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Abstract: The microstructure of materials is shaped not only by their chemical composition, but
also by the thermomechanical processes used during the processing of a specific piece. The correct
interpretation of the microstructure gives a rich source of information. This consists of several related
steps, such as segmentation. Successful segmentation enables the qualitative as well as quantitative
analysis of the individual microstructure components. The current paper deals with the segmentation
and classification of four basic microstructure components of the Zn-Al-Mg-Sn alloy system. This is
attempted with the help of several image processing techniques, where thresholding is the main one
used. The investigated samples are the cast and annealed Zn-Al-Mg-Sn alloy bulks. The input data
for this analysis are the SEM BSE images. These were taken for all alloys with a varying Sn content,
covering a significant area of each investigated sample at different zoom levels. A semiautomatic
algorithm running under Matlab is introduced. It addresses several tasks, such as preprocessing,
noise filtering and decision methods. For the individual procedures, the time requirements for their
execution are also indicated.
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1. Introduction

Industrially used materials are characterised by various properties. One of the forms
of their investigation is modern electron microscopy, which offers coded information about
the investigated substance in the form of a microstructure. It represents the individual
material phases or components, including their mutual relationships. One of the most
important aspects in the field of micrography is the presence of contrast differences and
their physical origin. Overall, microscopic relationships have their direct counterparts at the
normal macroscopic level, which the user can assess as strength, susceptibility to corrosion,
etc. It is therefore natural that the user tries to create an algorithm that would, if possible,
automatically examine and decode the necessary information content of microstructures.
Each such piece of information is largely unique in electron microscopy, and therefore, the
algorithms used in practice have their own special features and success rates. It is usually
necessary to consider the appropriate ratio between the time needed to acquire the input
data and the time needed to create a method for these data, as well as the time for the actual
processing and evaluation.

Scanning Electron Microscopy (SEM)—The essential character of the image is deter-
mined by an electron gun, more specifically by the beam of electrons that this device emits.
By setting the operational parameters of SEM, the operator controls the characteristics of the
beam that interacts with the sample: energy, diameter, gun current, incident angle, etc. [1,2].
The electrons from the beam interact with the atoms of the sample through a number of
physical processes described as scattering. From these interactions arise backscattered
electrons (BSEs), secondary electrons (SEs) and X-rays, which carry information about
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the sample: topographical features, composition, crystal structure and local electric and
magnetic fields [2–5]. Different types of materials and different imaging modalities place
different demands on the sample preparation, even before the sample is introduced into
the microscope [1,6–9]. There is a general recommendation that efforts should be devoted
to the acquisition of the highest-quality data and less data processing than the other way
around [10].

Contrast mechanism—By scanning the emissions from the interaction of the incident
electron beam on the sample, a grayscale image is created, which is characterised by the
information with a certain contrast [5]. The successful interpretation of the information
seen is conditional on understanding the physical events that gave a rise to it. The overall
contrast is made up of the following components with a varying degree:

• topographic contrast—dominantly the SE signal, which is more sensitive to the 3D
topography of the surface of the scanned sample;

• composition contrast—dominantly the BSE signal, which is more dependent on the
atomic number of the individual atoms in the sample;

• channelling contrast—electrons from the beam penetrate more easily along the crystal
lattice than in a random orientation.

The phase represents a homogeneous body of matter physically different from its
surroundings in the investigated microstructure. Each pure metal solidifies with a specific
crystal lattice while some of them, with a polymorphic nature, can also create different
crystal structures on specific conditions (pressure, temperature). When pure metals are
combined in alloys, additional crystal structures are formed in certain compositions and
stable temperature and pressure ranges [11].

The microstructure of metallic materials is formed by the distribution and topological
arrangement of the grains, phases, their interfaces and other defects in three dimensions.
It is a direct result of the chemical composition of the alloy and the production procedure
applied. This is most often represented in the form of heat, mechanical or chemical
treatment [12,13]. To distinguish the microstructure from the macrostructure of metals,
a magnification of typically at least 75× is defined [14]. The qualitative analysis of the
microstructure depends to a large extent on the knowledge and experience of the observer.
When processing microstructures, there is a general effort to minimise or completely
exclude the interactive intervention of the operator [15] for the following reasons [16–19]:

• time and effort requirements;
• subjective errors (bias) and related repeatability;
• need for domain knowledge in the form of technological expertise.

Overall, the methods of microstructure processing can be divided into the following:

• manual [15];
• semiautomatic (it is possible to use image processing (IP) techniques with at least

partial success and then apply a manual refinement—this is the intermediate step to
cope with the data-hungry demand of deep learning (DL) [20]);

• automatic.

It is impossible to develop a universal algorithm for the analysis of all microstructures [10].
The method of work will be influenced mainly by the sample preparation, observation
technique (microscope, mode of operation), and nature of the material. The microscopic
image is characterised by its quality, the assessment of which has an objective and subjective
side [21]. In addition to the contrast differences, noise and the various distortions are in-
cluded in the particularities of the microscopic image [22]. It is noise that is the fundamental
problem in extracting meaningful information from SEM images [23,24]. More details about
the relevant models and noise types in the typical imaging modalities are given by [25],
while noise in SEM images is explicated in [26,27]. From a practical point of view, the level
of noise in SEM images can be significantly influenced mainly by the scanning speed [26].
A necessary feature in noise removal is edge preserving [28], but sometimes a blurring or
introduction of the artifacts near the edges cannot be avoided [29–31]. Bonnet [32] provides
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an overview of the IP applications in microscopy in the form of nine trends, selected from
which are the following:

• 1st trend—signal processing: noise removal and texture analysis;
• 5th trend—collaborative microscopy: complementary imaging modalities;
• 8th trend—semi-automation: creating training data for DL;
• 9th trend—interdisciplinary cooperation: assessing the properties of image material.

