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Abstract: Visual understanding is a research area that bridges the gap between computer vision
and natural language processing. Image captioning is a visual understanding task in which natural
language descriptions of images are automatically generated using vision-language models. The
transformer architecture was initially developed in the context of natural language processing and
quickly found application in the domain of computer vision. Its recent application to the task of
image captioning has resulted in markedly improved performance. In this paper, we briefly look at
the transformer architecture and its genesis in attention mechanisms. We more extensively review a
number of transformer-based image captioning models, including those employing vision-language
pre-training, which has resulted in several state-of-the-art models. We give a brief presentation of the
commonly used datasets for image captioning and also carry out an analysis and comparison of the
transformer-based captioning models. We conclude by giving some insights into challenges as well
as future directions for research in this area.

Keywords: computer vision; convolutional neural networks; image captioning; MS COCO; CIDEr;
natural language processing; feature extraction and representation; general attention; self-attention;
transformers; vision-language pre-training; multimodal alignment

1. Introduction

Given the abundance of visual information in the form of images and videos, image
processing techniques are useful in automating tasks which would otherwise be very
difficult for humans to carry out due to the sheer abundance of the visual information.
Visual information understanding is a task that humans perform effortlessly. This is often
manifested in our ability to capture visual information and express or communicate it
through natural language.

In an effort to bridge the gap between image processing algorithms and natural
language understanding, various visual understanding tasks have received significant
attention in recent years. Image captioning is one such visual understanding task. Image
captioning refers to the visual understanding task of expressing images using natural
language. Similarly to other areas of machine learning, the major improvements in image
captioning can, to a large extent, be attributed to the recent developments in deep learning—
bigger and more refined datasets, faster hardware, especially graphical processing units,
and better algorithms.

However, image captioning still remains a challenging task. Captioning in the wild
and out-of-domain captioning are difficult tasks which show that the generated captions
have a lot of room for improvement. Captioning, therefore, continues to receive a lot of
research attention in a bid to refine the related algorithms. This is because image captioning
has many potential applications such as in surveillance and security, robotics, self-driving
cars, assistance to the visually impaired, etc.

Many of the earlier approaches to image captioning consisted of template-based meth-
ods [1–3] and composition-based methods [4,5]. The template-based methods hinged
on generating templates for captions. The slots of the templates were then completed
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based on the results of object detection, attribute classification and scene recognition. The
composition-based methods employed existing image-caption databases to extract compo-
nents of related captions and compose them together to come up with new descriptions.
Advances in neural networks led to neural-based methods. These capitalized on the use
of convolutional neural networks (CNN) to carry out the feature extraction. The use of
CNNs was inspired by their success in the tasks of image classification [6–12] and object
detection [13–16]. The work of [17] involved an early use of neural networks for caption
generation, employing a feed-forward neural network that uses a given image and previous
words to predict the following word. The feed-forward neural network was then replaced
by a recurrent neural network (RNN) [18] and later the limitations of the RNN in regard to
gradient propagation led to the use of the LSTM RNN [19] to decode the extracted image
features into a string of words that form a caption [20,21].

In the neural-based methods, a common framework that emerged was the encoder-
decoder framework. The encoder-decoder framework was born of language modeling [22–25].
Kiros et al. [26] were among the first to employ the encoder-decoder framework in image
captioning. They were soon followed by a number of other authors who used CNNs
and LSTMs for encoding and decoding [20,21,27]. The early use of the encoder-decoder
framework in captioning consisted in encoding an image into an embedding space such
that it could then be used as an input to downstream decoder to generate textual tokens.
Many models used a variant of CNNs and LSTMs for encoding and decoding, respectively.
This architecture has proven to be very powerful and many of the current captioning
systems employ a variant of it.

A significant advancement in image captioning was the introduction of attention
mechanisms to the encoder-decoder framework. The attention models drew inspiration
from attention as used in machine translation [22] and then object detection [28,29]. Through
the attention mechanisms, captioning models learn to attend to various aspects of the input
image as the captions are being generated. Attention mechanisms have been widely
employed in a number of captioning models [30–35]. In the model of Lu et al. [33], they
develop an adaptive attention mechanism which learns whether or not to attend to the
image depending on the context and word token being generated. Anderson et al. [35]
designed a bottom-up top-down design, which extracts visual features based on object
detectors rather than the last convolutional layers of a CNN as in previous feature extractors.
This model was influential for several other successive designs.

The initial attention mechanisms gave rise to self-attention, which was the underlying
concept that was then employed in the development of multi-head attention in the trans-
former model [36]. The transformer results from abstracting the multi-head self-attention
operations into a self-contained unit. Stacking such units provides the necessary non-
linearity and representational power to model complicated functions [37]. These recent
developments were initially applied to machine translation and were thereafter transferred
to the visual domain. Since the initial presentation of the transformer model in 2017 [36], it
has proven to be a powerful basis on which many of the current state-of-the-art models
have been designed [38–40].

In this paper, we review a number of transformer-based image captioning models
leading up to the current state-of-the-art. Other reviews of image captioning models have
been completed previously [41–43] but none of these have focused on transformers, which
are a more recent invention. Many of the previous reviews have for instance focused on
deep learning per se as applied to image captioning [42] or on the prior concepts such as
attention [41,43]. Khan et al. [44] look broadly at transformers in vision but do not focus on
the task of image captioning. Stefanini et al. [45] also give a review that is closely related
to our work. They explore a broad array of captioning methods. They deal with earlier
approaches and as well as the more recent approaches in image captioning. Our review,
in contrast, deals specifically with transformer-based approaches given that transformers
have been the cornerstone of the current state-of-the-art in image captioning as well as other
computer vision and NLP tasks. Furthermore, the earlier approaches have already been
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amply covered in previous surveys. Our focused approach, therefore, allows us to delve
deeper into the more recent transformer-based approaches making up the current state-of-
the-art in image captioning and assesses the challenges and possible future directions in this
specific field. Compared to [45], we offer a wider range of insights into future directions.

This paper is organized as follows: we first look at the common datasets and evaluation
metrics that are relevant for image captioning. We then review the early vanilla transformer-
based approaches that were used for image captioning. We then look at developments in
vision-language pre-training and discuss how this approach has been used in the context of
transformer models and image captioning. We then look at a number of specific transformer-
based models involving vision-language pre-training. This is followed by a discussion and
analysis that assesses the major contributions of the various methods studied as well as a
comparison of those methods based on their performance results. The paper concludes with
a discussion on the open challenges and future directions of the field. This organization
helps appreciate the impact that transformers have had in image captioning as well as the
effectiveness of vision-language pre-training.

2. Datasets and Evaluation

In this section we take a look at the datasets that have been employed by the various
transformer-based image captioning models which we review in Sections 4 and 5. We also
look at the main evaluation metrics used to gauge and compare different models.

2.1. Datasets

The datasets have been used for training, validation and evaluation. The data is
a crucial factor of the performance of many of the machine learning algorithms. The
availability of vast amounts of data has resulted in better-trained models with significantly
improved levels of accuracy.

Table 1 shows a listing of the main datasets that have been used in relation to image
captioning. As can be seen from the sizes, the general trend has been towards larger and
larger datasets in terms of number of images and the language features (captions, questions
and other textual annotations). The collection and curation of captions and other language
features of the large-scale datasets tends to be automated rather than human-annotated,
given the high cost of human annotation. The textual description (image-text pairs) for
these large-scale datasets are largely acquired through the alt-text HTML attribute of images
from the internet. Despite the fact that these large-scale datasets are noisier and less clean,
they have proven to be effective in vision-language pre-training. For the smaller datasets,
the annotation is commonly created through human annotators via services such as the
Amazon Mechanical Turk [46].

The categories of the datasets locate inspiration to a large extent from WordNet [47,48],
together with its hierarchical structure and synsets. The synsets are sets of cognitive
synonyms, each expressing a distinct concept [47]. Some of the categories that occur in
many of the datasets are taken from wordnet subtrees and include mammal, bird, fish, reptile,
amphibian, vehicle, furniture, musical instrument, geological formation, tool, flower, fruit [49].
Datasets such as MS COCO [50] tend to have a high proportion of common objects such as
people, animals, furniture and vehicles. The large-scale datasets, such as OpenImages [51],
ALT200M [52], WebImageText [53] and ALIGN [54] have a higher variety of categories due
to their sheer scale and method of collection (automated, from web images). WebLI [55]
ramps up the scaling further and is made up of 10 billion images and the corresponding
textual descriptions.

Three datasets worthy of particular mention are ImageNet [49,56], MS COCO [50] and
Nocaps [57]. ImageNet spurred a lot of research in deep learning models for computer
vision and it contributed significantly to better models related to vision tasks such as image
classification and object detection. ImageNet was the basis for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [7], which saw convolutional neural networks
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(CNN) come of age and achieve and surpass human-level performance in some of the
vision tasks.

Table 1. The major datasets used in relation to image captioning. For the primary domains: IC
is image classification, VLP is vision-language pre-training, OD is object detection, IS is image
segmentation, Cap is image captioning, D-Cap is dense captioning, ARM is attribute and relationship
modeling, VQA is visual question answering, ISR is image-sentence retrieval.

Dataset Name Size (Images) Categories Language Features Primary Domain Human-Annotated

ImageNet [49] 14.1 M 21,841 14 M image-level labels IC, OD, VLP 3

MS COCO [50] 300,000 91 413,915 captions IC, OD, IS, Cap 3

Visual Genome [58] 108,000 33,877 5.4 M region descriptions ARM, D-Cap, VQA, VLP 3

CC3M [59] 3.3 M 16,000 3 M image-text pairs IC, VLP 7

CC12M [60] 12 M - 12 M image-text pairs VLP 7

Flickr 8 K [61] 8000 - 40,460 captions Cap, ISR 3

Flickr 30 K[62] 30,000 - 15,8915 captions Cap, ISR 3

Nocaps [57] 15,100 513 166,100 captions Out-of-domain
captioning 3

VQA [63] 254,721 - 760 K questions VQA, VLP 3

VQAv2 [64] 265,016 - 1.1 M questions VQA, VLP 3

GQA [65] 113,000 - 22 M questions VR, VLP 7

SBU Captions [66] 1 M 89 1,000,000 Cap 7

OpenImages [51] 9 M 600 61.4 M image-level labels IC, OD, ARM, VLP Partially
Objects365 [67] 600,000 365 10 M object labels OD, VLP 3

ALT200M [52] 200 M - 200 M image-text pairs VLP 7

WebImageText [53] 400 M - 400 M image-text pairs VLP 7

ALIGN [54] 1.8 B - 1.8 B image-text pairs VLP 7

WebLI [55] 10 B - 10 B image-text pairs VLP, Cap 7

MS COCO [50] has also been a major driver in the development of computer vision
applications. It has fostered state-of-the-art algorithm development in areas such as image
classification, object detection, image segmentation and image captioning. Many of the
image captioning algorithms developed since 2014 have used this dataset as a basis for
evaluation and validation. In developing their method for deep visual-semantic alignments
for generating image captions, Karpathy and Fei-Fei [27] used a subset of the MS COCO
Captions 2014 dataset and divided the subset into training, validation and evaluation subset.
This division has come to be called the Karpathy split and has been used by many subsequent
models as a basis for offline comparison for different algorithms. In the Karpathy split,
the validation set of the MS COCO 2014 dataset is divided into a ‘val’ split and a ‘test’
split, each with 5000 images, and a ‘restval’ split with 30,504 images. The ‘train’ split has
82,783 images. The ‘restval’ and ‘train’ splits can be combined to make a total of 113,287
training images. The online evaluation server associated with the MS COCO dataset has
also been useful for algorithm development. The server is hosted by CodaLab [68] and
has served as a tool for different state-of-the-art models to be objectively evaluated and
compared against each other. The leaderboard [69] has been particularly instrumental as a
basis of comparison.

