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Abstract: Object detection methods are commonly employed in power safety monitoring systems to
detect violations in surveillance scenes. However, traditional object detection methods are ineffective
for small objects that are similar to the background information in the power monitoring scene,
which consequently affects the performance of violation behavior detection. This paper proposed
a small object detection algorithm named HS-YOLO, based on High-Resolution Network (HRNet)
and sub-pixel convolution. First, to fully extract the microfeature information of the object, a small
object feature extraction backbone network is proposed based on the HRNet structure. The feature
maps of different scales are processed by multiple parallel branches and fused with each other in the
network. Then, to fully retain the effective features of small objects, the sub-pixel convolution module
is incorporated as the upsampling operator in the feature fusion network. The low-resolution feature
map is upsampled to a higher resolution by reorganizing pixel values and performing padding
operations in this module. On our self-constructed power operation dataset, the HS-YOLO algorithm
achieved a mAP of 87.2%, which is a 3.5% improvement compared to YOLOv5. Particularly, the
dataset’s AP for detecting small objects such as cuffs, necklines, and safety belts is improved by 10.7%,
5.8%, and 4.4%, respectively. These results demonstrate the effectiveness of our proposed method in
detecting small objects in power operation scenarios.

Keywords: deep learning; small object detection; HRNet; sub-pixel convolution; power operation

1. Introduction

Power operation sites often have potential hazards such as high-voltage power lines,
equipment, and work at heights, which may cause serious injury or even endanger life
in case of accidents. Violations by workers, such as failure to wear safety gear, crossing
safety barriers, or making operational errors, are common causes of safety incidents [1].
Therefore, effective monitoring of workers’ violations is crucial to ensure the safety and
stability of power operations. In this context, technologies in related fields such as image
processing are progressively integrating into the domain of electric power operations [2].
Through methods such as object detection, object recognition, and behavioral analysis,
these technologies enable real-time capture of personnel activities and analysis of real-time
images. It helps to automatically identify and monitor the violations of operators.

The power industry is placing increasing demands on monitoring efficiency, accuracy,
and intelligent capabilities, with a large number of intelligent monitoring technologies
being applied to power operation scenarios [3]. The images collected from the power
operation scenarios are automatically analyzed and processed by intelligent monitoring.
Specific objects such as safety belts, safety helmets, and seines in the monitoring images are
precisely located and classified after the critical information and features are extracted. This
facilitates a more accurate analysis of personnel behavior involved in the operations [4,5].
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It is evident that object detection is highly crucial in intelligent monitoring, but the existing
methods may not be entirely suitable for power operation scenarios. The continuously
changing distances and angles between surveillance cameras and detection objects result
in varying sizes of detected objects in images. This requires the algorithm to be able to
adaptively extract features suitable for different object sizes and maintain the capability to
detect and locate objects across varying scales. This adaptability ensures the accuracy and
stability of detection under diverse circumstances.

The growing attention on safety issues in the power industry has led many researchers
to put forward deep-learning detection methods suitable for this industry. These methods
have demonstrated varying degrees of success, but they also show certain limitations.
For example, they may lack the necessary sensitivity to cope with the complex environ-
ment in small object detection scenarios, and in the face of small object scales may exhibit
sub-optimal performance when changed. Addressing these shortcomings is critical to
improving the effectiveness of such methods. Chen et al. [6] incorporated object relation-
ship modules into the detection module, paying attention to the interconnection between
different objects, and optimized the loss function design, resulting in more accurate seg-
mentation of slender and flexible objects such as seines and safety belts in the context of
power operation scenes. Wu et al. [7] proposed the R_YOLOV5 detection algorithm, which
introduced rotated bounding boxes (RBB) into the detection network to address the issue of
background aspect ratios and made targeted improvements to flexible objects in any direc-
tion in power operation scenes. However, these studies primarily aimed at improving the
detection of certain types of regular-sized objects while overlooking the existence of small
objects in power operation scenes. Zheng et al. [8] focused on the detection of insulators
and defects in power systems. They compressed the model size using the Ghost module
and added an attention module to focus on key information about small objects. Gu et al. [9]
introduced an attention mechanism to adjust the network to pay more attention to the
surrounding areas of the object, optimized the loss function according to the characteristics
of the object, and proposed a lightweight network for detecting small transmission lines in
aerial images. However, these methods are specifically designed for small object detection
from an aerial perspective and may not be well-suited for the complex variations in small
object features and background differences from a monitoring perspective.

Detecting small objects poses a challenging task within the domain of computer
vision [10]. Existing object detection algorithm frameworks and loss functions are predomi-
nantly designed for large and medium-sized objects, leaving minimal focus on small objects.
Most network detectors rely on anchor boxes, but fixed anchor sizes may inadequately
match the scales of small objects, leading to imprecise localization and the omission of fine
details. The loss functions designed for general objects might overlook the scale of small
objects during loss computation. Loss functions that lack sensitivity to small objects are
unable to accurately locate and classify these objects, resulting in a decline in detection
performance. Small object detection in complex power operation monitoring scenes poses
even greater challenges, mainly due to the following reasons:

• The information expressed by the features of small objects in power operation scenes
is limited. The limited pixel count of small objects in power operation monitoring
images makes it challenging to precisely determine their boundaries and positions.
This necessitates the utilization of more intricate detection algorithms to capture
discriminative feature information for small object detection [11].

