, the multi-thresholding based on region growing
is performed, and the time complexity is O(L) level. Finally, the time complexity of
multi-threshold segmentation based on interval iteration is O(L) level. In sum, the time
complexity of this algorithm is O(L2∗W) level. When the number of thresholds K = 2, 3,
4, 5, respectively, the average running time of the algorithm on 10 test images is shown
in Figure 9.

Figure 9. The average running time of the proposed algorithm under different thresholds.
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In Figure 9, it can be noted that the running time of the proposed algorithm gradually
decreases with the increase in the number of thresholds. The overall running time of the
algorithm is about 0.6 s, which can be fully applied in real-time systems.

4.5.2. Computation Time Comparison

In this section, we compare the computation time of the proposed method with
other methods (PSO, BF, ABF, NMS, and RCGA). In Table 5, the time computation of our
proposed method for 1 K (1024) pixels is overwhelming compared to other methods. For the
comparison methods, PSO takes the least time, which is 0.1057 S. However, our proposed
method only took 0.008 s, which is a huge gap. It fully proves that the time cost of our
proposed method is tiny.

Table 5. Computation time compare with other methods.

Methods Proposed PSO BF ABF NMS RCGA

1 K pixel/s 0.008 0.1057 0.2772 0.3254 0.3548 0.2815

5. Conclusions

In this paper, we proposed a novel interval iterative multi-thresholding segmentation
algorithm based on hybrid spatial filter and region growing for medical brain MR images.
Experiments show that the hybrid spatial filter can eliminate the noise in the image well
while preserve the edge information of the image. It makes the segmentation effect more
accurate. The algorithm makes full use of the spatial information in the original image. It
quickly obtains initial thresholds by region growing, then the idea of interval iteration is
adopted to optimize the thresholds. Finally, a weighting strategy is used to achieve medical
image segmentation. Compared with other similar algorithms, our algorithm achieves
satisfactory results. Subjectively, good visual effects are achieved, and the segmentation
results have good consistency. Objectively speaking, the evaluation metric of our algorithm
achieves the best results among all the test images and has a strong anti-noise performance.
The time complexity of the algorithm is O(L2∗W) level. Compared with the comparative
algorithm PSO with the least time consumption, for processing 1 K (1024) pixels, the time
consumption is about 1/10 of it. This significantly improved the running speed, which can
be applied in the real-time system of clinical medicine. We achieve excellent segmentation
accuracy with minimal time cost.
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