The Novel Object Captioning at Scale (Nocaps) [57] is a dataset that enables novel
captioning at scale. It consists of 15,100 images each with 11 human-generated captions
resulting in 166,100 captions. The images are split into 4500 and 10,600 images for the
validation and test sets, respectively. The images are taken from the Open Images object
detection validation and test sets. The training data consists of MS COCO image-caption
pairs. Open Images has more object classes than MS COCO and so when training is
conducted on MS COCO, the test set of Nocaps has object classes not seen during training.
Nocaps encourages models to learn a large variety of visual concepts from alternative
and diverse data sources; these visual concepts may not be in the actual training data. It
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therefore makes possible the design of models which can run much better in the wild with
novel object categories.

2.2. Evaluation Metrics

In this subsection we take a look at the main evaluation metrics that are used to gauge
and compare models. The metrics are summarized in Table 2. The evaluation metrics
provide an avenue for different researchers to compare their works. Since captioning has
the natural language component as a major output, the evaluation metrics are largely taken
from the language domain, where they are for instance applicable in other tasks such as
machine translation.

Table 2. The main evaluation metrics used in image captioning. The ‘Correlation’ column refers to
human-judgment correlation.

Metric Basis Correlation Original Domain Operation

BLEU [70] Precision-based Low Summarizing and translation Co-occurrence of n-grams
ROUGE [71] Recall-based Moderate Summarizing and translation Longest common sequence (ROUGE-L)
METEOR [72] Precision and recall Moderate Summarizing and translation Matching and comparison of n-grams
CIDEr [73] Precision and recall High Image captioning Cosine similarity of n-grams
SPICE [74] Precision and recall High Image captioning Sentence comparison using scene graphs

The BiLingual Evaluation Understudy (BLEU) metric [70] was originally designed
for sentences resulting from machine translations. It is precision-based and it analyzes the
co-occurrence of n-grams between the generated sentence and the reference sentence and
calculates an error metric. The matches are position-independent so that a test sentence
with more matches with the reference sentence is deemed as a better match than one with
fewer matches. The BLEU scores are usually reported in terms of the cumulative scores,
which are calculated based on the individual n-gram scores at all orders from 1 to n and
weighted using the geometric mean. Thus, if n is 4, cumulative scores for BLEU-1, BLEU-2,
BLEU-3 and BLEU-4 are given.

ROUGE [71] refers to Recall-Oriented Understudy for Gisting Evaluation. It is an
evaluation algorithm that was originally designed to evaluate text summarization algo-
rithms. ROUGE is recall-based and it counts the number of overlapping units such as
word sequences, n-grams and word pairs between generated captions and ground truth
captions. A number of variants or ROUGE exist, namely ROUGE-N, ROUGE-L, ROUGE-W
and ROUGE-S. ROUGE-N measures the n-gram recall between a candidate text and a
set of reference texts. ROUGE-L measures the longest common subsequence between
the candidate and reference texts. ROUGE-W is a version of ROUGE-L that incorporates
weighting. ROUGE-S measures the skip-bigram co-occurrence statistics. Skip-bigrams are
all pairs of ordered words in a piece of text, sampled with an arbitrary distance between
them. ROUGE-L is the variant commonly used for image captioning since it has a higher
correlation with human judgements [71].

METEOR [72] stands for Metric for Evaluation of Translation with Explicit ORdering
and is an automatic metric originally designed for machine translation. It was designed to
overcome a number of weaknesses observed in the BLEU metric that preceded it such as
the lack of recall and the lack of explicit word matching [72]. METEOR matches different
aspects of n-grams from different sentences to find alignments and then evaluates a score.
The matching of the n-grams can be based on aspects such as surface forms, stemmed forms
and meanings. METEOR uses a combination of unigram-precision and unigram-recall.
METEOR has shown better correlation than BLEU and ROUGE to judgments by human
subjects.

CIDEr [73] refers to Consensus-based Image Description Evaluation. CIDEr makes an
effort to capture human judgment of consensus. CIDEr measures how similar a sentence
is to the consensus description of an image, i.e., to how an image is described by most
people. It is based on evaluations (average cosine similarity) performed on n-grams taken
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from the generated captions and the ground truth captions. CIDEr has been shown to have
a higher correlation with human judgments than BLEU, ROUGE and METEOR [72]. A
version of CIDEr called CIDEr-D is used in the MS COCO evaluation server. CIDEr-D is
an advanced version of CIDEr and is designed to make it more resistant to gaming, which
refers to a situation in which a sentence that is poorly judged by humans scores highly
when evaluated using automatic metrics.

SPICE [74] stands for Semantic Propositional Image Caption Evaluation. It primarily
tries to overcome the sensitivity of the other captioning evaluation metrics to n-gram
overlap, which can give misleading evaluations. SPICE takes advantage of the semantic
structure of scene descriptions and gives preference to nouns. It makes use of scene graphs
to compare sentences. Scene graphs are graph-based semantic representations of sentences
which help abstract away lexical and syntactic idiosyncrasies. Experiments performed
showed that evaluations by SPICE had a higher correlation to human judgments than the
other metrics [74].

3. Method Selection

In this section, we describe the strategy that we used to select the models reviewed.
There have been many approaches to carrying out image captioning. However, in this
review we are mainly interested in transformer-based approaches since these constitute the
current state-of-the-art. We, therefore, do not include in our review models which were
developed prior to the design of the transformer model in 2017 [36]. Furthermore, there
have already been other reviews which have amply studied the previous approaches of
image captioning [41–43].

We divide the transformer-based approaches into two broad categories: those prior
to vision-language pre-training (vanilla transformer-based models) and those involving
vision-language pre-training (VLP models). The former methods were developed earlier in
time (shortly after the initial design of the transformer model). The latter models arose after
the recent advancements in pre-training. Vision-language pre-training has had a significant
impact on multi-modal models involving the visual and language domains and the current
state-of-the-art models employ some form of vision-language pre-training. To illustrate
this, we first study a number of vanilla transformer-based models and thereafter we assess
a number of VLP models.

We are interested in models that employ publicly available datasets, especially MS
COCO [75], since this has for a long time served as a good basis for comparing various
works. We are particularly interested in models that have performance metrics based on
the online and public MS COCO leaderboard [69] since this adds an additional level of
objectivity. We are also interested in models that at least give performance using the CIDEr
metric [73], due to its high correlation with human judgements. Nocaps [57] is a more
recent dataset and interesting for out-of-domain captioning but we preferred to leave the
study wider and include methods that do not necessarily report on Nocaps.

Given the plethora of models that have sprung up and the clear limitation of not being
able to include them all in our review, we mainly focus on those with a significant design
component over and above the initial design of the transformer. This means that we have
not included models that have only very slight adjustments, for instance mere changes in
the parameters such as size.

The selection strategy has resulted in the models reviewed being representative of the
main recent approaches of transformer-based models used in image captioning.

4. Transformers in Captioning

Following the success of transformers in language modeling, they have been applied to
several areas of computer vision. In image captioning, transformers are the backbone of the
current high-performing models. Figure 1 highlights the evolution of captioning systems
from the traditional encoder-decoder models to the basic transformer-based captioning
systems to the transformer-based captioning models that employ vision-language pre-
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training (VLP). The VLP transformer-based models are the basis for the current state-
of-the-art models. The approach of vision-language pre-training is characterized by the
use of large-scale automatically-annoteated datasets to pre-train the transformers prior to
application in downstream vision-language tasks. It is interesting to note that the image
feature extractor has been based on convolutional neural networks (CNN) for a long time,
but recently there has been a shift towards Vision Transformers (ViT) for this function as
well. This makes possible the realization of all-transformer models. The pipelines for each
category shown in Figure 1 are paradigmatic and as such, most of the models we look at
in this paper follow a similar flow. However, different models have incorporated various
other features as well as changes in the fundamental architecture, which have improved
the performance.

Figure 1. Transformers in image captioning: evolution from (a) traditional encoder-decoder-based
captioning to (b) basic transformer-based captioning models to (c) captioning transformers based on
vision-language pre-training.

In the rest of this section, we review the basic transformer-based captioning models
and the models employing vision-language pre-training. We do not focus on the prior
traditional captioning models (encoder-decoder-based), since those have been sufficiently
reviewed in other works, such as [41,43].

4.1. Conceptual Captions

Sharma et al. [59] present a novel dataset of image caption annotations called Con-
ceptual Captions. It contains an order of magnitude more images than the MS-COCO
dataset [75], which has been a benchmark dataset for image captioning. The Conceptual
Captions dataset is created using a pipeline that programmatically acquires images and
captions from billions of internet web pages. In the modeling of the captioning system, they
use a feature extractor based on Inception-ResNet-v2 [76]. A transformer is used as the
decoder and they show that the transformer model achieves better results than a Recurrent
Neural Network, which was previously the dominant mode for caption generation. Their
encoder and decoder essentially adhere to the generic pipeline shown in Figure 1b. Whereas
their main contribution is the Conceptual Captions dataset, they are among the first to
employ the transformer model in image captioning.

4.2. Captioning Transformer with Stacked Attention Modules

Zhu et al. [77] apply a standard transformer to perform image captioning. The encoder
is a ResNext CNN [78] and the image features are taken from the final layers. These are
then used as the keys and values in the decoder. Thus, the encoder is a CNN and the
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decoder is a transformer, with a design and parameters closely following those used by
Vaswani et al. [36].