• The object scale spans a large range. In power operation scenes, the scale of objects
may vary significantly due to changes in camera angles. This variation hampers
the localization accuracy and feature extraction capabilities of detection algorithms.
Moreover, different scales of objects require the detector to adjust the search regions,
impacting detection speed and reducing real-time performance [12].

• The background of small objects is complex. In the electric power operation scenes, the
environment typically comprises various intricate structures and facilities, including
different equipment, towers, power lines, and trees, among others. The visual appear-
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ance and textural features of these objects bear a resemblance to small objects, and
mutual occlusions may also occur among them. As a result, the complex environment
of power operation scenarios tends to perturb the feature information related to small
objects, making it more challenging to extract precise details and characteristics [13].

Based on the above-mentioned difficulties in detecting small objects in general scenar-
ios and special power operation scenarios, this paper proposes a detection network called
HS-YOLO for practical application needs, which combines a HRNet high-resolution net-
work with sub-pixel convolution. This algorithm enhances the feature extraction for small
objects in power operation scenes, capturing more detailed information and effectively
addressing the issue of feature loss in small objects, and provides a more reliable guarantee
for safe power operation. The primary contributions of this paper include:

1. To solve the problem of weak feature expression ability of small objects, we designed
a feature extraction backbone network based on HRNet. The feature maps originating
from diverse scales are processed through distinct branches to retain abundant high-
resolution feature information for small objects. Simultaneously, the feature maps
from different scales are fused to enhance the perception ability of the network to
the objects of different scales. This approach enables the preservation of fine-grained
details while enhancing the overall object detection capabilities across different scales.

2. To reduce the loss of detailed information in the process of small object feature fusion,
we introduced sub-pixel convolution into multi-scale feature fusion. The upsampling
process is realized by reorganizing pixel values and performing padding operations,
which fully preserve the feature information of small objects. This approach also
introduces more contextual information, facilitating the distinction between small
objects and the background.

3. According to the requirements of violation behavior detection, we created a data set
of power operation scenarios. This power operation scenarios dataset is used to test
the HS-YOLO model.

2. Related Works and Methods
2.1. Related Works
2.1.1. Small Object Detection

Small object detection is a vital undertaking studied in many practical applications,
aiming to accurately identify and locate smaller objects in images or videos. Small object
detection holds significant importance in various practical applications, such as traffic safety,
remote sensing image analysis, medical image processing, and more [14–16]. Different
scenarios have different interpretations of small objects, and existing definitions for small
objects primarily rely on relative scale and absolute scale as two key perspectives [17]. The
definition of relative proportions defines small objects by considering the size of the object
relative to the image, classifying object instances with relative areas ranging from 0.08% to
0.58% as small objects. The definition from absolute proportions defines small objects by
considering the pixel size of the objects, with the widely adopted definition from the MS
COCO dataset [18] considering object instances with resolutions smaller than 32× 32 pixels
as small objects. Due to factors such as low pixel count, limited appearance information, and
fewer representative features, small objects tend to exhibit poorer detection performance
compared to larger objects. However, by continuously enhancing and optimizing small
object detection algorithms through the incorporation of techniques such as multi-scale
feature fusion and attention mechanisms, it is possible to greatly enhance the robustness
and performance of the detection model. This is anticipated to expand the applicability of
small object detection across a broader spectrum of scenarios [10].

2.1.2. Multi-scale Feature Fusion

Compared to regular-sized objects, small objects have lower resolutions and fewer
distinctive features, making it challenging to detect them accurately using single-scale
features alone. Lower-level feature maps capture more detailed information, while higher-
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level feature maps provide higher-level semantic information. By fusing features from
multiple scales, it is possible to simultaneously obtain global and local information from
each scale feature map of small objects, which helps to enhance the model’s perception.

Lin et al. [19] introduced the FPN in the network, which incorporates two propagation
paths to fuse features from various levels, resulting in the provision of diverse multi-
scale features. However, during the information propagation between different levels of
feature maps, upsampling and downsampling operations may result in information blur
or loss. Tan et al. [20] introduced the BiFPN in the network, which adaptively weights the
importance of features during fusion, better integrating multi-scale information. However,
the introduction of additional connections and feature fusion operations in the network
increases computational complexity. Zhai et al. [21] proposed DF-SSD, which improves the
feature extraction backbone network of SSD and introduces a fusion mechanism between
feature layers of different scales and enhanced the applicability of the network to small
objects. However, the detection speed is not ideal. Zeng et al. [22] introduced an improved
feature fusion method called Adaptive Bilateral Feature Pyramid Network (ABFPN), which
utilizes contextual information to achieve sufficient feature fusion. However, it may suffer
from scale shifting and position deviation when locating small objects.

2.1.3. High Resolution Representation

When small objects in an image exhibit low resolution, the object details may lack
clarity, and edge information can become hazy or unclear, posing challenges for object
detection algorithms. Obtaining high-resolution images of small objects can enhance the
details and clarity of these objects, making them more easily recognizable and locatable by
the object detection algorithm.