Image segmentation is a process of partitioning an image into different regions that
are homogeneous or ‘similar’ in a certain sense. The segmentation should be complete, the
regions continuous and maximal and they should be characterised by certain properties
(intensity, colour, texture) [33]. Despite the large number of segmentation techniques, it
has not yet been possible to develop a universal method for a wide variety of images [34].
Bhanu et al. [33] and Siddiqui et al. [35] list four basic groups of segmentation methods:
thresholding, edge-based, region-based and clustering-based. The segmentation results
can sometimes be improved by combining several different methods to create a hybrid
method [36]. After the successful creation of segments, it is necessary to classify them.

Related works—When researching the sources dealing with the microstructures, it had
been found that the given sample material was rather poorly represented in the publications.
Likewise, IP of the microstructure images of similar alloy systems had been performed only
in a limited number of publications—see Table 1. Gogola et al. [37] and Gabalcova et al. [38]
worked with the same sample material. The phase composition was determined using
a combination of X-ray diffraction (XRD) and SEM with energy-dispersive X-ray (EDX).
Using EDX and XRD, the solid solutions, as well as intermetallic phases of these alloys, were
identified. Analysis of the Zn-Al-Mg microstructures is a challenge [39] as the resulting
structures are often complex and require (may require) assessment at different zooms.
There is no single analysis technique that allows these structures to be evaluated at all
necessary scales.

Table 1. Survey of the published sources.

Author Year Material Information

Gogola et al. [37] 2021 Zn-Al-Mg-Sn SEM, EDX, XRD
identification of the phases

Ercetin et al. [16] 2021 Mg-Al-Sn

SEM, Zoom 500
sample: sanding, polishing, etching

IP + manual corrections
noise filter: normalised box filter,

Gaussian filter

Chalusiak et al. [17] 2021 solid oxide fuel cells
focused ion beam (FIB) SEM

several filters tested and set via
particle swarm optimisation (PSO)

Li et al. [40] 2020 shale EDX
machine learning (ML)

Truglas et al. [39] 2020 Zn-Al-Mg

SEM SE, FIB tomography
transmission electron microscope

(TEM)
noise filter: anisotropic diffusion filter

LeTrong et al. [41] 2014 limestone

X-ray microtomography
noise filter: alternate sequential filter,

mosaic operator
pros and cons of thresholding

histogram deepening

Main contributions—In the current research, the focus is being put on the annealed
samples, as their investigation in [37,38] indicated a significant influence of phase morphol-
ogy on the corrosion behaviour of alloys. With the methods proposed in this paper, it is
possible to:
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• Understand the characteristics of the visual data from the modality SEM BSE (rich
visual content). The chosen alloy has not been so far investigated through this approach
(Sn content, zoom);

• Remove the bottleneck in the technological workplace—see Figure 1. The resolution,
noise level and data acquisition time (compared to EDX) clearly speak in favour of the
presented approach. The modality XRD is relatively fast, but it does not provide any
visual data, just the numerical values of the phase quantification (PQ);

• Quickly process the sample and acquire a lot of information from a large surface.
From these visual data, it is possible to find out more details regarding manifestation
of the metallurgical process, chemical composition, semantics of the scene, class
imbalance, etc.;

• Save time and energy for the preparation of training data for deep learning compared
to the manual editing from scratch;

• Process the previously taken image documentation even if the sample does not exist anymore.
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Figure 1. Relationship of the presented approach, SEM BSE, to the other modalities, EDX and XRD.

In the paper, the data from the modalities EDX and XRD are used only in order to
confirm the results of the presented approach. Neither the modalities themselves (EDX,
XRD) nor their data are necessary in actual operation. In this way, the classes identified by
the microstructure segmentation and classification approach presented in the paper are to
be the real ones in the sample.

The principal differences among all three modalities are depicted in Table 2. XRD confirms
the correctness of chemical phases but does not provide any semantic context of a visual scene.
The context for chemical elements is confirmed through EDX at lower resolution.

Table 2. Characteristics of the modalities SEM BSE, EDX, XRD.

Modality Data Format Resolution Information Acquisition Time

SEM BSE visual data
(2D matrix) high composition contrast low

EDX EDX data
(3D matrix) low chemical elements high

XRD nonvisual data - chemical phases -

2. Materials and Methods

The processed data were the result of the observations from the previous research [37].
The image documentation was available for each alloy from about 50 locations at various
zoom levels. Table 3 summarises the most important information regarding the task; more
details can be found in the individual parts of the paper.
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Table 3. Summary description of the task.

Substance Metal alloy Zn-Al-Mg-Sn:
Zn bal. wt.% (weight), 1.6 wt.% Al, 1.6 wt.% Mg, 0–3 wt.% Sn

Sn content 0, 1, 2, 3 wt.%

Task Segmentation and classification:
level thresholding + morphology, histogram thresholding

Number of classes 3 or 4 (depending on Sn content)
Microscope JEOL JSM 7600F
Electron source Schottky field emission gun
Detector BSE—SM-74280RBEI in composition mode
Image exposure time 6600 ms
Working distance 15 mm

Sample treatment
Grinding 280—4000 grid emery paper
Polishing 3—0.25 µm ethanol-based diamond paste
Cooling and lubrication with ethanol

Software Matlab 9.11.0.1769968 (R2021b)
OS + Hardware Win10 Pro 21H2 64 bit, i7–7820HQ, SSD, 64GB RAM
Image information 960 × 1280, 8 bit grayscale
Noise removal NonLocal Mean (NLM) filter
Zoom 1000, 2000, 4000

Data acquisition—The samples were cast into a round Cu crucible with a diameter
of 30 mm and depth of 20 mm. These samples were consequently annealed at 310 ◦C for
1 h. During metallographic preparation, the samples were cut along the cylinder axis and
the resulting sections were embedded into the Buehler KonductoMet conductive resin.
Grinding was performed on a set of emery paper up to a granularity of 4000. Subsequently,
polishing was performed on a set of alcohol-based diamond pastes down to a grain size of
0.25 µm. Ethanol was used for cooling and lubrication during all steps of the metallographic
preparation to minimise the chance of corrosion. The samples were investigated without
etching to avoid the formation of any additional surface roughness. This would have
adversely affected the chance of a successful segmentation. To limit electrical charge build-
up during the investigation, a conductive carbon tape was used to connect the samples to
ground (metallic part of the SEM sample stage).