The decoder design envisions a stacking of several individual decoder layers; the
overall output is taken as a combination of the outputs of the different layers. The decoder
layers are separated by dropout layers to avoid overfitting.

Based on this stacking, they introduce multi-level supervision to take advantage of
multi-layer outputs of the transformer. Every layer can be used to generate the current
word. During training, the outputs of each layer are passed through a linear transformation
and are then taken together to calculate the cross-entropy loss of the model as shown in
Figure 2. The training objective is to minimize the cross-entropy loss.

Figure 2. Architecture of the captioning transformer with stacked attention modules and multi-level
supervision.

4.3. Image Captioning: Transforming Objects into Words

Herdade et al. [79] introduce the object relation transformer. This transformer employs
the concept of geometric attention to incorporate information about the spatial relationships
between various objects in an image. Geometric attention had earlier been used for object
detection [80]. The approach of the authors involves utilizing the size ratio of the bounding
boxes of different objects and the difference of the bounding box coordinates to deduce
object relationship features. Their model is shown in Figure 3.

Figure 3. Object relation transformer. Appearance and geometry features are extracted from the
image based on the object detector’s regions.



Appl. Sci. 2023, 13, 11103 9 of 38

The feature detector is a Faster R-CNN object detector [15], which is used to extract
appearance and geometry features, similar to the approach of Hu et al. [80]. The transformer
decoder is similar to that introduced by Vaswani et al. [36]. However, for each encoding
layer, the attention scores are modified by multiplying by the geometric attention weights,

ΩA =
QK>√

dk
(1)

where Q and K are the queries and keys, respectively, and ΩA is an N×N attention weight
matrix, whose elements ωmn

A are the appearance-based attention weights between the mth

and nth token. Relative geometry is incorporated by multiplying the appearance-based
attention weights by a learned function of their relative position and size. The geometric
attention weights, ωmn

G , are first calculated based on the geometric features of the bounding
boxes (center coordinates, widths and heights). The combined attention weights are then
given by

ωmn =
ωmn

G exp(ωmn
A )

∑N
l=1 ωml

G exp(ωml
A )

(2)

where ωmn
A and ωml

G are the elements of the attention and geographic attention weights,
respectively.

Yang et al. [81], who followed a similar approach, used a scene graph representation
for the encoding, which helps capture object relationships. Yao et al. [82] introduced a
Graph Convolutional Network plus LSTM (GCN-LSTM) architecture that incorporates
semantic and spatial object relationships into the image encoder. Yao et al. [83] develop a
HIerarchy Parsing (HIP) architecture that parses images into multi-level structure consisting
of the global level, regional level features and instance level features based on semantic
segmentation. The hierarchical structure is fed into a Tree-LSTM to generate captions.
However, none of these models ([81–83]) make use of transformers.

Herdade et al. [79] report better performance than Yang et al. [81] and Yao et al. [82] on
the CIDEr-D metric. However, the Herdade et al. [79] model uses a transformer whereas [81]
and [82] do not. The use of a transformer is a significant factor contributing to the better
performance. It is worth noting that [83] outperforms [79] on the CIDEr metric, which
highlights the effectiveness of their hierarchical parsing approach.

4.4. Attention on Attention

Huang et al. [84] introduce an attention on attention module (AoA) as illustrated in
Figure 4. In the encoder they extract feature vectors of objects in the image and apply
self attention. The AoA module is then applied to determine how the objects are related
to each other. Essentially, self-attention is used to model the relationships among objects
in the input image. In the decoder, the AoA module helps determine to what extent the
attention results are related to the queries. The model first generates an information vector
and an attention gate by employing the attention result and the context vector. A second
attention module is then added through an element-wise multiplication of the attention
gate and the information vector to yield the final attended information. Thus, the irrelevant
or misleading results are filtered out to keep only the useful ones.

The attention on attention mechanism is formulated as the element-wise multiplication
of an attention gate g and an information vector i as shown in Equation (3). The attention
gate and information vector are results of two linear transformations, which are both
conditioned on the context vector (the query) and the attention result. In the decoder, the
AoA module is used, coupled to an LSTM module.

AoA( fatt, Q, K, V) = σ(W g
q Q + W g

v fatt(Q, K, V) + bg)� (W i
qQ + W i

v fatt(Q, K, V) + bi) (3)

where fatt is an attention function that operates on the queries, keys and values, denoted by
the matrices Q, K and V , respectively; W i

q, W i
v, W g

q and W g
v are learnable weight matrices;
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bg and bi are bias vectors of the attention gate and information vector, respectively; σ is the
sigmoid activation function and � denotes element-wise multiplication.

Figure 4. Attention on attention model.

4.5. Entangled Transformer

Li et al. [85] introduce the Entangled Attention (ETA) transformer that tries to exploit
the semantic and visual information simultaneously and thus bridge the semantic gap.
The semantic gap arises due to difficulties in attention mechanisms identifying accurately
the equivalent visual signals, especially when predicting highly abstract words. With
their entangled attention, semantic information is injected into the visual attention process;
similarly, visual information is injected into the semantic attention process, hence the name
“entangled”.

They also presented the Gated Bilateral Controller (GBC) which is a gating mechanism
that controls the path through which information flows. The GBC controls the interactions
between the visual and semantic information. The overall attention model includes a visual
sub-encoder and a semantic sub-encoder and a multimodal decoder, as shown in Figure 5.
Each sub-encoder consists of N identical blocks, each with a multi-head self-attention and
feed-forward layer.

Figure 5. Overall architecture of the entangled transformer.

4.6. Meshed-Memory Transformer

The model of Cornia et al. [86] learns multi-level representations of the relationships
between image regions such that low-level and high-level relations are represented. For
this, a priori knowledge on relationships between image regions is encoded using persistent
memory vectors, which results in memory-augmented attention. During the decoding, the
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low-level and high-level relationships are used instead of employing a single visual mode
representation. This is performed using a learned gating mechanism that weights the multi-
level contributions at each stage. Figure 6 shows the general flow of their model which
they refer to as a meshed-memory transformer due to the mesh connectivity between the
encoder and decoder layers. Apart from using the MS COCO dataset [75], they validate the
performance of their model on the novel object captioning using the Nocaps dataset [57].

Figure 6. Architecture of the meshed-memory transformer. Multi-level encodings are connected to
the decoder through a meshed and learnable connectivity. Each decoder layer inputs are controlled
by a gating mechanism (σ) that weights the multilevel contributions at each stage.

4.7. X-Linear Attention Networks

Pan et al. [87] employ a method based on bilinear pooling [88]. Bilinear pooling entails
getting the outer product of two input vectors. It is employed in a bid to more fully capture
the relationships between two vectors. However, it is computationally expensive since
the resulting number of parameters is O(n2). The approach can be made compact by
dimensionality reduction. Bilinear pooling is an option to combine two vectors instead of
other approaches such as concatenation, element-wise vector summing or element-wise
vector multiplication.

A problem of conventional attention mechanisms that Pan et al. [87] try to overcome is
the fact that the attention weights are essentially derived from the linear combination of the
query and the key via an element-wise summation. This only exploits the first-order feature
interactions between the textual domain and the visual domain. Whereas typical attention
approaches are additive attention or dot-product attention, they propose a spatial and
channel-wise attention mechanism based on bilinear pooling to exploit the higher order
feature interactions. They package their attention mechanism into a block that they name
X-linear attention block. The X-linear attention block uses a feature extraction backbone
based on the Squeeze-and-Excitation Networks (SENet) of Hu et al. [89]. The final model is
the X-Linear Attention Network (X-LAN) shown in Figure 7. It incorporates the X-linear
attention block into the encoding and decoding operations.

Similar to AoANet, the authors confirm that improving attention measurement is
an effective way of improving the interactions between the visual and textual domains.
Exploiting rich semantic information in images (such as scene graphs and visual relations)
leads to improved performance.
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Figure 7. Simplified X-Linear Attention Network. The encoder and decoder utilize the X-Linear
Attention Block. The decoder also relies on an LSTM. Decoder outputs at each time step therefore
feed into the decoding operation of the next time step.

4.8. Image Transformer

He et al. [90] proposed an image transformer, whose core idea is to increase the width
of the original transformer layer, designed for machine translation, and make it more
suitable for the structure of images. In their image transformer, each layer has several
sub-transformers that capture the spatial relationships between the image regions. The
encoding method makes use of a visual semantic graph as well as a spatial graph. They use
a transformer layer to combine them without external relationship or attribute detectors.

He et al. [90] distinguish between single-stage and two-stage attention-based methods.
The single-stage methods are those in which attention is only applied at the decoding
step with the decoder attending to the most relevant regions. Two-stage methods use
bottom-up attention and top-down attention [35]. The bottom-up uses object detection
based methods to select the most relevant regions; top-down attention then attends to those
detected regions. Although the two-stage methods improve on the single-stage methods,
they have the limitation that the detected regions are isolated and their relationships are
not modeled. This limitation is tackled by scene graph based models. However, the
scene graph models use auxiliary or external models to detect and build the scene graphs.
He et al. [90] introduce a spatial graph encoding transformer layer, which considers the
spatial relationships between the various detected regions in an image.

The model considers three categories of spatial relationships, namely parent, neighbor
and child relationships between the various regions of an image. These categories are
based on the amount of overlap between the regions. Neighbors of a query region are
those regions with no overlap or with overlap below a set threshold; a parent region
contains a query region, whereas a child region is contained by the query region. The
spatial relationships between region pairs are captured using graph adjacency matrices.
For any two regions, l and m, the graph adjacency matrices are defined as represented in
Equation (4). Ωp, Ωn and Ωc are the parent, neighbor and child node adjacency matrices,
respectively, and ε is a given threshold.

Areal =
Area(l ∩m)

Area(l)
and Aream =

Area(l ∩m)

Area(m)

Ωp[l, m] =

{
1, if Areal > ε and Areal > Aream

0, otherwise
(4)
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Ωc[l, m] = Ωp[m, l]

with ∑
i∈{p,n,c}

Ωi[l, m] = 1

As shown in Figure 8, the original transformer layer is widened by adding three paral-
lel sub-transformer layers, each being responsible for a subcategory of spatial relationships.
The decoder incorporates an LSTM and its structure is also widened to correspond to the
encoder; its output is obtained via a gated linear unit.

Figure 8. (a) The original transformer layer and (b) the widened encoding transformer layer of the
image transformer. Each sub-transformer of the widened layer is responsible for a category of spatial
relationship; all share the same query. Ωp, Ωn and Ωc are the parent, neighbor and child node
adjacency matrices.