Li et al. [23] addressed the issue of small traffic sign detection by utilizing GAN
(Generative Adversarial Network) methods, generating super-resolution representations of
these small objects to narrow the gap between small and general objects, thereby enhancing
the detection of the former. Chen et al. [24] proposed a solution using GAN to restore
high-resolution images for small objects that may be blurred in aerial images. However, the
training of GANs requires an extensive dataset for effective adversarial training, imposing
high requirements on the dataset size. Liu et al. [25] introduced HRDNet, a method that
employed a high-resolution feature pyramid network to more effectively capture both the
fine details and contextual information of small objects. However, its detection capability
for small objects in different categories or complex scenes may be weak, affecting its
generalization ability. Wang et al. [26] improved the input resolution of the detection
network by adding a feature texture extraction module at the input stage. However, this
method may not be suitable for objects with extremely low resolution.

2.2. Methods
2.2.1. HS-YOLO Algorithm

The current general detection algorithms do not perform well in detecting small objects
when directly applied to power operation scenes. This requires improving the object detec-
tion algorithms according to the specific situation in the special electric power operation
scenario. The YOLO [27] series of object detection algorithms have been widely applied due
to their efficiency, high accuracy, strong scalability, and interpretability. YOLOv5 enhances
the detection capabilities of small objects through the adoption of an anchor-free detection
framework and the incorporation of operations such as the SPP module. Therefore, to
address the challenge of achieving accurate detection in intricate power operation scenar-
ios, we propose the HS-YOLO algorithm based on the YOLOv5 network. The HS-YOLO
algorithm is illustrated in Figure 1.

The HS-YOLO algorithm introduces HRNet [28] and sub-pixel convolution [29] to
target small objects in power operation scenes. Figure 1 illustrates the network architecture
partitioned into three parts: Backbone, Neck, and Head, which are responsible for feature
extraction, fusion, and final detection, respectively. The overall flow of the HS-YOLO
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algorithm is as follows: First, the algorithm utilizes HRNet to extract object features from
the surveillance images. Distinct branches handle feature maps of diverse scales and
subsequently amalgamate the features from those scales, yielding feature maps denoted as
C1, C2, and C3, which preserve a wealth of feature information. Then, these three features
are input into the Neck part, where subpixel convolution is introduced, and feature maps
of different scales, N1, N2, and N3, are obtained. Finally, in the detection head, the model
will perform final processing to obtain the coordinates, width, height, and category of the
object, thereby achieving the objective of object detection.
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2.2.2. HRNet Feature Extraction Backbone Network

The feature extraction backbone network is a crucial component in object detection,
responsible for transforming input images into high-dimensional feature vector represen-
tations that contain information about different objects in the image. The original feature
extraction backbone network in YOLOv5 demonstrates excellent performance in most
detection tasks due to its simple structure, low overfitting risk, rapid detection pace, and su-
perior accuracy. However, it tends to overlook the fine details of small objects. Additionally,
when detecting small objects in complex power operation scenes, the DarkNet53 structure
may not be sufficiently complex and is prone to interference from complex background
noise, resulting in false positives or missed detections.

When extracting features using the original backbone network in YOLOv5, strong
semantic information is obtained through multiple downsampling operations, and the
feature maps of different resolutions are connected in series. However, this approach
results in a notable reduction in fine-grained information within the low-resolution feature
maps of small objects. To mitigate the diminishment of feature details pertaining to small
objects in power operation scenes, we designed a backbone network based on HRNet, as
illustrated in Figure 2.
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The backbone network of HS-YOLO begins with a high-resolution branch as its initial
branch, progressively adding subnets from high to low resolutions. These branches corre-
sponding to distinct resolution feature maps operate concurrently, continuously engaging
in feature fusion across different branches. Each high and low-resolution feature benefits
from repeated information extraction from other parallel connections, thereby enriching
the feature details pertinent to small objects.

From the structure diagram, it can be observed that after the input of surveillance
images from power operation scenes into the network, multiple-stage structures and
transition structures are employed to obtain three sets of feature maps with resolutions of
1/8, 1/16, and 1/32 in relation to the original size. The stage structure is used to extract and
compress image features and fuse processed features of different sizes, while the transition
structure is used to add new branches of different scales in parallel.

The transition structure in the network consists of CBS layers. It includes a series
of depthwise separable convolution layers, normalization layers, and activation function
layers. Its main function is to add a new scale branch in parallel. Within Transition1,
two convolutional layers are utilized in parallel, each with a kernel size of 3 × 3. One of
these layers operates with a stride of 1, adjusting the channel count to yield a scale branch
downsampled by a factor of 8. Meanwhile, the other convolutional layer employs a stride
of 2, both modifying the channel count and altering feature dimensions, thus generating
scale branches downsampled by a factor of 16. In Transition2, a convolution layer featuring
a 3 × 3 kernel size and a stride of 2 is added on top of the smallest scale branch to obtain
a new scale branch downsampled by a factor of 32. The transition structure controls the
resolution and channel numbers to facilitate subsequent feature fusion. The adjustment of
channel numbers helps reduce computational complexity and parameter count.

In the Stage structure of the backbone network, Stage1 is different from either Stage2
and Stage3. Stage1 includes three CBS modules and one Layer module. The Layer module
is composed of stacked Bottleneck modules, enabling channel count adjustment without
modifying the feature dimensions. In Stage2 and Stage3, feature extraction and compression
are performed using four BasicBlock modules, followed by a FuseLayer fusion module for
information interaction across different scale branches.