The microstructure documentation was performed by the JEOL JSM 7600F scanning
electron microscope (SEM, Jeol Ltd., Tokyo, Japan). The Schottky field emission electron
source was operated at the accelerating voltage of 20 kV and 90 µA of the emission current.
The samples were placed at the working distance of 15 mm. The backscattered electron
detector was utilised for the microstructure documentation.

The microscope settings were optimised for efficient image documentation at rather
low zooms of up to 4000. The wide objective lens aperture (110 µm), the probe current of
2 nA and the exposure time of only 6600 ms per image were set. A JEOL SM-74280RBEI
BSE detector consisting of two semicircle sensors was utilised. Setting them into the
composition mode enabled the creation of images based on the atomic number contrast
with the sufficiently low noise. The relatively short exposure time enabled the regular
documentation of an approx. 80 mm long section for each alloy.

The chemical composition analysis was measured via an EDX spectrometer (Oxford
Instruments plc, Abingdon, United Kingdom) with an Oxford Instruments X-Max silicon
drift detector.

During image processing, the following microstructure components needed to be
distinguished: the Zn-based solid solution η(Zn), the Mg2Zn11 intermetallic phase and the
particles formed by the η(Zn) + α(Al) eutectoid mixture; finally, the addition of Sn enabled
the formation of the Mg2Sn intermetallic phase particles (see Table 4 and Figure 3).
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Table 4. Investigated phases and microstructural components.

Component Description Label for IP

1 η(Zn) solid solution BG background
2 η(Zn) + α(Al) eutectoid (mixture of the solid solutions) BW black and white
3 Mg2Zn11 intermetallic phase L light
4 Mg2Sn intermetallic phase D dark

The individual microstructural components were characterised through a local EDX
analysis. Figure 2a shows a BSE image of an area with all key microstructure components
present. The base matrix is formed by η(Zn) represented by the Zn map in Figure 2b. The
Al map (Figure 2c) clearly indicates the presence of the η(Zn) + α(Al) eutectoid mixture
particles, while the areas containing both Zn and Mg (Figure 2d)) indicate the presence
of the Mg2Zn11 phase particles. Finally, the presence of Mg and Sn (Figure 2e) indicate
the location of the Mg2Sn phase particles. In this paper, two designations with the same
meaning are used interchangeably based on the context of the current section: particle
(materials science point of view) and shape (IP point of view).
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Figure 3 shows a section from an original unfiltered microscopic image (3% Sn,
Zoom4000) with the dimensions of 300 × 500 pixels—throughout the paper, the nota-
tion [rows × columns] is used as in Matlab. The BG background, the BW eutectoid and
the L and D shapes are observed. The image shows a typical white rim at the interface of
the BG background and D shapes. A similar rim can also be observed on the interfaces
of the BG and L shapes as well as the BG background and BW eutectoid, but only to a
lesser extent. This is characterised by the visible elevations in the line segment figures (see
Figure 6—the edges of the span approx. 250 to 480). As another detail, BG contains the
precipitates of α(Al) solid solution visible as the small dark spots. These are observed in the
η(Zn) solid solution BG, as well as on the BG/L and BG/D interfaces. These particles were
ignored due to their small size (approx. 50 to 100 nm) and negligible influence on the total
phase composition. In the centre of the image, a BW shape is present at the bottom, which
gradually increases in intensity values upwards. The given particle is therefore not cut
perpendicularly but at an angle of less than 90 degrees. It gradually begins to shine through
from the background. The D shapes can also appear with a high-intensity interior—see
Figure 14 for more details.

Microscopic image and accompanying information—The acquired microscopic images
had dimensions of 1024 × 1280 pixels. They consisted of two parts: the image information
itself in the upper part 1:960 × 1280 (grayscale in 8-bit depth) and a black information
bar 961:1024 × 1280. The following information was extracted using optical character
recognition: zoom, date and time of the image taking, and scale bar. The third source
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of information was the name of the image where the Sn content had been entered by
the operator.
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Figure 3. Microscopic image (a section).

Data characteristics—In principle, a SEM image is characterised by resolution; contrast;
edge sharpness; signal-to-noise ratio (SNR); structure sizes, which depend on the zoom
used; and properties of the sample. These characteristics may be different on each SEM
image, although the same operating parameters of the microscope or sample preparation
conditions could be applied [42].

The nature of the data themselves is evident from Figure 4, which represents the
section 820:1280 from a row (see the whole row in Figure 5) at 0% Sn and Zoom4000. The
original data provided from the microscope are shown in the blue waveform; the filtered
data using the NLM filter are in red. It has to be noted that most of the ‘normal’ noise is
caused by the imaging technique used; however, the more pronounced oscillations towards
the low intensities (the points A, B and C) are caused by the Al-based precipitates. The
precipitate A is located on the boundary of the light shape L, while B and C are in the
background BG. This fact is also reflected in the SEM images. The precipitates are located
either inside the background or on the boundary between the shapes and background.
These will, however, be mostly ignored, as mentioned above, due to their low size and
overall volume. The precipitates within BG are considered as part of BG. The NLM filter
works in a way that the sharp transitions in the BW shapes are kept (see Figure 5).
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From Figure 4, the following can be deduced for calculating the SNR:

SNR =
∆S
∆N

∼=
0.9 − 0.8

0.05
=

0.1
0.05

= 2, (1)

Ul-Hamid [1] recommends the SNR value of at least 5 for ample contrast.
The typical data features for the individual Sn percentages as observed on the Zoom4000

images are summarised in Table 5. The variability of the data was considerable, but the
presented characteristics applied in general. The images of the 0% Sn and 3% Sn alloys
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were the most uniform and similar in character as well as content and distribution of the
individual shapes. The visual contents of the 1% Sn and 2% Sn alloys represented the
biggest problem of segmentation and classification. There was a huge variation between
the particle shapes as well as sizes within the individual classes (L, D, BW). Even the BG
shapes were showing ‘multiple backgrounds’. This effect was caused by partial influence
of the channelling contrast on the final image. Different crystallographic orientation of the
individual BG shapes caused them to appear on the images with varying intensity levels.
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Table 5. Typical data features, Zoom4000.