Since they are incorporating graph information into the transformer, the model is
similar to other graph-extraction techniques. However, they use a transformer, unlike
other graph-extraction techniques [81,82]. The authors point out that their model is more
computationally efficient since the other scene graph extracting models fuse semantic and
spatial scene graphs, and require auxiliary models to first build the scene graph.

4.9. Comprehending and Ordering Semantics

Li et al. [91] develop a model, called COS-Net, that aims at comprehending the
rich semantics in images and ordering them in linguistic order so as to generate visually
grounded and linguistically coherent captions for the images. Their architecture entails four
primary components: cross-modal retrieval, a semantic comprehender, a semantic ranker
and a sentence decoder. The cross-modal retrieval serves to generate semantic cues. The
retrieval uses CLIP [53] to search for all the relevant sentences related to images. The words
of these sentences are then used as the semantic cues. The semantic comprehender filters
out irrelevant semantic cues while at the same time inferring any missing and relevant
semantic words grounded in the image. To carry out the filtering, the comprehender makes
use of grid features derived from a visual encoder based on CLIP. The semantic ranker then
determines a linguistic ordering for the semantic words. The output of the semantic ranker
is used together with the visual tokens of images to auto-regressively generate the output
captions. The implementation is conducted using the x-modaler codebase [92]. The dataset
used for training and testing is MS COCO.

5. Vision-Language Pre-Training in Captioning
5.1. Pre-Training

Recent research has shown pre-training to be a powerful approach in improving
the effectiveness of transformer models. Similarly to other aspects of transformers, the
transformer pre-training was initiated in the domain of natural language processing and
then also found application in the domain of vision. This pre-training of transformer
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models has impacted natural language processing in a similar way to how pre-training
convolutional networks impacted vision applications, e.g., the pre-training on the large
ImageNet dataset for applications such as image classification.

Pre-training is generally carried out on a large corpus and then further fine-tuned on a
smaller dataset which is closely related to the target task. The nature and characteristics
of natural language processing have meant that the corpus for the pre-training need not
be fully labeled, so that the pre-training can be carried out in a self-supervised manner. In
self-supervised learning [93,94], pseudo labels are automatically generated from a dataset
of unlabeled data. The pseudo labels are then used to train a deep learning network on
a predefined pretext task. As shown in Figure 9, the resulting learned parameters of the
network are then transferred to other downstream target tasks via fine-tuning.

Self-supervised learning overcomes the inherent difficulty of acquiring labeled data
for supervised learning, which is often time-consuming and expensive. Self-supervised
learning enables the use of large amounts of readily available, non-annotated data.

In this section we briefly look at pre-training of transformers in the language domain
(Section 5.1.1) followed by the visual domain (Section 5.1.2). We then detail a number of
transformer implementations that employ pre-training for the task of image captioning
(Section 5.2).

Figure 9. General pipeline for self-supervised learning.

5.1.1. Language Pre-Training

The pre-training for transformers was largely pioneered for language modeling tasks.
The sections that follow point out some seminal models that have illustrated the potential
inherent in pre-training. Devlin et al. [95] developed the BERT model (Bidirectional Encoder
Representations from Transformers), which improved learned feature representations by
encoding the left and right context of a word in a sentence, unlike previous methods which
mainly attended to the context on the left of a given word in a sentence.

To enable the bidirectional architecture, they introduced a masked language model
(MLM) training objective, inspired by the Cloze task [96]. In the masked model, one or
more of the tokens in a sentence are masked and the task is to predict the masked tokens
based on the context (the other tokens). In doing so, the model learns to incorporate
the bidirectional context. Previous works had used unidirectional language models for
pre-training. They also introduced the next sentence prediction (NSP) objective. In NSP,
the model is given a pair of sentences and it learns to predict whether or not the second
sentence follows the first. The labels for both MLM and NSP are generated automatically.
The authors successfully fine-tuned their model for several downstream tasks such as
question answering and language inference.

5.1.2. Vision-Language Pre-Training (VLP)

Following the success of BERT, a number of other closely related models were de-
veloped with the same idea of pre-training in mind. Vision-language pre-training brings
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together the vision and language domains and shows that pre-training in the language
domain can also improve performance from downstream tasks from the visual domain.

This approach was illustrated by Lu et al. [97], who developed a model they referred
to as Vision-and-language BERT (ViLBERT). ViLBERT learns joint representations from
the visual and language domains. It extends BERT to a multi-modal domain. The authors
show that visual grounding is a pre-trainable and transferable task. They focus on the
downstream tasks of visual question answering and visual commonsense reasoning, i.e.,
understanding-based tasks. LXMERT [98] is another cross-modality framework that learns
connections between vision and language through vision-language pre-training.

5.1.3. Self-Supervised Pre-Training

A powerful approach that has emerged is that of pre-training models on vast amounts
of image-text pairs collected from the internet. This is motivated by the fact that there
are vast quantities of unstructured natural language data on the internet. This approach
enables models to learn about images directly from raw text. The datasets used in these
approaches are also interesting in that they do not need to be heavily curated and annotated
using expensive and expert human agents. All this makes training at an unprecedented
scale possible. After pre-training, natural language is used to refer to learned concepts
from the visual domain are to describe new concepts not previously seen. Among other
things, this facilitates zero-shot or few-shot transfer of the model to other downstream
tasks. Representative models that employ this approach are CLIP [53] and ALIGN [54].

CLIP refers to Contrastive Language-Image Pre-training (Radfored et al. [53]). CLIP
learns perception from the supervision based on natural language paired with images.
They developed a dataset (WebImageText) consisting of 400 million image-text pairs taken
from the internet. They experiment with two image encoders: one based on ResNet50 [12]
and another based on the Vision Transformer (ViT) [99]. The text encoder is based on
a transformer. They use a contrastive objective based on the cosine similarity function
to learn a multimodal embedding space and to predict correct and incorrect text-image
pairings. The optimization is via a cross entropy loss. The pre-trained model can then be
transferred to various down-stream vision tasks, including in zero-shot settings, where
it matches the performance of strong, fully supervised baseline models. For instance, in
image classification on ImageNet, the CLIP model matches the original ResNet50 without
using any of the crowd-labeled training examples that ResNet50 used.

ALIGN refers to A Large-scale ImaGe and Noisy-text embedding [54]. It is concep-
tually similar to CLIP but differs in that for pre-training, it uses noisy data taken from
a large number of image alt-text pairs using an approach similar to that of Conceptual
Captions [59], but without the expensive filtering or post-processing steps. The resulting
corpus consists of 1.8 billion image-text pairs. The authors show that the scale of their
resulting dataset makes up for the inherent noise and leads to good performance. During
pre-training, they use a dual-encoder architecture to align the visual and language represen-
tations in a joint embedding space. The dual-encoder consists of an EfficientNet-based [100]
image encoder and a BERT-based text encoder coupled with a cosine-similarity function.
For their objective, they use a contrastive loss, similar to CLIP. The aligned vision-language
representations enable zero-shot transfer learning and cross-modal retrieval (image-to-text
and text-to-image).

5.2. VLP in Image Captioning

This subsection focuses on a number of models that employ vision-language pre-
training and include image captioning as one of the downstream tasks.

5.2.1. Unified Vision-Language Pre-Training for Image Captioning and VQA

Zhou et al. [101] present a unified VLP model that can be fine-tuned for the down-
stream tasks of image captioning and visual question answering (vision-language gen-
eration and understanding). Unlike previous models, theirs uses a shared multi-layer
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transformer network for encoding and decoding, for which reason they refer to it as unified
(Figure 10). They point out that their approach is the first to present a single, unified model
that is universally applicable to multiple downstream tasks. Their shared multi-layer trans-
former network is pre-trained on large amounts of image-caption pairs and is optimized
for bidirectional and seq2seq masked language prediction.

Figure 10. Unified VLP overview. The model is unified because the same multi-layer transformer
network does the encoding and decoding; the same model is also fine-tuned for different downstream
tasks, i.e., vision-language generation (image captioning) and understanding (VQA).

5.2.2. OSCAR: Object-Semantics Aligned Pre-Training for Vision-Language Tasks

Li et al. [38] introduce OSCAR, a VLP method to learn generic image-text representa-
tions for vision-language understanding and generation tasks. They employ anchor points
(object tags detected in images) to ease the learning of semantic alignments between image
regions and texts. The motivation is the observation that the salient objects in an image
are often mentioned in the paired texts. These salient objects can accurately be detected
using object detectors. The input of their method consists in the triplet of words, tags
and image regions. The model is pre-trained with two losses: a masked token loss over
words and tags, and a contrastive loss between tags and other polluted tokens. The model
overview is illustrated in Figure 11. The model is pre-trained on a large dataset consisting
of 6.5 m image-text pairs and then fine-tuned for five understanding and two generation
downstream tasks, including visual question answering and image captioning.

The authors point out that existing VLP methods take visual region features and
word embeddings of the paired text as input and then rely on self-attention to learn the
image-text alignments and produce cross-modal contextual representations. A limitation
with this is that it results in ambiguity owing to the oversampled and overlapping regions
from the object detector. They also mention the lack of grounding due to VLP being a
weakly-supervised learning problem: there are no explicitly labeled alignments between
image regions and words or phrases in the text. Their method of using object tags as anchor
points seeks to overcome these two limitations.
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Figure 11. OSCAR overview. The object tags are used as anchor points to align image regions with
word embeddings. The objective function is based on the masked token loss and a contrastive loss.

5.2.3. VinVL: Making Visual Representations Matter in Vision-Language Models

Zhang et al. [39] develop an object detection model that provides object-centric rep-
resentations of images. Their model is bigger than the bottom-up top-down model [35]
and is pre-trained on a larger corpus. Their aim is to generate representations of a richer
collection of visual objects and concepts. They show that visual features matter a lot in VL
models. They use the visual features from their model together with the OSCAR model [38]
to yield improved performance in a number of downstream vision understanding and
generation tasks.

They pre-train a large-scale object-attribute detection model based on the ResNeXt-152
C4 architecture [78]. Since the model is bigger, better designed for VL and trained on
more and larger corpora, it yields richer semantics shown in the richer visual concepts and
attribute information. The object detection model leverages feature pyramid networks [102].
The object detection model is pre-trained on a large-scale corpus and then fine-tuned with
an additional attribute branch on Visual Genome. Thus, it can detect both objects and
attributes.