In each FuseLayer fusion module, the output result is the result of processing and
fusing the features from all previous branches. The information interaction between
different branches in our designed FuseLayer fusion layer is illustrated in the provided
Figure 3. Taking the FuseLayer in Stage3 as an example. The feature maps with the
same resolution are copied directly without processing. The feature maps that need to be
upsampled first undergo a 1 × 1 convolution operation to unify their channels and then
undergo nearest neighbor upsampling. The feature maps that need to be downsampled
use stride 3 × 3 convolution for downsampling, adding a Conv module with a 3 × 3 kernel
and stride 2 for every 2× downsampling required. Finally, all feature layers are fused so
that low-resolution features can obtain the context information of high-resolution features
while retaining more detailed information.

2.2.3. Feature Fusion Network

The Neck in YOLOv5s utilizes the structures of the Path Aggregation Network (PANet)
to enhance semantic representation and localization capability across multiple scales. The
network performs upsampling of feature maps using nearest neighbor interpolation, where
each object pixel is individually copied and enlarged. However, since small objects occupy
a limited number of pixels in the image, the feature information carried by each object
pixel becomes sparse and insufficient after being individually replicated and enlarged.
This may result in the loss of fine details around small objects. Furthermore, the nearest
neighbor interpolation method only considers the closest pixel values and ignores the
smooth transition between neighboring pixels. As a result, the upsampled feature maps
may exhibit noticeable aliasing artifacts, leading to distorted or deformed shapes of small
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objects. This distortion increases the complexity of detection algorithms to accurately
recognize and pinpoint small objects.
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To address the aforementioned issue, we introduce sub-pixel convolution into the
FPN structure. Sub-pixel convolution splits each pixel value into multiple sub-pixels
and recombines them across channels, transforming the original low-resolution feature
map with dimensions H ×W × C·r2 into a high-resolution feature map with dimensions
rH × rW × C, achieving the effect of upsampling, as shown in Figure 4. More precisely,
every low-resolution pixel is subdivided into smaller r × r grids. The pixel shuffle oper-
ations are applied to populate these grids with values from the corresponding positions
in r × r feature maps. By applying the same pixel shuffle operation to fill each grid,
the recombination process is completed. The calculation can be expressed as shown in
Equations (1) and (2).

IHR = PS(ILR
)

(1)

PS(T)x,y,c = T[x/r],[y/r],c·r·mod(y,r)+c·mod(x,r) (2)

where ILR represents the low-resolution feature map; IHR represents the high-resolution
feature map; x and y represent the coordinates in the rH and rW dimensions of the high-
resolution image; T represents the input feature; c represents the final number of channels
after sub-pixel convolution; and r represents the upsampling factor; PS is a periodic pixel
shuffle operation that cyclically inserts pixels from the channels into the image.

Compared to simple interpolation methods, sub-pixel convolutional upsampling
can better reconstruct subtle variations in the image, making the boundaries and textures
of small objects clearer. Additionally, sub-pixel convolutional upsampling can enlarge
the receptive field, allowing the network to capture better contextual information in
the vicinity of objects. This enhancement bolsters the model’s adaptability to small
objects, particularly in intricate backgrounds, and aids in distinguishing small objects
from the background.
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2.2.4. Object Detection Head

The Head module serves as the final detection component of the HS-YOLO detection
network. The Head consists of three detection branches corresponding to different scale
feature maps obtained in the Neck. This structure effectively utilizes the feature information
from different scales, enabling accurate detection of objects of various sizes. In the Head, the
features from different branches are partitioned into grids of dimensions 80 × 80, 40 × 40,
and 20 × 20, respectively. For each grid, the Head undertakes the task of predicting a set of
parameters that encompass the bounding box coordinates, the confidence scores related
to those boxes, and the probabilities associated with the object classes. These predictions
represent the object’s position, presence, and category. By processing the grids, efficient
and real-time object detection is achieved.

During model training, a comprehensive loss function composed of confidence loss
Lobj, classification loss Lcls, and bounding box regression loss Lbox is designed to measure
the accuracy of the detection head’s output. This integrated loss function allows for a
comprehensive evaluation of both bounding box prediction and object class prediction
accuracy, thereby promoting end-to-end optimization learning of the model.

The Lobj plays a pivotal role in evaluating the trustworthiness of predicted boxes.
It is computed through the utilization of the cross-entropy loss function, as shown in
Equation (3).

Lobj= −
s2

∑
i=0

B

∑
j=0

Iobj
ij

[
Ĉj

ilog
(

Cj
i

)
+
(

1−Ĉj
i

)
log
(

1−Cj
i

)]
−

s2

∑
i=0

B

∑
j=0

Inoobj
ij

[
Ĉj

ilog
(

Cj
i

)
+
(

1−Ĉj
i

)
log
(

1−Cj
i

)]
(3)

where s2 represents the S × S grids that the features of different branches are divided into
in the Head. B represents the number of anchor boxes assigned to each grid for prediction
during the detection process. Iobj

ij and Inobj
ij indicates whether the j-th anchor box in the i-th

grid is a positive or negative sample, where Iobj
ij is 1 for a positive sample, while Inobj

ij is 1

for a negative sample. Ĉj
i represents the confidence of the ground truth label for the sample,

which can take the values of 0 or 1. Cj
i represents the anticipated confidence score assigned

to the sample produced by the detection head module.
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The Lcls calculates the classification error between the ground truth class labels and
predicted class probabilities in each grid. Lcls and Lobj, use the same loss function to
calculate, as demonstrated in Equation (4).