Sn [%] Description

0

noise 0.05~0.08, contrast BG/L 0.1 [25.5 pixels]
background rel. horizontal, multiple backgrounds unobserved
white rim up to 0.08 amplitude in BG on the borders
L shapes: rel. narrow and long, horizontal bottom + drift
some background precipitates remained after noise removal
BW shapes: texture with regular alternation of B and W

1

noise 0.05~0.08, contrast BG/L 0.05 [13 pixels]
multiple backgrounds possible (drift from 3 to 5 pixels across the entire image)
white rim up to 0.15 amplitude in BG on the borders with: BW, D, and another BG
L shapes: wider and more oval
D shapes: area smaller than L shapes, intensity value varies
possible presence of D shapes with high-intensity interior, which are much larger in area
essentially no background precipitates after noise removal
BW shapes: texture with regular alternation of B and W; pure black; irregular texture

2

noise 0.05~0.08, contrast BG/L 0.08 [20 pixels]
rarely multiple backgrounds (drift from 5 to 15 pixels across the entire image)
white rim up to 0.2 amplitude in BG on the borders with: BW and D
D shapes: area smaller than L shapes, intensity value varies
rare presence of D shapes with high-intensity interior, which are much larger in area
essentially no background precipitates after noise removal
BW shapes: texture more regular than at 1% Sn but less than at 0% Sn

3

noise 0.05~0.08, contrast BG/L 0.05 [13 pixels]
background rel. horizontal, multiple backgrounds unobserved
white rim up to 0.2 amplitude in BG on the borders with: BW and D
D shapes: area larger than at 1% Sn and 2% Sn, intensity value varies
essentially no background precipitates after noise removal
BW shapes: texture rel. regular like at 0% Sn; rarely pure black

Pre-processing—After having extracted the image information itself, 1:960 × 1280 in
8-bit grayscale depth of the uint8 type [0~255], it was converted to the single-precision
floating point type 0~1. The transfer is part of the block 1 initial steps in Figure 7. In
this paper, all independent variables appear on line segment figures in a single format
with a range of 0~1, similarly to the noise or contrast values in the text or tables (see
Table 5). Additionally, it is possible to indicate the corresponding value converted to the
uint8 type in square brackets and expressed in pixels. The reason for calculations with the
single-precision floating point type is to preserve details. After performing the necessary
calculations, it is possible to convert them back to the uint8 type and save the image in the
tiff format.
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Noise and technical filter—The NLM filter operation is depicted in Figure 5. The
original data from the microscope are blue; the filtration result is illustrated in red. The
entire row for 0% Sn and Zoom4000 is shown. The presented segments are BG background,
L and BW shapes (the columns approx. from 250 to 650). The filtering caused only slight
intensity changes in case of the BW shapes. On the borders of the background, slight
elevations towards the higher intensities are noticeable.

It can be seen that the individual segments (especially the background) are not com-
pletely horizontal, but are rather characterised by a bent bottom towards the lower intensi-
ties. These elevations and bent bottoms give an incentive to apply the technical filter.

The operation of the technical filter levelling is depicted in Figure 6. A complete
column of an image (0% Sn, Zoom4000) is shown. The data after the basic noise NLM
filtering are blue. When examining it, using the absolute value of the gradient (only the
fact of the change is of interest and not its nature), its local extremes—maxima—are found
(magenta line). Obviously, the small gradients are ignored and only the extremes that
have passed the selection level are considered. The sections between such gradients are
subsequently levelled. The arithmetic mean of all blue data from the given section in the
respective direction, the row or column, is calculated. The result is shown with the dashed
magenta line. Since both directions (the rows and columns) are perpendicular to each other
in the image plane and the individual shapes are generally characterised by significantly
different properties within these two directions, it is necessary to consider both of them.
Therefore, the technical filter levelling is applied twice (see Figure 7)—first time for all
rows (first image) and second time for all columns (second image). After averaging (the
arithmetic mean of both images) and subsequent filtering, the result of technical filtering
is available in the form of the red curve. It is clear from Figure 6 that such a result is
between the original denoised waveform (solid blue) and the levelling in one direction
(dashed magenta).
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The purpose of the entire operation is obvious when assessing the distance of the
individual blue bent segments to the imaginary green threshold compared to the more
‘horizontal’ courses of the same segments in red—the section, e.g., between rows 1 to
about 500. In more demanding images (see Figure 11), the distance is quite small, or
even disappears.

Table 6 shows the total typical running times of the individual steps: preprocessing,
noise filter at Zoom4000 (influenced by the NLM filter specific value of SearchWindowSize
(SWS)) and technical filter for an image 1:960 × 1280. As the value of SWS configuration
parameter decreases—see blocks 2 and 11 in Figure 7—the running times of the given filter
also decrease.

Decision methods—Figure 7 shows the overall overview scheme of segmentation and
classification. The green blocks 1, 2, 3, 4, 5, 6 represent the procedure without applying
the technical filter; the red blocks 7, 8, 9, 10, 11 represent just the technical filter. The black
arrows between 1, 2, 3 are a common route for both procedures, and then either blue or red
continue. Depending on the percentage of Sn content, block 6 is present or not. The purple
dots indicate the places in the algorithm where the configuration values are present. These
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had been preset based on the expertise during the algorithm development. For most of the
images, they worked sufficiently. In occasional cases, they could be manually tuned. The
choice between the procedure A or B and how to tune the configuration values depends on
the user’s experience.

Table 6. Running times for the preprocessing, noise filter and technical filter.