5.2.4. VIVO: Visual Vocabulary Pre-Training for Novel Object Captioning

Hu et al. [40] present a method of pre-training on image-tag pairs rather than image-
caption pairs to build a visual vocabulary. The model is then later fine-tuned using image-
caption pairs and then tested on a dataset with objects not seen during the image-caption
training or fine-tuning. The visual vocabulary enables the model to reasonably generate
captions on the objects not seen in the fine-tuning dataset. The visual vocabulary is a joint
embedding space where image region features and tags of semantically similar objects are
mapped into vectors that are close to each other. The cosine similarity is used to measure
the distance between image region and tag.

The perceived benefit of this is the possibility of making use of many other datasets
that only contain images and tags to pre-train for the downstream task of image captioning,
given that image-caption datasets may be smaller or fewer and contain less diverse visual
objects. Images paired with machine-generated tags can also be used as weak supervision
signals. Since the tags for training are not ordered, they employ a Hungarian matching loss
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with masked tag prediction to conduct the pre-training. The training objective is to predict
the masked tags given a bag of image-level tags and image regions.

5.2.5. Scaling Up Vision-Language Pre-Training for Image Captioning

In this work, Hu et al. [52] study the scaling behavior of vision-language pre-training
for image captioning. They develop a large-scale image captioner, called LEMON, based
on the transformer architecture and scale the size from 13 million parameters all the way
to 675 million parameters. To carry out the training, they develop ALT200M, a large-scale
dataset that contains up to 200 million image-text pairs and that is based on the alt attribute
of images from the internet. Pre-training is carried out on ALT200M followed by fine-tuning
on MS COCO. They use subsets of ALT200M of various sizes to study the effects of scaling
the dataset. The reference model they use is VinVL [39]; as such, they do not develop any
new model. They evaluate the model using Nocaps [57], which assesses the effectiveness
of the approach in regard to out-of-domain objects. They also test their model on the MS
COCO Karpathy test split [27] as well as Conceptual Captions [59].

Their findings show that the performance of captioning models generally improve
with an increase in the model size as well as the dataset size. More specifically, they show
that larger models benefit more when the dataset size is beyond a certain threshold. In
their experiments, they find that with only 3 million image-text pairs for pre-training, the
performance plateaus early even as the model size increases. This plateauing effect is not
observed (for the model sizes they look at) when there are more than 10 million image-text
pairs for pre-training, i.e., with sufficient data, the performance keeps improving as the
model size increases. This implies that the model capacity is the performance bottleneck,
which suggests that training even larger models could push farther the limits of VLP for
captioning tasks.

5.2.6. SIMVLM: Simple Visual Language Model Pre-Training with Weak Supervision

Wang et al. [103] present the Simple Visual Language Model (SimVLM), which uses
large-scale weak supervision to simplify the vision-language pre-training process by reduc-
ing the reliance on expensive annotated and labeled datasets as well as object detection
pre-training. Their model is also simpler in that it does not not require the use of multiple
auxiliary loss functions (objectives).

They propose the Prefix Language Modeling (PrefixLM) objective. With PrefixLM,
some initial tokens of an input sequence are designated as prefix tokens, which are generally
taken from the image represenation. PrefixLM enables bi-directional attention on the prefix
tokens whereas the remainder of the tokens in the input sequence, generally taken from
textual representation, are processed via the autoregressive factorization (causal attention).
The PrefixLM training objective is given by:

LPre f ixLM(θ) = −Ex∼D[log Pθ(x≥Tp |x<Tp)] = −Ex∼D

 T

∑
t=Tp

log Pθ(xt|x[Tp ,t], x<Tp ])

 (5)

where θ are the trainable model parameters, D is the dataset and x is the input sequence.
x<Tp are the prefix tokens and x[Tp ,t] are the tokens for the autoregressive factorization.
Therefore, PrefixLM takes advantage of bi-directional contextualized representation as well
as autoregressive generation. It ends up being modality-agnostic since it can effectively
deal with the visual and/or the textual domains.

The approach allows images to be considered as prefixes for their corresponding
textual descriptions. The image section of the input sequence is acquired via a transformer
backbone inspired by the Vision Transformer (ViT) [99] and CoAtNet [104]. This approach
eliminates the need for an object detection module since they operate on raw image patches.
The textual section of the input sequence is acquired via tokenization and embedding. The
positional information of the tokens is also incorporated. The bi-directional attention and
causal attention are then carried out on the image and textual tokens, respectively.
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For training, they use the image and alt-text pairs taken from ALIGN [54] together
with the Colossal Clean Crawled Corpus (C4) [105]. The modality-agnostic nature of
their objective allows the model to train on these two datasets made up of image-text
pairs and text-only data. Training on the text-only corpora effectively compensates for the
inherently noisy nature of the alt-text data. They evaluate their model after fine-tuning on
six downstream vision-language tasks, including visual question answering (VQA) and
image captioning (using MS COCO and Nocaps). They also show strong generalization
and transfer ability in zero-shot settings.

5.2.7. “One For All” (OFA) Framework

Wang et al. [106] present a “One For All” framework that aims to be task-agnostic
and modality-agnostic. This work also pursues the objective of task comprehensiveness, in
which a single model can generalize such that it performs well on a large variety of tasks,
including vision-language, vision only and language only tasks. They also demonstrate
their model’s performance in zero-shot learning and task transfer.

Their approach unifies a variety of multimodal and unimodal vision and language
tasks in a sequence-to-sequence learning framework. Their model has the advantage
that it yields state-of-the-art performance despite pre-training on a significantly smaller
dataset than other models pre-trained on large-scale datasets; they pre-train on a dataset of
20 million image-text pairs. For comparison, the pre-training dataset sizes for CLIP [53]
and ALIGN [54] are 400 million and 1.8 billion, respectively.

The architecture is transformer-based and consists of an encoder-decoder model
without task-specific layers added. The image encoder is similar to that of SimVLM [103]
and is based on CoAtNet [104]; it extracts fixed-size patches from images. For the textual
encoding, a given text sequence is transformed into a subword sequence which is then
embedded into features. The inputs from the different modalities are represented in a
unified embedding space. To do this, they discretize data from the visual and textual
domains using vector quantization and byte-pair encoding, respectively, and then represent
them using a unified vocabulary. The downstream tasks and modalities of interest are
then represented in a sequence-to-sequence setting for training. They rely on handcrafted
instructions (instruction-guided pre-training) to differentiate between the different tasks.
To optimize the model, they use a cross-entropy loss that takes into account the input and
an instruction. The training objective (loss function) to be minimized is given by:

L = −
|y|

∑
i=1

log Pθ(yi|y<i, x, s|) (6)

where θ refers to the model parameters, x is the input, s is the handcrafted instruction
and y is the output. This model achieved state-of-the-art performance and in the case of
the downstream task of captioning, it topped the publicly available MS COCO captioning
leaderboard [69] (as of 31 May 2022).

5.2.8. Florence: A New Foundation Model

Florence [107] aims at fostering development of foundation models [108], which
are architectures that learn joint representations and generalize well to a wide range
of downstream tasks with limited additional domain knowledge (zero-shot transfer or
minimal task adaptation). Differing from models such as CLIP [53] and ALIGN [54] which
focus on cross-modal joint representations for classification and retrieval, the Florence
model broadens the representations to include object level, multiple modality and videos.
Florence defines a computer vision foundation model that serves as a general purpose vision
system for various vision tasks that can be mapped onto space-time-modality coordinates.

The different operations of Florence entail data curation, model pre-training, task
adaptations and training infrastructure. Similarly to ALIGN, Florence is trained on large-
scale, noisy web-data (900 million image-text pairs) with a unifying image-text contrastive
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learning objective based on UniCL [109]. For pre-training, a transformer-based encoder-
decoder model is used. For tasks adaptation, various adapters are employed which make it
extensible and transferable.

Although the authors do not report results for image captioning, we look at their
model since being a foundation model, it is applicable to image captioning as well.

5.2.9. Contrastive Captioners Are Image-Text Foundation Models

This work proposes a Contrastive Captioner (CoCa) [110] to pre-train a foundation
model [108] jointly with a contrastive loss and a captioning loss. They employ a transformer-
based encoder-decoder architecture. A distinguishing feature of their decoder is that the
first half of the layers only attend to the unimodal textual representations, omitting the
outputs of the image encoder. The second half of the decoder cross-attends to the encoder
outputs as well to produce the multimodal image-text representations. The contrastive
loss is applied to the image encoder and the unimodal section of the decoder whereas the
captioning loss is applied to the multimodal section of the decoder, which enables it to
generate textual tokens in an autoregressive manner. Their overall loss function is given by:

LCoCa = λCon · LCon + λCap · LCap, (7)

where LCon and LCap are loss weighting hyper-parameters. The pre-training is performed
using alt-text data as well as annotated images; all labels are simply treated as text. CoCa
unifies into a single model and single pre-training stage the three training paradigms
of single-encoder (such as in image classification), dual-encoder (such as in contrastive
learning for image-text alignment) and encoder-decoder (such as in image captioning and
multimodal representation). CoCa gives state-of-the-art results on tasks pertaining to the
categories of visual recognition, cross-modal alignment, image captioning and multimodal
understanding. As an indication of the model performance in image captioning, they do
not use CIDEr-optimization and yet their model performs competitively against other
models that are CIDEr-optimized.

5.2.10. GIT for Vision and Language

The Generative Image-to-text Transformer (GIT) [111] focuses on simplicity. The
architecture entails just one multi-modal encoder and one text decoder. The image encoder
employed is a vision transformer [99], which therefore eliminates the need for an object
detector. The encoder is pre-trained using a contrastive objective on a large-scale dataset
consisting of 0.8 billion image-text pairs. The text decoder is a standard transformer;
it is trained using the language modeling objective, which aligns the input image and
the corresponding textual caption. It also generates text in an autoregressive manner.
Their approach separates the pre-training based on the contrastive language modeling
objectives, contrary to the approach used in CoCa [110], which unifies the training using
these objectives. A key feature of their model is that they use a self-attention mechanism
for the decoder that attends to both the image and text representations, i.e., they are
concatenated. This is as opposed to using self attention separately on the text tokens
and then incorporating the visual information via cross-attention in the transformer stack.
They show that in a large-scale pre-training setting, their approach achieves superior
performance. However, in a smaller-scale setting, the cross-attention approach outperforms
the pure self-attention approach.