Lcls =
s2

∑
i=0

Iobj
ij ∑

C∈classes

[
P̂j

ilog
(

Pj
i

)
+
(

1− P̂j
i

)
log(1 − Pj

i

)]
(4)

where P̂j
i represents the true class and Pj

i represents the class probability value predicted by
the model.

The Lbox serves the purpose of assessing the positional disparity between the pre-
dicted location and the true location. It adopts the CIOU loss function, which combines
more factors, such as diagonal distance changes, thus providing a more accurate position
estimation. The computation is shown in Equations (5)–(7).

Lossbox= 1− IOU+
ρ2(b, bgt)

c2 + αv (5)

α =
v

(1 − IOU) + v
(6)

v =
4
π2 (arctan

wgt

hgt − arctan
w
h
)

2

(7)

where b and bgt represent the center points of the two bounding boxes; ρ represents the
normalized parameter corresponding to the distance between these two boxes; c represents
the diagonal length of the minimum rectangular box surrounding the two bounding boxes;
α is a balancing parameter that measures the similarity in aspect ratios; wgt

hgt and w
h represent

the aspect ratios of the two bounding boxes, respectively.
The Head utilizes DIOU-NMS [30] to eliminate redundant bounding boxes in the

output and merge multiple overlapping boxes into a single optimal result. DIOU is
used as the evaluation criterion instead of IOU in NMS. It considers both the degree of
bounding box intersection and the positional information of objects into the suppression
process, enhancing the recognition capability for multiple objects and occluded objects. The
calculation is shown in Equations (8) and (9).

Si =

{
Si, IOU− RDIOU(M, Bi) < ε,
0, IOU− RDIOU(M, Bi) ≥ ε,

(8)

DIOU = IOU−
ρ2(b, bgt)

c2 (9)

where si represents the classification score of the bounding box; ε represents the key
parameters set for executing NMS; M represents the bounding box with the highest score;
Bi represents the other bounding boxes.

3. Results and Discussion
3.1. Dataset

There are currently no publicly available data sets for power operation scenarios. To
evaluate the efficacy of HS-YOLO for detecting small objects in power operation scenarios,
a custom dataset suitable for power operation scenes was constructed in this study.

(1) Data Collection: The images in the power operation dataset were collected from
on-site inspections in a substation using two methods: photographs taken by inspection per-
sonnel and the images captured from the actual power operation scene surveillance video.
A total of 6550 images were collected, capturing different angles of power operation scenes.

In the collected dataset, the dimensions of objects within the monitoring images
exhibited variation in response to alterations in distance or shooting angles between the
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objects and the camera. Based on the variations in object sizes present in the monitoring
images, the objects are divided into two categories: (1) Small objects that consistently
maintain a diminutive presence within the image regardless of the distance and angle. As
shown in Figure 5a,b, the object of detecting the neckline of a work uniform is considered
a small object in the monitoring images regardless of the shooting angle and distance.
(2) Objects whose size in the image varies greatly as the distance and angle shot change. As
shown in Figure 5c,d, when the object of detecting a safety seine is close to the monitoring
camera, it occupies a large proportion of the monitoring image and is considered a medium-
to-large object. However, when the object is far from the monitoring camera, it occupies a
small proportion of the monitoring image and is considered a small object.
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(2) Data Cleaning, Augmentation, and Normalization: Firstly, the collected image data
was cleaned by removing images that had no objects, severe object occlusions, or excessive
blurriness, as these images would not contribute to effective model training. Secondly,
diverse data augmentation methods, including but not limited to blurring, rotation, and
Gaussian noise, are used to process the cleaned images, and the data set is further expanded.
The expanded data set of plugging power operation scenarios contains 4950 images. Fi-
nally, the pixel sizes of the images obtained by different methods were inconsistent. To
ensure consistent input for the model training, the image sizes were normalized. The
commonly used input size for YOLOv5 is 640 × 640 pixels. However, the power operation
scene images we collected mainly had three types of sizes: 5184 × 3888, 1280 × 720, and
1920 × 1080. In this experiment, the image sizes were normalized to 1280 × 800 pixels to
expedite the model training process.

(3) Data Annotation and Dataset Split: Based on the detection task described in
Section 1, we used the LabelImg 1.8.3 software to annotate seven detection objects in
the images of the power operation scene dataset. The annotated objects include Human,
Hat, Safetybelt, Seine, Fence, Noneckline, and Nocuff. According to the proportion of the
objects in the images, we divided the seven objects into two categories: objects with small
proportions and objects with large proportion spans. The objects with small proportions
include Safetybelt, Noneckline, and Nocuff, while the objects with large proportion spans
include Human, Hat, Seine, and Fence. The number of annotations for each category in the
data set is shown in Table 1.
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Table 1. Annotations for each category of the power operation scenario data set.