Figure 7 Running Times Information

preprocessing block 1 7 [ms] im2gray, im2single
noise filter (Zoom4000) block 2 60 [s] 3× NLM filter

technical filter
blocks 7,8,9,10 0.4 [s] 1× repetition

block 11 20 [s]
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Description of the individual blocks:

1. Initial steps—the selection of the pure image information, its conversion to the single-
precision floating point type and extraction of the zoom and %Sn information;

2. NLM filter—the applying of several consecutive NLM filters to remove noise. Func-
tion: imnlmfilt. The incorrectly selected configuration values result in poor noise
removal or, on the contrary, loss of important edges of shapes. It is therefore necessary
to pay sufficient attention to this step. Configuration values: DegreeOfSmoothing
(DOS), SWS, ComparisonWindowSize (CWS);

3. BW—the classification of the first BW segment. The classification of the BW shapes
can be divided first into level thresholding, when according to a priori statistically
obtained value, which is sufficiently low, the dark BW components are identified.
These are subsequently expanded using the morphological operations imfill and
imclose with a suitably chosen structuring element, completed and closed with the
white BW components. Configuration values: intensity level threshold to black, type
and size of the structuring element;

4. BG/Shapes—the separation and classification of the BG background from L + D
shapes. Method: histogram thresholding. Configuration values: intensity histogram
threshold, moving average (MA) filter parameters and number of sequential filtering;

5. Corrections—the optional step where some pixels can be swapped between the BG
segments and L + D Shapes (such as precipitates). Functions: bwconncomp to obtain
the connected components with the default connectivity 8, regionprops(‘Area’) for
obtaining the number of pixels in connected shapes. Configuration values: number of
pixels in connected shapes;

6. L/D—this step occurs only in case of nonzero Sn content. Method: histogram thresh-
olding. The data, left over from the previous segmentations, are divided into the L and
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D shapes. Configuration values: intensity histogram threshold, MA filter parameters
and number of sequential filtering.

Technical filter:

7. BW—all values of the identified BW segment can be intensively adjusted to another
level (e.g., 0). This will eliminate the problems with large and sudden intensity
changes within the BW segment (see e.g., Figure 5 indices between 600 and 720).
These would be difficult to process in the steps based on gradients—blocks 8 and
9. Configuration values: intensity level threshold to black, type and size of the
structuring element, setting a constant intensity level;

8. ROW—the image is levelled row by row. With the preselected absolute value of the
gradients, the local extremes of the gradients are identified (see Figure 6). Between two
such extremes, the pixels’ intensities of the given section are levelled. Configuration
values: selection level of the absolute local extremes of gradients;

9. COLUMN—analogous to block 8, only the columns are involved. With the preselected
absolute value of the gradients, the local extremes of the gradients are identified (see
Figure 6). Between two such extremes, the pixels’ intensities of the given section
are levelled. Configuration values: selection level of the absolute local extremes
of gradients;

10. Mean—the arithmetic mean of two images (levelled in the direction of rows and
columns in blocks 8 and 9) is calculated. The nature of the data in both directions can
sometimes differ significantly. An important role here is played by the sharpness of
the edges and the intensity distance between the individual levels (contrast between
the shapes). Overall, with sufficient sharpness and contrast, there is no damage to the
contours of the shapes, and the gradual application of the technical filter results in the
levelling of the inside of the shapes;

11. NLM filter—the result from the previous step is jagged and therefore needs to be
smoothed. The filter parameters may or may not be the same as the parameters from
block 2. Configuration values: DOS, SWS, CWS.

In blocks 4 and 6, it is necessary to generate a histogram for thresholding purposes.
Table 7 shows a comparison of two methods that could be used (the running times are
given for block 4 where the input is a filtered microscopic image of 960 × 1280).

Table 7. Histogram generation methods.

Matlab Functions Running Time

1 fitdist + pdf 1.5 [s]
2 histcounts + conv 4 [ms]

The first option was relatively time-consuming, with an average duration of around
1.5 s. Its output was a probability density function (PDF), while among the basic setting
parameters that could be set were the kernel type and smoothing parameter. The more the
nature of the real histogram differed from the Gaussian, the sooner significant distortions
occurred when it was generated in this way, otherwise the selected Gaussian type helped
to remove minor noise in the histogram.

The second option was significantly faster, with an average duration of around
4 milliseconds. It represents the splitting of the occurrence of intensities into a prede-
termined number of bins. In the case of a small number of bins, partial noise filtering
occurred automatically on the histogram, but then there was a risk of losing important
details. With a sufficient number of bins, e.g., 1000, the course of the histogram could be
filtered with a suitable MA filter. Such a filter could be relatively fine and used sequentially
several times (twice)—see Figure 8.
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3. Results and Analysis

This section is divided into four subsections. Each of them demonstrates separate details:

• 3.1: Procedure A from Figure 7—the results for 12 randomly selected images were
obtained with the preset configuration values depicted in Figure 7. There was no
manual tuning of configuration values and the analysis was quick;

• 3.2: Procedure B from Figure 7—one particular image was chosen from Section 3.1 (the
image of 1% Sn and Zoom4000). The simple application of the technical filter improved
the accuracy from 92% to 94%. Again, there was no manual tuning of configuration
values. The duration of the image analysis was longer than the time required by the
application of the NLM filter (part of the technical filter: block 11, Figure 7);

• 3.3: Demanding image (tuning of the configuration values)—a demanding image of 1%
Sn and Zoom2000, outside of the selection from Section 3.1, was chosen to demonstrate
the complexity of the visual content. Multiple backgrounds were presented. Now,
the configuration values (inclusive of the technical filter) were manually tuned. The
accuracy had been improved from 79% to 92%.

• 3.4: Comparison of results with the XRD data—a set of 180 images were analysed.
Most of them were processed with the preset configuration values. Minority of them
had to be manually tuned. The value of the accuracy improvement could reach up
to 20%. The XRD data were used just as a benchmark. They were not needed in
actual analysis.

3.1. Procedure A from Figure 7

Table 8 shows the typical results that can be achieved by procedure A from Figure 7
(without using the technical filter). All Sn percentages are present: 0, 1, 2, 3, as well as
all zoom levels: 4000, 2000, 1000. The accuracy of the classification was determined by
qualified estimation and was defined as the percentage of correctly assigned pixels together
for all classes against the number of all pixels in the image. Moreover, the image masks of
individual classes obtained from the algorithm represented the phase quantification—a
detail from a segmented and classified image can be seen on Figure 9.
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Figure 9. Segmentation and classification (a detail section from a Zoom4000, 3% Sn image).