GIT is simple but achieves state-of-the-art performance. This could largely be at-
tributed to the scaling up of the training data (0.8 B image-text pairs) and the model size
(0.7 B parameters). They evaluate their model on challenging benchmarks in image and
video captioning, visual question answering, image classification and scent text recog-
nition. As of 22 August 2022, a variant of GIT topped the publicly available MS COCO
leaderboard [69].
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5.2.11. Universal Captioner

Cornia et al. [112] propose a model that can generate in- and out-of-domain captions
characterized by the natural descriptive style and fluency of human captions. Their model
trains well on datasets with different descriptive styles and semantic concepts, i.e., non-
uniform or heterogeneous sources, and manages to separate the content from the descriptive
style. The non-uniform sources are made up of curated datasets as well as weakly labeled
or noisy web-scale datasets. A chief goal of the work is to foster the ability to describe more
real-world concepts with a high level of caption quality.

The architecture entails a transformer-based encoder-decoder. The encoding of the
images is based on a self-attentive visual encoder [99] and is, therefore, carried out without
the need for an object detector. They use a large-scale multi-modal model based on CLIP [53]
to extract pivotal keywords, which then help to train in a style-aware manner that enables
the transfer of semantic concepts between sources. The pivotal keywords are similar in
concept to the object tags used in OSCAR [38]; however, they take the style into account.
The decoder then jointly takes in the CLIP-based keywords, style and other text to generate
the caption in an autoregressive manner. In terms of the objective loss function for training,
they only use unidirectional language modeling coupled with a prompting strategy, which
highlights the simplicity of their approach. During inference, predictions are conditioned
on a dataset indicator parameter, which is chosen according to the desired generation style.
Their training is on a dataset of 35.7 million images.

5.2.12. PaLI: A Jointly-Scaled Multilingual Language-Image Model

The Pathways Language and Image (PaLI) model [55] combines inputs from the vision
and language domains and generates outputs in the language domain. A key feature
of this model is that is uses a very large-scale encoder-decoder language models and an
enormous Vision Transformer (ViT-e) image model; the models in these two domains have
been pre-trained separately. The reuse of the large unimodal backbones for language and
vision modeling enables a significant reduction in training cost.

The resulting model is pre-trained on a very large-scale dataset, the Web Language
Image (WebLI) dataset [55], which has the distinction of being very large-scale and multi-
lingual. WebLI encompasses over a hundred languages and contains more than 10 B image-
text pairs, which surpasses all the other datasets commonly used for vision-language
pre-training. With this approach, the authors try to achieve a jointly scaled model and over-
come the limitation which often results from the fact that language models tend to be much
larger and trained on larger datasets compared to the vision models. The model performs
well on several downstream language, vision and vision-language tasks, including image
captioning and visual question answering.

The architecture of PaLI is simple and scalable. It consists of an enormous vision
transformer that encodes an image into tokens which are then fed, together with encoded
text tokens, into a large scale transformer-based encoder-decoder to produce the textual
output. Tasks are therefore framed using an “image + query to answer” modeling interface.
The high performance of the model comes in large part from the sheer size of the model as
well as of the dataset on which it is trained; although the WebLI dataset has 10 B image-text
pairs, they train their model on a subset of 1 B examples (so as to only use high-quality
examples).

5.2.13. BLIP-2

Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large
Language Models (BLIP-2) [113] is a model that consists of a lightweight querying trans-
former (Q-former) that acts as a bridge between two off-the-shelf large-scale unimodal
transformers that have been pre-trained and then frozen. Therefore, the training of the
model is only conducted on the bridge resulting in a generic and compute-efficient vision-
language pre-training method. The first large-scale pre-trained transformer is an image
encoder which extracts features from the visual domain, which then acts as an input to the
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Q-former. The Q-former output is fed to the second large-scale pre-trained transformer,
which is a large language model (LLM). BLIP-2 achieves state-of-the-art performance on
several vision-language tasks including image captioning, visual question answering and
image-text retrieval.

6. Discussion and Analysis

In this Section we give an analysis and comparison of the various transformer-based
image captioning models that have been assessed in Sections 4 and 5. We begin by looking
at the major contributions of the various models, together with the datasets employed and
some of the basic design choices. We then look at some quantitative aspects by comparing
the performance of the different models based on the standard evaluation metrics.

6.1. Major Contributions

Table 3 gives a summary of the major contributions of the various transformer-based
captioning methods that do not use vision-language pre-training. The Conceptual Captions
transformer [59] is one of the earlier models that employed a transformer for captioning,
shortly after the transformer was pioneered [36]. It had an associated dataset released
(dubbed Conceptual Captions) which contains an order of magnitude more images thant
the MS-COCO dataset.

Table 4 shows the major contributions of the methods that employ vision-language
pre-training. It is interesting to note that the inherent design of the VLP transformers
facilitated their application to multiple downstream vision-language tasks, resulting in very
versatile models. VLP generally requires large amounts of data so a number of large-scale
datasets associated with some of the models were created.

Table 3. Major contributions of the non-VLP transformer-based models.

Model Major Contributions

Conceptual Captions transformer [59] A novel dataset (Conceptual Captions) which contains an order of magnitude more images
than the MS-COCO dataset.

Stacked attention transformer [77] Multi-level supervision that utilizes the outputs of multiple transformer layers to generate
output tokens and calculate the loss.

Object relation transformer [79] Object relation transformer (using geometric attention) that incorporates the spatial rela-
tionships between various objects.

Attention on Attention [84] Attention on Attention module, which doubly applies attention to determine object
relationships and filter out irrelevant attention results.

Entangled Transformer [85] Entangled attention, which exploits semantic and visual information; Gated Bilateral
Controller to control visual and semantic interactions.

Meshed-Memory Transformer [86] Mesh-like multi-level structure to capture high-level and low-level image region relations.

X-Linear Attention Networks [87] Unified X-Linear attention block that models the second-order interactions with both
spatial and channel-wise bilinear attention.

Image Transformer [90] A modified attention module suited to the complex natural structure of image regions.

COS-Net [91] A semantic comprehender that grasps and orders the rich semantics in images to generate
linguistically coherent captions. They use the x-modaler codebase.
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Table 4. Major contributions of the VLP transformer-based models.

Model Major Contributions

OSCAR [38] The use of object tags as anchor points for cross-modal representation learning; a novel pre-training
objective.

Unified VLP [109] A single unified multilayer transformer network for encoding and decoding that is universally
applicable to multiple downstream tasks.

VinVL [39] An enhanced object detection model; they demonstrate that visual features matter significantly in
VL models.

VIVO [40] Creation of visual vocabulary by pre-training on image-tag pairs rather than image-caption pairs.

LEMON [52] An empirical study of the effects of scaling up VLP; ALT200M, a large-scale pre-training dataset based
on alt attribute of internet images.

SIMVLM [103] A single Prefix Language Modeling objective which enables bi-directional contextualized representa-
tion and autoregressive generation.

CLIP [53] An efficient and scalable way to learn image representations using a large dataset of image-text pairs
collected from the internet.

ALIGN [54] A large-scale dataset of 1.8 B image-text pairs from the internet without expensive processing; useful
for image representations via pre-training.

OFA [106] A “one-for-all” seq-to-seq framework that is task-agnostic, modality-agnostic and task comprehensive.

CoCa [110] A Contrastive Captioner that pre-trains a foundation model jointly with contrastive and captioning
losses combined into a single objective.

GIT [111] A simplified architecture of an image encoder and a text decoder under one language modeling task.
A new scheme of generation-based image classification.

Universal Captioner [112] A model capable of generating in/out-of-domain captions characterized by the natural descriptive
style and fluency of human captions.

PaLI [55]
Joint scaling of vision and language components resulting in a model that performs vision-language
tasks in many languages; WebLI, a large-scale database with 10 B image-text pairs in more than
100 languages.

BLIP-2 [113]
A lightweight querying transformer that acts as a bridge between two off-the-shelf large-scale
unimodal transformers pre-trained and then frozen; results in compute-efficient vision-language
pre-training.

6.2. Datasets and Metrics

Table 5 shows the datasets and the metrics used by the non-VLP and VLP models.
With regard to the datasets, it is seen that the MS COCO dataset has been used by all the
models. Results reported based on the MS COCO dataset therefore offer a good basis of
comparison of different models. The Visual Genome dataset is largely used for pre-training
of the feature extractor, especially in cases where the attributes and object relationships are
required to provide richer features.

The methods that use VLP usually require much larger datasets for the pre-training.
Therefore, the some of the VLP methods resulted in the creation of large-scale datasets.
Illustrative examples are the ALT200M [52], WebImageText those used by CLIP [53] and
ALIGN [54] datasets. CoCa uses the JFT-3B dataset [114]. CC3M and CC12M are variants
of Conceptual Captions; WIT is the Wikipedia-based image text dataset. Together with
large datasets, the VLP methods entail increasingly larger model sizes.

The metrics used have been standard, which facilitates the comparison of the various
models. The metrics are useful for offline as well as online evaluation on the official MS
COCO test server. The COS-Net model [91] makes use of the CHAIR metric [115], which is
used to measure object hallucination. However, since this is not used by the other models,
it cannot be used here for comparison purposes.
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Table 5. Datasets and metrics used by VLP and non-VLP models. CC is Conceptual Captions. B
refers to BLEU-4, S to SPICE, M to METEOR, R to ROUGE-L, C to CIDEr and CH to CHAIR [115].
VG refers to Visual Genome and OI to OpenImages. Section 2 has more details on the datasets and
metrics themselves.