Dataset Sum Training Set Validation Set Testing Set

Number of images 4950 3465 990 495
Number of annotations for ‘Human’ 3351 2384 676 291

Number of annotations for ‘Hat’ 2786 2005 541 240
Number of annotations for ‘Safetybelt’ 1478 1044 238 196

Number of annotations for ‘Seine’ 2618 1820 512 286
Number of annotations for ‘Fence’ 1663 1184 312 167

Number of annotations for ‘Noneckline’ 1358 997 229 132
Number of annotations for ‘Nocuff’ 1245 895 213 137

3.2. Training Details

The experimental setup for this study included an Intel® Core™ i9-9900K CPU and
a GeForce RTX 2080 Ti 11G GPU. These experiments were executed on a Windows 10
operating system, employing PyTorch 1.8.0 as the deep learning framework and CUDA
version 10.0.

We conducted training on a dataset comprising 3465 images. Based on the YOLOv5
template, the network was improved and optimized without using pre-trained weights.
The training was conducted for 300 epochs with a batch size of four. The initial learning
rate was set to 0.01 and a weight decay coefficient of 0.0005 was applied.

3.3. Evaluation Metrics

This experiment employed commonly used evaluation metrics in deep learning, in-
cluding precision (P), recall (R), average precision (AP), and mean average precision (mAP).

P and R are widely used measures in detection and classification tasks. They are
calculated as follows:

Precision =
k
N

=
TP

TP + FP
(10)

Recall =
k
M

=
TP

TP + FN
(11)

where TP represents true positives (correctly detected positive samples), FP represents false
positives (incorrectly detected positive samples), and FN represents false negatives (missed
positive samples).

AP and mAP are important metrics for evaluating model performance in object
detection tasks. AP represents the average precision for a single object category, while
mAP takes into account the average precision across all object categories. The calculation
formulas are as follows:

AP =

1∫
0

P(R)d(R) (12)

mAP =
1
M

M

∑
j=1

APj (13)

where M represents the total number of object categories.
FPS [31] represents the number of image frames a detection model can process per

second and is a crucial metric for evaluation. FPS directly influences the real-time capability
and response speed of a detection. The calculation formulas are as follows:

FPS =
Ni

Tt
(14)

where Ni represents the number of image frames processed in a certain period of time; Tt
represents the measurement interval.
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3.4. Experiments on the Power Operation Dataset
3.4.1. Model Training

The training loss is an important metric during the model training process as it reflects
the optimization performance of the model. We compared the training loss curves of the
HS-YOLO and the original YOLOv5, as shown in Figure 6.
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bounding box regression loss.

The training loss of the original YOLOv5 is depicted by the blue curve, whereas the
training loss of the HS-YOLO is indicated by the orange curve. As shown in Figure 6a, the
training loss of HS-YOLO is lower than that of the unchanged YOLOv5. From Figure 6b–d,
we can observe that HS-YOLO exhibits lower losses across different categories compared
to the original YOLOv5. Moreover, the losses are steadily decreasing, indicating that the
model is gradually converging, and its performance is improving.

The newly added HRNet and sub-pixel convolution for small object detection of-
fer several advantages, including enhanced spatial information and finer feature rep-
resentation. These advantages aid the network in capturing object features and posi-
tions more effectively, resulting in reduced losses, accelerated convergence, and enhanced
training efficiency.
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3.4.2. Ablation Experiment

To assess the efficacy of the improvements introduced in the HS-YOLO algorithm for
small object detection, ablation experiments were performed on each enhancement point
using the created dataset of power operation scenes. The results are shown in Table 2. In
the table, Experiment 1© represents the results of the original YOLOv5 model. “A” indicates
the improvement of using the HRNet network as the backbone, while “B” represents the
improvement of using sub-pixel convolution as the upsampling operator in the feature
fusion network.

Table 2. Ablation Experiment Results.

Order A B Recall (%) Precision (%) mAP (%) FPS (t/n)

1© 90.0 93.8 83.7 47.8
2©

√
89.0 97.9 86.4 41.7

3©
√

92.0 96.9 84.7 48.3
4©

√ √
91.0 98.7 87.2 42.1

Comparing Experiment 2©, Experiment 3©, and Experiment 4© with the original
YOLOv5 network, we can observe that using the HRNet feature extraction backbone
network only sacrifices 1% of the detection accuracy while improving the detection recall
by 4.1%. Introducing sub-pixel convolution in the Neck leads to a 2% increase in detection
accuracy and a 3.1% increase in detection recall. When the original network is improved us-
ing HRNet and sub-pixel convolution at the same time, the detection accuracy is improved
by 1%, and the detection recall is improved by 3.9%. This indicates that the algorithm
can identify objects more accurately and comprehensively, reducing false detections and
missed detections.

HRNet’s multi-scale features enable a more comprehensive capture of object contextual
information, while sub-pixel convolution upsampling can restore finer spatial details. This
aids in reducing false detections and missed detections caused by background interference
or blurring. HRNet is more complex than the original backbone network, the introduction
of HRNet will bring relatively high computational costs. However, we can observe that
improving model detection performance only sacrifices a small amount of FPS. In high-risk
power operation scenarios, detection accuracy often takes precedence over speed.