Typical challenges in classification were present between classes BG and LD (presence
of multiple backgrounds) and between classes L and D (very irregular histogram in block 6
of Figure 7).
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Figure 9 depicts a masked detail from a Zoom4000 3% Sn image on the right side; the
original image is on the left. The colour white stands for the BG background, red for the
BW shapes, green for the L shapes, and finally, blue for the D shapes. Minor errors are
obvious, especially at the edges of the D shapes and when distinguishing the BW and D
shapes. The NLM filter reliably removed the emery paper scratches and precipitates, while
sensitively preserving the important edges of shapes.

Table 8. Typical results of the classification and phase quantification.

Sn Zoom4000 Zoom2000 Zoom1000

[%]
PQ
[%]

Accuracy
[%]

PQ
[%]

Accuracy
[%]

PQ
[%]

Accuracy
[%]

0
BG: 67.57
BW: 4.67
L: 27.76

99
BG: 65.43
BW: 4.38
L: 30.19

98
BG: 66.89
BW: 4.05
L: 29.06

98

1

BG: 71.50
BW: 6.05
L: 14.44
D: 8.01

92

BG: 69.21
BW: 3.59
L: 16.82
D: 10.38

85

BG: 73.54
BW: 3.32
L: 15.95
D: 7.19

91

2

BG: 76.76
BW: 5.40
L: 9.59
D: 8.25

95

BG: 71.00
BW: 3.27
L: 17.51
D: 8.22

95

BG: 70.94
BW: 3.25
L: 13.59
D: 12.22

82

3

BG: 73.66
BW: 3.87
L: 9.99

D: 12.48

95

BG: 80.03
BW: 4.73
L: 4.63

D: 10.61

93

BG: 79.63
BW: 5.50
L: 4.30

D: 10.57

95

3.2. Procedure B from Figure 7 (the Technical Filter)

The technical filter could be applied to the image from Table 8 (1% Sn, Zoom4000).
Figure 10 shows a part of the BG/LD(Shapes) histograms before and after the application
of the technical filter (the bin indices between 650 and 900 from the total number 1000).
The stimulus for the application of technical filter is the rel. high valley between two peaks
marked as the point A. The technical filter transformed the data of the input image (red line)
into a new image (blue line) whose histogram’s peaks are now more detached from each
other, and the position of the appropriate valley (point B) is lower. The main aim of this
transformation is to deepen the histogram. The courses of the histograms are intentionally
unfiltered in this case.
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Figure 10. Histograms of BG/LD(Shapes) with and without the technical filter application.

The result of the technical filter application meant the inclusion of about 38,000 pixels
in other classification classes. Besides minor unwanted effects on the contours of some
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shapes, there was a positive removal of errors, especially between the classes BG and
LD(Shapes) and between L and D as well. The classification accuracy thus increased from
the original value of 92% to 94%.

3.3. Demanding Image (Tuning of the Configuration Values)

As an example of more demanding data, the denoised microscopic image of 1% Sn at
Zoom2000 shown in Figure 11 was chosen. The rows R38 and R904 are marked in red; the
columns C538 and C709 are similarly marked in blue.
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Figure 11. Denoised microscopic image with the drifts and multiple backgrounds.

The set of four mutually related figures—Figure 12a of R38, Figure 12b of R904,
Figure 13a of C538 and Figure 13b of C709—thus shows the relationships from this one
microscopic image, Figure 11. Figure 12a,b represent the complete rows of the respective
indices. Similarly, Figure 13a,b represent the courses of the complete columns of the
respective indices.
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Figure 12. Thresholding: (a) line segment for R38; (b) line segment for R904.

In Figure 12a,b, the denoised NLM filter signal is presented in blue (Figure 7, block 2);
the one-time application of the technical filter after averaging and filtering is presented in
red (Figure 7, block 11) and the location of the necessary threshold levels (global separation
of the BG background from the L + D shapes) is shown in green. Perpendicular courses of
both columns C538 and C709 are indicatively marked in the form of arrows (relation to the
horizontal axis). The areas A, B, C, D and E indicated in the upper part were characterised
by their own intensity levels of background—multiple backgrounds due to channelling
contrast. The number of such areas and their shape could not be predicted in advance. In
this microscopic image, they had a longitudinal character agreeing with the direction of the
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columns. While in the case of R38 the threshold is at the level of 0.725, in the case of R904
it is already at the level of 0.775. The given difference is 0.775–0.725 = 0.05 ≈ 13 [pixels].
With the global thresholding, the same intensity value of the points in the entire image is
assumed, which in this case is violated to such an extent that it exceeds the limits of the
typical contrast differences between the BG and L shapes (see Table 5).
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Figure 13. Material drift: (a) line segment for C538; (b) line segment for C709.

In Figure 13a,b, the denoised NLM filter signal is presented in blue (Figure 7, block 2), the
technical filter levelling of the columns only is illustrated by magenta (Figure 7, block 9), the
arithmetic mean of the technical filter levelling of the rows and columns is black (Figure 7,
block 10) and the final technical filter output is red (Figure 7, block 11). Perpendicular
courses of both rows R38 and R904 are indicatively marked in the form of arrows (relation
to the horizontal axis). The drift of the intensity level is evident from both the blue and red
lines, although it appears to be basically constant while observed with the naked eye in the
microscopic image (Figure 11). These drifts may not be the same across all BG shapes. From
Figure 13b, a similar character is evident with the shift in the threshold level described for
rows R38 and R904. The accuracy of the data classification from Figure 11 in accordance
with the procedure A from Figure 7 was firstly evaluated at the level of 79% with the preset
configuration values. After some manual tuning of the configuration values and with the
application of the technical filter, the accuracy reached 92%.