Model VLP Datasets Metrics

Conceptual Captions transformer [59] 7 MS COCO, CC B, M, R, C
Stacked attention transformer [77] 7 MS COCO B, R, C
Object relation transformer [79] 7 MS COCO B, S, M, R, C
Attention on Attention [84] 7 MS COCO; ImageNet, Visual Genome B, S, M, R, C
Entangled Transformer [85] 7 MS COCO B, S, M, R, C
Meshed-Memory Transformer [86] 7 MS COCO, Nocaps, Visual Genome B, S, M, R, C
X-Linear Attention Networks [87] 7 MS COCO, ImageNet, Visual Genome B, S, M, R, C
Image Transformer [90] 7 MS COCO, ImageNet, Visual Genome B, S, M, R, C
COS-Net [91] 7 MS COCO B, S, M, R, C, CH
OSCAR [38] 3 MS COCO, CC, SBU, Flickr30k, VQA, GQA, Nocaps B, S, M, C
Unified VLP [109] 3 MS COCO, CC, Flickr30k, VQA v2.0; VG B, S, M, C
VinVL [39] 3 MS COCO, OI v5, Objects365, VG; CC, SBU, Flickr30k; VQA, GQA B, S, M, C
VIVO [40] 3 MS COCO, Nocaps; OI B, S, M, C
LEMON [52] 3 MS COCO, Nocaps, CC, ALT200M B, S, M, C
SIMVLM [103] 3 ALIGN, C4, MS COCO, Nocaps B, S, M, C
OFA [106] 3 MS COCO, CC, SBU, VG B, S, M, C
CoCa [110] 3 MS COCO, Nocaps, JFT-3B, ALIGN B, S, M, C
GIT [111] 3 MS COCO, CC, SBU, VG, ALT200M B, S, M, C
Universal Captioner [112] 3 MS COCO, Flicker30k, SBU, CC, WIT, YFCC100M, OI B, S, M, R, C
PaLI [55] 3 WebLI, MS COCO, Nocaps, TextCaps, VQA C
BLIP-2 [113] 3 MS COCO, VG, CC3M, CC12M, SBU B, C

6.3. Training and Model Parameters

Table 6 shows the sizes of the non-VLP models. XE is the cross-entropy loss and
SCST is the Self-Critical Sequence Training; N are the number of stacked layers, d the
dimensionality of the layers and h the number of heads. Many of the models employ a
transformer with a size similar to the original transformer used by Vaswani et al. [36], i.e.,
with the number of sub-layers, N = 6, the embedding dimensionality, d = 512 and the
number of heads, h = 8. The models in Table 6 predominantly use Faster-RCNN [15] as the
feature extractor. However, COS-Net [91] deviates from this pattern and uses a more recent
feature extractor based on CLIP [53].

Table 6. Training and model details for non-VLP models. XE: cross-entropy loss, SCST: self-critical
sequence training (CIDEr optimization).

Model Feature Extractor Training Objective Optimizer Transformer Details
N d h

Conceptual Captions [59] Inception-ResNet-v2 XE Adagrad 6 512 8
Stacked attention transformer [77] ResNext XE Adam 6 512 8
Object relation transformer [79] Faster RCNN XE, SCST Adam 6 512 8
Attention on Attention [84] Faster RCNN XE, SCST Adam 6 1024 8
Entangled Transformer [85] Faster RCNN XE, SCST Adam 6 512 8
Meshed-Memory Transformer [86] Faster RCNN XE, SCST Adam 6 512 8
X-Linear Attention Networks [87] Faster RCNN XE, SCST Adam 4 512 -
Image Transformer [90] Faster RCNN XE, SCST Adam 3 1024 8
COS-Net [91] CLIP-grid features XE, SCST Adam 6 512 -

For training and optimization, most of the models used cross-entropy optimization.
This method is based on the use of the cross-entropy loss during optimization. A recent
approach also employed by most of the models and which has become a standard opti-
mization for image captioning is the Self-Critical Sequence Training (SCST) optimization,
pioneered by Rennie et al. [116]. SCST optimization makes use of reinforcement learning to
specifically optimize for the CIDEr evaluation metric, which is a fundamental metric used
in the comparison of different models and for reporting results on the MS COCO captioning
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leaderboard. SCST is used for fine-tuning after initial training using cross-entropy optimiza-
tion. For the weight updates performed during back propagation, the approach that was
predominantly used was the Adam optimizer [117]. However, Conceptual Captions [59]
uses Adagrad.

Table 7 shows the details of the models that employ VLP. Compared to the non-VLP
counterparts, these models tend to be much larger, especially when considering the number
of layers and heads. The VLP models usually have several sizes for experimentation, which
are typically labelled ’Base’, ’Large’ and ’Huge’. In Table 7, the best-performing size of each
model is the one that has been taken into account.

Table 7. Training and model details for VLP models. MTL-b: bidirectional Masked Token Loss,
MTL-s: seq2seq Masked Token Loss, XE: Cross-Entropy loss, CL: Contrastive Loss, SCST: Self-Critical
Sequence Training, PxLM: Prefix Language Modeling.

Model Feature Extractor Objective (Loss) Optimizer Transformer Details
Pre-training Fine-tuning N d h

OSCAR [38] Faster RCNN MTL-b, CL2 MTL-s, SCST AdamW 24 1024 16
Unified VLP [109] Faster RCNN MTL-bs MTL-s, SCST Adam 12 768 12
VinVL [39] ResNeXt-152 C4 MTL-b, CL3 MTL-s, SCST AdamW 24 1024 16
VIVO [40] Faster RCNN MTL-b, Hungarian MTL-s, SCST Adam 24 1024 16
LEMON [52] Faster RCNN MTL-s MTL-s, SCST AdamW 32 1280 16
SimVLM [103] ViT; CoAtNet PxLM PxLM AdamW 32 1280 16
OFA [106] CoAtNet XE XE, SCST AdamW 24 1280 16
CoCa [110] ViT CL, XE XE Adafactor 36 1408 16
GIT [111] CoSwin [107] CL, XE CL, XE, SCST AdamW 6 768 12
GIT2 [111] DaViT [118] UniCL [109], XE CL, XE, SCST AdamW 24 1024 16
Universal [112] CLIP-ViT [53] Unidirectional LM Prompt LM, SCST LAMB [119], Adam 24 1024 16
PaLI [55] ViT-e XE XE Adafactor 56 1792 16
BLIP-2 [113] CLIP-ViT CL, MTL-s, PxLM CL, MTL-s, PxLM AdamW 12 768 12

It is worth noting that many of the VLP models deviate from the use of Faster-RCNN
as a feature extractor and instead use extractors based on vision transformers [99]. Faster-
RCNN has served as a powerful feature extractor for a number of years but the effectiveness
of transformer-based feature extractors has resulted in a shift in this area. This has yielded
significant improvements in performance and has reduced the reliance on an explicit object
detector. It has further shown that the vision part of vision-language models really does
matter [39].

As seen from Table 7, the loss functions of the VLP methods are more varied. Apart
from the objective loss function used during fine-tuning, they also have an objective loss
function for the pre-training. For the pre-training, a common approach is to use the Masked
Token Loss (MTL) [38]. The MTL is similar to the Masked Language Modeling (MLM) used
in BERT [95]. Whereas in BERT the tokens only pertain to the language domain, in VLP the
tokens can belong to the language or visual (image) domain. In Table 7, MTL-b refers to a
Masked Token Loss that is bidirectional, whereas MTL-s is sequence-to-sequence [120]. CL2
and CL3 are two-way and three-way [38] contrastive loss functions, respectively. MTL and
CL are particularly useful during the pre-training stages, where large-scale text-image-pair
datasets are employed. Cross-entropy loss (XE) and CIDEr optimization (SCST) are then
used in a similar manner to the non-VLP methods. The effectiveness of the VLP methods is
made manifest in the fact that some of the models ([103,110]) do not use SCST optimization
and yet they achieve comparable performance to the non-VLP methods that use SCST.
VIVO [40] uses the Hungarian matching loss [121] to address the unordered nature of
image tags. Some of the models ([103,106,111,111]) stand out for their simplicity in that
they use the same objective for pre-training and fine-tuning.
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6.4. Results and Performance Metrics

When discussing the results for image captioning, the offline performances based on
the Karpathy splits [27] as well as the online performance on the MS COCO evaluation
server [68] are often considered. The performance on the Karpathy splits is very useful for
purposes of comparison since not all methods will appear on the online server.

Table 8 shows the offline performance metrics of the VLP and non-VLP models.
The results for Conceptual Captions were only reported for the online evaluation server
and have therefore been left out of Table 8. The CIDEr results are all based on cross-
entropy optimization with CIDEr optimization (SCST). A gradual improvement of the
results is noted when moving towards the more recent models. COS-Net [91] achieves the
best performance among the non-VLP models assessed. The performance of COS-Net is
remarkable since, being a non-VLP model, it outperforms a number of other models that
use VLP. This goes to show the effectiveness of performing grid feature extraction using
an encoder based on CLIP as well the approach of comprehending and ordering the rich
semantics in images.

Table 8. Offline performance (Karpathy test split) of the VLP and non-VLP models. B refers to
BLEU-4, S to SPICE, M to METEOR, R to ROUGE-L and C to CIDEr. C† gives values for CIDEr
optimization.

Model VLP B S M R C C†

Stacked attention [77] 7 33.3 - - 54.8 - 108.1
Object relation [79] 7 38.6 22.6 28.7 58.4 - 128.3
AoA [84] 7 40.2 22.8 29.3 59.4 122.7 132.0
Entangled [85] 7 39.9 22.6 28.9 59.0 119.3 127.6
Meshed-Memory [86] 7 40.5 23.5 29.7 59.5 - 134.5
X-Linear [87] 7 40.7 23.8 29.9 59.7 122.1 135.3
Image Transformer [90] 7 39.5 22.8 29.1 59.0 - 130.8
COS-Net [91] 7 42.9 24.7 30.8 61.0 129.5 143.0
OSCAR [38] 3 41.7 24.5 30.6 - 127.8 140.0
Unified VLP [109] 3 39.5 23.2 29.3 - - 129.3
VinVL [39] 3 41.0 25.2 31.1 - 130.8 140.9
VIVO [40] 3 34.9 21.7 28.4 - 119.8 -
LEMON [52] 3 42.6 25.5 31.4 - 139.1 145.5
SimVLM [103] 3 40.6 25.4 33.7 - 143.3 -
OFA [106] 3 44.9 26.6 32.5 - 145.3 154.9
CoCa [110] 3 40.9 24.7 33.9 - 143.6 -
GIT [111] 3 44.1 26.3 32.2 - 144.8 151.1
GIT2 [111] 3 44.1 26.4 32.2 - 145.0 152.7
Universal [112] 3 42.9 25.2 31.5 - - 150.2
PaLI [55] 3 - - - - 149.1 -
BLIP-2 [113] 3 43.7 - - - 145.8 -

For the VLP models, the Rouge Metric has been omitted since many of the authors
of these VLP models do not report it. The CIDEr performance is indicated in the case of
cross-entropy loss and SCST CIDEr optimization. In all instances where there is CIDEr
optimization, there is an improvement over plain cross-entropy loss, which shows the
effectiveness of CIDEr optimization. The improvements gained from vision-language
pre-training are evident when comparing the non-VLP and VLP results in Table 8. The
OFA [106] and GIT2 [111] models have the best performance, achieving CIDEr scores of
154.9 and 152.7, respectively. Note that GIT2 is a bigger version of GIT. The Universal
Captioner [112] also achieves a high CIDEr score of 150.2, which supports the effectiveness
of their approach of taking the natural descriptive style of captions into account to generate
more fluent and human-like captions.