The experiments in Table 3 show that when HRNet is used to improve the backbone
network, only the AP of the Fence category decreases by 3.4%. Other objects showed
slight improvements, and objects with consistently small proportions saw significant
improvements in AP, with increases of 2.3%, 4.3%, and 11.8% for different objects. The
mAP improved by 2.7% compared to before the improvement. After adding sub-pixel
convolution to the original network, only the AP of the Human object slightly decreased,
while other object categories showed varying degrees of improvement in AP. The mAP
improved by 1% compared to before the improvement. When both HRNet and sub-pixel
convolution were added to the network, the mAP reached 87.2%, a 3.5% improvement
over the original network. There were improvements in AP for all seven object categories,
with significant improvements of 4.4%, 5.8%, and 10.7% for the Safetybelt, Noneckline, and
Nocuff objects, respectively. This validates that HS-YOLO can be applied to detection tasks
in the context of power operation scenarios.

Table 3. Comparison of various types of AP in ablation experiments.

Order A B Human (%) Hat (%) Safetybelt (%) Seine (%) Fence (%) Noneckline (%) Nocuff (%)

1© 94.3 96.5 86.8 68.0 94.1 85.1 60.9
2©

√
95.0 97.8 89.1 70.3 90.7 89.4 72.7

3©
√

93.3 97.2 86.9 72.4 94.3 86.1 62.5
4©

√ √
94.9 97.6 91.2 69.4 94.5 90.9 71.6
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3.4.3. Comparative Experiments

To affirm the dependability of the HS-YOLO network as proposed, we partitioned the
training process into three stages, each spanning 100 epochs. Within each stage, we ran-
domly selected an epoch and conducted a comparative evaluation of detection performance
between the baseline YOLOv5 network and the HS-YOLO network we proposed.

We selected the 100th epoch, 200th epoch, and 300th epoch for the comparative analysis
of the three training stages. As shown in Table 4, after the first stage of training, both the
YOLOv5 and HS-YOLO networks achieved near-optimal levels of AP for detecting Human,
Hat, Seine, and Fence in the dataset, with little difference between them. However, for the
Safetybelt, Noneckline, and Nocuff classes (all of which are all small objects), the AP can be
greatly improved.

Table 4. Evaluation of HS-YOLO and YOLOv5 models at different stages.

100 Epoch 200 Epoch 300 Epoch
YOLOv5 HS-YOLO YOLOv5 HS-YOLO YOLOv5 HS-YOLO

AP (%)

Human 93.3 93.5 93.9 94.0 94.3 94.4
Hat 96.3 96.7 96.7 97.2 96.7 97.6

Safetybelt 79.0 79.1 80.4 85.6 86.0 89.8
Seine 63.0 64.6 66.7 67.0 68.3 68.8
Fence 91.8 91.8 91.4 92.6 93.7 94.7

Noneckline 67.9 78.2 73.5 84.1 85.8 89.5
Nocuff 18.6 42.6 43.8 63.6 62.2 71.6

mAP (%) 72.9 78.1 78.1 83.4 83.8 86.6

In the Epoch 100 experiment, both HS-YOLO and YOLOv5 had lower maps, but HS-
YOLO outperformed YOLOv5 with a 5.2% higher mAP. Specifically, Noneckline and Nocuff
categories had significantly improved AP, with increases of 10.3% and 24%, respectively.
By the 200th epoch, after sufficient training, both HS-YOLO and YOLOv5 achieved high
mAP values. However, HS-YOLO had a higher mAP of 83.4%, surpassing YOLOv5 by
5.3%. Notably, the Safetybelt, Noneckline, and Nocuff categories exhibited improved
AP, with gains of 5.2%, 10.6%, and 19.8%, respectively. In the 300th epoch, HS-YOLO
maintained its superiority with a 2.8% higher mAP than YOLOv5. Moreover, the Safetybelt,
Noneckline, and Nocuff categories showed AP improvements of 3.8%, 3.7%, and 9.4%,
respectively. Throughout the entire training stage, our proposed HS-YOLO consistently
outperformed YOLOv5 in detecting various objects in the power operation scenarios,
especially small objects.

HRNet processes images using a multi-resolution approach and is able to capture
multi-scale features, which helps to retain details of small objects and provide richer feature
representations. Sub-pixel convolution performs finer upsampling on the feature, and aids
in achieving more precise object boundary localization. This significantly enhances the
precision of detection, enabling the detection model to precisely recognize and pinpoint
small objects.

To further evaluate the HS-YOLO algorithm, we conducted experiments on the power
operation scene dataset and compared it with other classic algorithms.

The results in Table 5 demonstrate that our proposed HS-YOLO achieves higher
AP for various object categories in the power operation scene compared to the original
network and other classical networks. The mAP also shows significant improvement,
with a 3.5% increase compared to the original network and a 13.5% increase compared to
SSD. Particularly, there is a significant improvement in AP for small objects that are prone
to be missed in the electric power operation scene, such as Safetybelt, Noneckline, and
Nocuff categories. Even when compared to the latest YOLOv8, HS-YOLO exhibits similar
detection accuracy on four large objects of Human, Hat, Seine, and Fence. Moreover, it
shows varying degrees of improvement in the detection of three small objects of Safetybelt,
Noneckline, and Nocuff, with respective increases in AP of 1.7%, 2.5%, and 4.3%. This
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demonstrates that our proposed HS-YOLO, when applied to the electric power operation
scene, not only maintains high detection accuracy for large and medium-sized objects but
also greatly improves it for small objects.

Table 5. Comparative experimental results.