3.4. Comparison of Results with the XRD Data

The PQ results could be verified by the quantitative XRD data. It must be noted that
the XRD measurements gave an average phase composition for a sample area of up to
100 mm2. A single SEM image at Zoom1000 represents only 0.01 mm2. However, this could
be partially mitigated by choosing several measurement sites (images) along a sample. As
could be seen from Table 9, a good overlap was found between these different approaches
of PQ.

For each sample (% Sn), 45 images were processed (always 15 images for each zoom
level, 180 images in total). In some cases, better accuracy was achieved compared to Table 8
by the manual tuning of the configuration values. The column ‘PQ ± Std.Dev [%]’ indicates
the results obtained by the methodology described for Table 8 without using the technical
filter (Figure 7, procedure A). The column ‘XRD ± Std.Dev [%]’ gives the results from XRD,
which are corrected as follows. The XRD analysis separately detected both components of
the BW eutectoid ((η(Zn) + α(Al))), while IP resolved the eutectoid as one integral particle
(BW shape). Therefore, with the simplified assumption that both eutectoid components
were equally represented in the given particle, the range of α(Al) was multiplied by two,
and the η(Zn) component (BG phase) was actually reduced by an additional α(Al) share.
As indicated earlier, for the sake of simplicity, the proportion of aluminium (α(Al) phase)
in the precipitates was not considered.
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Table 9. Comparison of results with XRD.

Sn [%] Images PQ ± Std.Dev [%] XRD ± Std.Dev [%]

0 45

BG: 66.01 ± 2.01 BG: 66.30 ± 1.50
BW: 3.37 ± 0.95 BW: 5.50 ± 0.40
L: 30.62 ± 2.23 L: 28.30 ± 0.50

Accuracy: 98.12 ± 0.74

1 45

BG: 72.31 ± 3.78 BG: 73.10 ± 1.00
BW: 3.16 ± 0.82 BW: 4.90 ± 0.10
L: 19.19 ± 3.52 L: 19.20 ± 0.20
D: 5.34 ± 1.40 D: 2.80 ± 0.30

Accuracy: 95.43 ± 3.64

2 45

BG: 75.58 ± 4.17 BG: 78.90 ± 1.80
BW: 3.29 ± 0.69 BW: 5.00 ± 0.10
L: 12.93 ± 4.60 L: 11.80 ± 0.60
D: 8.21 ± 1.50 D: 4.30 ± 0.50

Accuracy: 95.22 ± 3.39

3 45

BG: 78.93 ± 2.63 BG: 83.60 ± 2.00
BW: 5.20 ± 1.08 BW: 4.20 ± 0.50
L: 7.05 ± 1.65 L: 5.30 ± 1.10
D: 8.82 ± 1.64 D: 6.90 ± 0.80

Accuracy: 95.56 ± 1.94

4. Discussion

Noise filter—In addition to the NLM filter (see Section 2, Noise and technical filter),
the other options had been considered for noise removal. From the Matlab menu wiener2,
medfilt2, modefilt and imboxfilt blurred the edges of shapes, as did imbilatfilt when enter-
ing larger sigma values. The couple imdiffuseest + imdiffusefilt, when used multiple times
in a row, provided relatively nice results, but still there was a slight blurring of the edges.
On the contrary, several precipitates were still maintained. Two options, localcontrast and
locallapfilt, referred to as edge-aware processing [28], provided a pleasant contrast im-
provement for the human eye, but in fact they violated the condition of the same intensity
value during further processing, e.g., for the histogram [43]. After verification, a finer NLM
filter had been chosen with multiple sequential uses. Thus, the task of homogenising the
segments in the form of removing noise and almost all precipitates was fulfilled, and it was
possible to proceed to the next processing step. The segmentation logic for the inclusion or
exclusion of the precipitates must be clarified in advance. The isolated occurrences of the
precipitates within the background could be correctly reclassified in block 5, Corrections
(see Figure 7).

Segmentation and classification—For the BW shapes, the level thresholding with the
morphological operations had been chosen. Subsequently, for the BG, L and D segments,
the histogram thresholding was used. In the case of morphology, sufficiently accurate
results had been achieved. In this way, texture analysis [44,45] for the BW shapes, which
took on too diverse forms, could be avoided. The histogram thresholding played a central
role in segmentation and classification, and at the same time was a stumbling block.

The histograms can be used in a segmentation process, provided that the objects can be
distinguished from each other based on their intensity values [46]. In general, the threshold
is placed in a distinct deep valley in the histogram [47]. However, if such a valley does not
exist, the placement of the threshold is difficult (especially in the case of algorithmisation
for a computer).

Most real images are not characterised by ideal histograms; on the contrary, several
challenges can appear [48–50]:

• Flat and wide valleys;
• Two peaks characterised by significantly different heights (a problematically detectable valley);
• Noise in the histogram;
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• Noisy spikes;
• Overlapping distributions of BG and the object;
• The object represented in a small percentage;
• BG consisting of several regions.

There are different approaches to deal with the challenges of noise and modalities in
histograms: analysis using convex hulls [49], wavelet transformation [51], or smoothing us-
ing a kernel [52]. The division of the threshold techniques is not uniform; more information
can be found in [51,53–55].

Regardless of manual or automatic processing, these can clearly be included among
the advantages of histogram thresholding:

• All segmentation areas are classified at the same time;
• Everything on one side from the threshold level automatically falls into one seg-

ment/class, and thus the problem with oversegmentation is eliminated (see the white
rim described in Figure 3);

• Adaptability to changes in brightness (horizontal shift of the histogram);
• The same sense of all intensity values in the image (global thresholding), which,

however, can easily turn into a disadvantage if the histogram deployment conditions
are not observed.

The disadvantages of histogram thresholding are as follows. Pure intensity decision-
making about segmentation and classification has a disadvantage in the case of differences
in the meaning of the individual values that are represented in an image. There were some
occasional cases where the D shapes were formed by the particles with a high-intensity
interior. Their interior parts were classified incorrectly by the given histogram thresholding.
An illustrative example of the situation is shown in Figure 14 (a detail of a Zoom2000 image
from the 1% Sn sample).
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Figure 14. D shape with a high-intensity interior.

When generating a histogram, in addition to the two mentioned options in Table 7,
Matlab also offered imhist, which was closer in nature to the second option from Table 7
(histcounts) and histfit, which internally used the function from the first option of Table 7
(fitdist). For these reasons, they had not been described. The function fitgmdist represents a
Gaussian mixture model. The need to enter the number of components (modes) in advance
had been considered as the main disadvantage. In this way, the shape of the histogram
could be distorted.

Table 10 presents the factors affecting the shape of histograms, and subsequently the
accuracy of segmentation and classification based on the histogram thresholding. The
input represents a filtered microscopic image or an image that is a product of the technical
filtering. Some factors or manifestations can be separated from each other, and some are
more or less interconnected.
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Table 10. Factors affecting the BG/LD(Shapes) and L/D histograms.

Factor Manifestation Attribute Operator

1 material drift segment horizontality objective

2 grain orientation
(channelling) multiple backgrounds objective

3 spatial representation number, form and intensity of the shapes objective
4 Sn content contrast differences objective informed
5 application of filters noise removal, segment horizontality determines
6 microscopy parameters noise character, brightness, contrast determines

Table 11 lists the typical characteristics of the BG/LD(Shapes) histograms (see block
4 from Figure 7) for the individual zoom levels. The importance of the zoom aspect
must be emphasised, because it directly affects the spatial representation of the shapes
(third factor, Table 10) and with a numerically smaller zoom, there is a greater probability
of encountering several areas with different grain orientations e.g., channelling contrast
(second factor, Table 10).

Table 11. Characteristics of the BG/LD histograms (block 4, Figure 7) for the individual zoom levels.

Zoom Typical Characteristics of a Histogram Human Readability of Threshold

1000 practically unimodal problematic
2000 1, 2 or 3 modes, often non-Gaussian
4000 mainly 2 modes, sometimes 3 modes easy

In the rare case of demanding images with a complex visual content, the shape and
character of the L/D histogram (block 6, Figure 7) showed much greater variations in
the number of modes and their shape and character, compared to the BG/LD(Shapes)
histogram. For this reason, setting the threshold level by the operator was necessary.

Technical filter—The noise filter reliably removed noise and faithfully provided the
supposed ground-truth information (the real state of the ground-truth was unknown). On
the contrary, the technical filter, in addition to removing the possible fluctuations, also
adjusted the image itself in order to facilitate further processing [56] (the ground-truth
status is true, but not quite ‘satisfactory’ for the next step). The deployment of the technical
filter was expressly at the discretion of the operator. Its essential philosophy was not to
harm the edges of shapes and gradually level the individual sections. This all served
explicitly for histogram editing purposes (deepening), which improved the segmentation
and classification results. After that, its output in the form of a transformed image was no
longer needed.

The application of the technical filter also had its disadvantages:

• Small erosion of less sharp shape edges (especially with multiple uses of the filter);
• Segmentation line artefacts occurring if the gradient level was incorrectly determined;
• Different effects at the different zoom levels and Sn content;
• No recommendation for the number of repetitions.

Images—The microscope also offered the option of saving the images with a 16-bit
grayscale depth. However, upon inspection, it was found that this was only a formal
multiplication of the 8-bit depth (amplitude), and therefore, no new information content
was available. An image could be saved in different formats. Russ [15] does not recommend
using .jpeg. It reduces the information content and causes the creation of unwanted effects.
Any lossy compression should be avoided. The recommended format is .tiff.

Cooperation of experts—Chen [57] underlines the teamwork. The details of the task
(e.g., membership of the precipitates to the relevant class) and the verification of phenomena
in the displayed data (material drift presented in Figure 13a,b) demanded a cooperation
between the technological expert and IP expert.

Difficulty—The difficulty of microstructure segmentation is given by the following
visual characteristics [20]:
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• High resolution;
• Extreme variability in texture and shapes;
• Significantly fragmented images with often unclear boundaries of displayed objects;
• Unbalanced classes (unequal percentage representation on the image);
• Absence of prior structural information.

Despite being professionally acquired, the images of microstructures showed small
variations in brightness. This aspect was demonstrated as a horizontal shift of histograms
(see Section 4, Discussion—advantages of histogram thresholding). Moreover, the complex
visual content provided exhibited significant variations of scenes, shapes, textures and
multiple backgrounds. Two zoom levels (1000, 2000) and two Sn contents (1%, 2%) were
the most complex, and therefore demanding.

Challenges—The difficulty of visual characteristics of microstructures poses the chal-
lenges that need to be addressed [20]:

• Acquisition and sharing of detailed datasets within the scientific community [58];
• The need to speed up preannotation (significantly facilitating the work of experts);
• Deployment of pretrained DL models;
• Providing open-source code for scientific purposes [59].

The presented approach can be used for other data with similar visual characteristics
in order to easily prepare the training dataset in the scientific community. Then, some
manual refinement is needed (approx. from 1 to 5%).

5. Conclusions

The SEM BSE imaging modality was chosen intentionally for the given type of task.
The results of the presented approach were confirmed with another two independent
modalities: EDX and XRD. Despite considerable effort, it was not possible to fully automate
the given approach. The segmentation and classification algorithm contains a number of
configuration values. These had been preset based on the expertise from the algorithm
development. For most cases, they were sufficient and quickly provided high-quality
results. In rare cases of images with a complex visual content, they could be manually
tuned in order to improve the results.

For these reasons, the approach is declared as semiautomatic when the input of
the human factor is required in the individual steps, either for assessing the achieved
results, entering the histogram thresholds or for setting the configuration values in the
algorithm. The main cause is apparently the orientation only on the meaning of intensity
values, which in more complex situations violates the conditions of applying the global
histogram thresholding.

The results of noise filtering proved to be fully satisfactory, and in the case of mastering
high-quality segmentation and classification, they could be directly used for further analysis
of the individual classes.

Overall, the results of the research can be directly processed in the field of materials
science or serve as an intermediate step for the preparation of training data for deep
learning, and thus save energy and time. Here, the identification of the most demanding
images is very useful, because it is exactly these ones that will be of great importance for
deep learning.
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