Model Human
(%) Hat (%) Safetybelt

(%) Seine (%) Fence (%) Noneckline
(%) Nocuff (%) mAP (%)

Faster-RCNN 86.7 82.4 64.7 63.6 87.5 78.3 56.9 74.3
SSD 85.9 80.6 65.8 60.8 88.4 79.5 54.8 73.7

YOLOv3 91.2 83.4 72.9 66.3 92.7 82.1 60.1 78.4
YOLOv4 91.8 85.5 77.4 65.1 93.6 83.9 59.8 79.6
YOLOv5 94.3 96.5 86.8 68.0 94.1 85.1 60.9 83.7
YOLOv8 95.3 97.4 89.5 70.5 94.9 88.4 67.3 86.2

HS-YOLO 94.9 97.6 91.2 69.4 94.5 90.9 71.6 87.2

3.4.4. Visualize the Results

To provide a more direct analysis of the detection performance of HS-YOLO, we
conducted tests on selected images from the electric power operation scene test set and
compared the results with the network YOLOv5. Figure 7 shows the detection status of the
model on the power operation scenarios test set before and after the improvement.

Figure 7a,b shows the detection results of the two methods. When detecting images
from different monitoring angles (overhead, eye-level, upward) and indoor/outdoor elec-
tric power operation scenes, both YOLOv5 and HS-YOLO can accurately detect objects
with large-scale variations, such as Human and Seine. However, HS-YOLO exhibits higher
confidence scores in its detections. On the other hand, for small objects with minimal
scale variations, such as Safetybelt, Noneckline, and Nocuff categories, YOLOv5 exhibits
many missed detections, whereas HS-YOLO is capable of detecting these hard-to-find small
objects. Our proposed HS-YOLO outperforms YOLOv5 in recognizing small objects in
complex power operation scenarios.

3.5. Experiments on the COCO Dataset

To further provide an impartial and objective evaluation of the generality and gen-
eralization of the HS-YOLO algorithm, a comparison was made between the introduced
HS-YOLO algorithm and the unaltered YOLOv5 on the publicly available COCO dataset.

Both HS-YOLO and the original YOLOv5 were trained for 100 epochs on the COCO
dataset, and we compared their training processes. The training losses of the two mod-
els are shown in Figure 8. The training loss of the original YOLOv5 is depicted by
the blue curve, whereas the training loss of the proposed HS-YOLO is indicated by the
orange curve.

As shown in Figure 8, HS-YOLO exhibits lower overall training loss and various
class-specific losses compared to YOLOv5 after 100 epochs of training, indicating that
HS-YOLO performs better. Moreover, all class-specific losses steadily decrease during
training, indicating that the model’s performance steadily improves over time.

In the COCO dataset, the objects are categorized into three size ranges based on
their pixel areas. To gain a comprehensive understanding of the algorithm’s perfor-
mance on objects of different sizes, we compared HS-YOLO and YOLOv5 in detecting
objects of different sizes on COCO. The results are shown in Table 6, where APsmall,
APmedium, and APlarge represent the average precision for small, medium, and large
objects, respectively.
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The experimental results in Table 6 demonstrate that when HS-YOLO is used as
the detection network, the mAP is 63.0%, which is an improvement of 9.4% over the
unmodified YOLOv5. Furthermore, for objects of different sizes in the COCO dataset,
HS-YOLO achieves APlarge, APmedium, and APsmall of 56.2%, 48.6%, and 27.1%, respectively.
Compared to the unmodified YOLOv5, HS-YOLO increases APlarge, APmedium, and APsmall

by 11.4%, 9.3%, and 8.6%, respectively. These results indicate that HS-YOLO demonstrates
better detection performance on objects of different sizes. Therefore, the proposed HS-
YOLO algorithm not only performs well in small object detection in power operation scenes
but also exhibits significant advantages on the COCO dataset. This demonstrates that
HS-YOLO possesses strong generality and generalization capabilities.
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Table 6. Detection of objects of different sizes in the COCO dataset by Hs-YOLO and YOLOv5.

Model APsmall(%) APmedium(%) APlarge mAP (%)

YOLOv5 18.5 39.3 44.8 53.6
HS-YOLO 27.1 48.6 56.2 63.0

4. Conclusions

Various factors influencing the detection of small objects in electric power operation
scene monitoring include small object pixel size, complex background information, and
image blurring. To address the challenges of small object detection in power operation
scenarios, this paper proposes the HS-YOLO object detection algorithm based on HRNet
and sub-pixel convolution. HRNet is utilized to extract features from small objects, alle-
viating the problem of significant feature loss during extraction. During the multi-scale
feature fusion, sub-pixel convolution is employed to upsample the low-resolution feature
maps, preserving more feature information of small objects. Experimental results indicate
that compared to other classical methods, HS-YOLO performs better on various object
categories. With the same number of training epochs, the proposed HS-YOLO achieves
a mAP of 87.2% on the self-constructed electric power operation scene dataset, which is
a 3.5% improvement over YOLOv5. Particularly, there is a notable improvement in the
detection of small objects in the dataset. HS-YOLO greatly reduces the occurrence of missed
detections for small objects in power operation scenarios compared to YOLOv5.
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In future work, considering the practical deployment and application of the algo-
rithm, we will further focus on lightweighting the algorithm and conduct research on
real-time detection.
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