Table 9 shows the online performance of both the non-VLP and VLP models on the
MS COCO evaluation server (for the cases in which those results are available). The
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VLP methods continue to yield better performance than the non-VLP methods. The best-
performing models are GIT and OFA, which corroborates their good performance as
reported in the offline Karpathy splits. As of 17th August 2023, GIT2, OFA and GIT were at
the top three positions on the public leaderboard [69].

Table 9. Online performance based on the evaluation test server. CIDEr values are based on evaluation
with 40 reference captions per image.

Model B M R C

Conceptual Captions [59] - 0.4 0.7 1.0
AoA [84] 71.2 38.5 74.5 129.6
Entangled Transformer [85] 70.2 38.0 73.9 124.4
Meshed-Memory [86] 72.8 39.0 74.8 132.1
X-Linear [87] 72.4 39.2 75.0 133.5
Image Transformer [90] 71.5 38.4 74.5 129.6
VinVL [39] 74.9 40.8 76.8 138.7
COS-Net [91] 74.7 40.1 76.4 138.3
OFA [106] 78.7 42.7 79.0 149.6
GIT [111] 78.3 42.0 78.4 148.8
GIT2 [111] 78.3 42.1 78.4 149.8

6.5. Out-of-Domain Captioning

A key challenge for captioning systems is that they largely perform well on test sets
closely related to the training datasets whereas when gauged against other out-of-domain
datasets, their performance is wanting.

In trying to meet this challenge, Hendricks et al. [122] proposed the Deep Composi-
tional Captioner (DCC) to enable generation of captions relating to objects not present in
paired image-sentence datasets used during training. Their image encoder is a CNN and
the decoder for the language model is an LSTM. They developed their out-of-domain test
dataset by holding out a subset of the MS COCO dataset, ensuring that the out-of-domain
dataset has objects not seen during training. Venugopalan et al. [123] developed the Novel
Object Captioner (NOC), which was an extension of DCC [122].

Yao et al. [124] developed LSTM-C, which is a Long Short-Term Memory with a
Copying Mechanism. The copying mechanism gives the model the ability to select novel
objects learned from external sources and insert them at the appropriate places in the
generated captions. Li et al. [125] developed a similar model (Long Short-Term Memory
with Pointing, LSTM-P), which enabled vocabulary expansion and incorporation of novel
object categories via a pointing mechanism.

Lu et al. [126] came up with Neural Baby Talk, an attention-based method for cap-
tioning that is based on using visual concepts from an image to fill in slots in a sentence
template. The visual concepts are derived from object detectors. This allows the use of
different object detectors to help fill in the template slots. This lends itself to generating
sentences based on out-of-domain images entailing novel objects not seen during training.
The Decoupled Novel Object Captioner (DNOC) [127] follows a similar approach of filling
in slots, referred to as placeholders. The Switchable Novel Object Captioner [128] was an
extension of the DNOC model in which the placeholder during sentence generation was
replaced by a proxy visual word, which is meant to enable generation of better sentences by
taking advantage of visual similarities between novel objects and seen objects. They used
a switchable LSTM which switches between standard LSTM sentence generation and re-
trieving object classes from a key-value object memory. Anderson et al. [129] developed an
architecture-agnostic model, which uses a constrained beam search to enforce the inclusion
of selected words (novel object classes) in the generated captions.

Many of the works follow the approach of [122] of using a held-out subset of MS COCO
for the out-of-domain dataset. The interest in this research area has brought about the
creation of the Novel Object Captioning at Scale (Nocaps) dataset [57]. This dataset offers
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a large-scale benchmark which is geared towards improving out-of-domain captioning.
Nocaps draws from MS COCO and the Open Images dataset, which contains many object
categories not present in MS COCO. It has been seen that models that perform well on the
standard MS COCO do not necessarily perform very well on Nocaps or when exposed to
test sets containing object classes not seen during training.

Table 10 shows the CIDEr scores of the VLP models on the Nocaps dataset [57]. The
‘in’, ‘near’ and ‘out’ refer to the metrics based on the in-domain, near-domain and out-of-
domain subsets, respectively. The in-domain subset contains images with object classes
seen during training, the out-of-domain subset has images with object classes not seen
during training and the near-domain subset has images with both in-domain and out-of-
domain object classes. There is generally a decrease in the performance when it comes to the
out-of-domain scores, showing the increased difficulty in carrying out the out-of-domain
captioning. The higher CIDEr scores in Tables 8 and 9 compared to those in Table 10 also
illustrates the same challenge of out-of-domain captioning.

Table 10. CIDEr scores for VLP models on the Nocaps test split dataset.

Model In Near Out Overall

OSCAR [38] 84.8 82.1 73.8 80.9
VIVO [40] 89.0 87.8 80.1 86.6
VinVL [39] 98.0 95.2 78.0 92.5
LEMON [52] 112.8 115.5 110.1 114.3
SimVLM [103] 113.7 110.9 115.2 112.2
CoCa [110] - - - 120.6
GIT [111] 122.4 123.9 122.0 123.4
GIT2 [111] 124.2 125.5 122.3 124.8
UniversalCap [112] 118.9 120.6 114.3 119.3
PaLI [55] - - - 124.4
BLIP-2 [113] 123.7 120.2 124.8 121.6

7. Challenges and Future Directions

The models assessed in the previous sections have shown the potential and power of
transformers in the specific computer vision task of image captioning. The transformer
models have yielded better performance than the previous mechanisms. Despite the fact
that there have been clear advancements, there remain a number of open challenges, which
present a wide field for research in the area. Image captioning continues to be an active
area of research as evidenced by the frequent and current submissions of improved models
to the MS COCO leaderboard [69]. In this section, we look at some of the open challenges
and discuss some of the emerging trends and future directions related to transformers in
image captioning.

7.1. Better Multimodal Alignment

Image captioning is one of various tasks that have shown the power of models incor-
porating different modalities. In this case the models entail the vision and the language
domains. A key challenge in this regard is coming up with better ways to improve the
cross-modal representations of the different domains viz. vision and language domains.
Li et al. [38] pointed out the lack of grounding, i.e., the lack of explicitly labeled alignments
between image regions and words in corresponding texts. Closely related to this is the
ambiguity of the visual representations in the semantic embedding space. The ambigu-
ous and overlapping region features in the embedding space are illustrated in Figure 12.
Li et al. [38] proposed the use of object tags for a better alignment. In [112] pivotal keywords,
which take the style into account, are proposed for better alignment. The use of large-scale
text-image-pair datasets for vision-language pre-training using contrastive and masked
language modeling losses also considerably assists in improving the multimodal alignment.
There is, however, a need for more research on better ways of achieving the alignment
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between region features and words as this will result in clearer and more precise generated
captions for images.

Figure 12. Ambiguous and overlapping region features from images with couches and dogs. In
the semantic embedding space for images,there is a lot of overlap. The word embeddings on the
other hand are more distinct. Multimodal alignment can help disambiguate the image semantic
embeddings.

7.2. Visual Feature Representation

The bottom-up model of Anderson et al. [35] relied significantly on the well-annotated
and attribute-rich Visual Genome dataset [58]. Their object detector was based on Faster
RCNN [15]. Their model showed the usefulness of enriching the visual features by em-
ploying a variety of other object attributes of image regions instead of only using the object
names. Since its invention, the bottom-up model has became the de facto image extractor
for many of the subsequent models.

Zhang et al. [39] further showed that the visual features really do matter in image
captioning systems. Many previous models had focused on the encoder-decoder aspect of
captioning while leaving the feature extractor virtually untouched since the invention of
the bottom-up attention model. The VinVL model [39] focused on improving the feature
extractor by improving on the underlying object detection through building a bigger and
better model as well as employing much larger datasets for training.

We expect that there will be renewed interest and further research in improving the
feature extractor used in captioning models. Subsequent to Faster RCNN [15] and the
bottom-up approach [35], which have come to constitute a standard approach in object
detection, there have been a number of recent developments in object detectors which have
yielded improved results.

The Faster RCNN and its family of object detectors are two-stage object detectors,
which enjoy relatively high accuracy. However, they tend to be slower than the one-stage
object detectors. Single Shot Detector (SSD) [130] and You Only Look Once (YOLO) [131]
are classic one-stage object detectors and when they were introduced, they represented a
significant step towards real-time object detection. There have been subsequent versions
of YOLO released [132–135], which have consistently improved on speed and accuracy.
YOLOv3 was already as accurate as SSD but three times faster. The most recent ver-
sion in the YOLO family is YOLOv7 [136] and there is already ongoing work to release
YOLOv8 [137].

Other recent object detectors include [102,138–140]. The recent transformer-based
detectors, such as DETR [121], have demonstrated improved performance and facilitate the
design of end-to-end transformer-based vision models. More research and advancements
in these areas will yield greater benefits for the vision part of captioning systems and other
computer vision tasks.

7.3. Cross-Fertilization across Domains

There has been a marked interplay of computer vision and natural language processing
(NLP). A number of the advancements that have arisen in computer vision models have
been inspired by advancements in the natural language processing domain, and vice versa.
Machine translation in particular has had a great impact on image captioning systems. Out
of machine translation was born the encoder-decoder framework that has come to dominate
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the field of captioning. The attention mechanisms and transformer models that are used in
the current state-of-the-art models also had their origins in the language domain.

The language domain has also benefited from some of the approaches used in the
vision domain. An example of this is the pre-training of models on large amounts of data to
create better-performing natural language processing models. Through this approach, the
NLP models end up benefiting from transfer learning and domain adaptation [141]. This
kind of transfer learning is a concept that was previously used in computer vision with great
success. Many vision models commonly use the large ImageNet dataset [49] pre-training
and initialization of the parameters prior to subsequent fine-tuning on downstream tasks
such as image classification, object detection and segmentation. ImageNet greatly facilitates
the learning of general low-level visual features. ImageNet has had a tremendous impact
in the field of computer vision. Together with ImageNet, the Visual Genome dataset [58]
and OpenImages [51] have also proven useful for such pre-training. The large-scale use of
pre-trianing in natural language tasks resulted in the ImageNet moment for NLP [142].

The adoption of mechanisms and models from one domain to another is an approach
that will continue to happen as each of the domains becomes enriched. With the most recent
approach in image captioning relying on transformers, it will be important to keep looking
out for new developments in the language domain that can further improve performance
of the captioning systems and computer vision in general.

7.4. Vision-Language Pre-Training (VLP)

It was shown in Section 5 that vision-language pre-training is a powerful approach to
improve the performance of captioning systems. VLP makes it possible to perform training
using unsupervised or weakly supervised techniques. VLP is specifically pre-training that
takes place across domains. It is expected that this will continue to be the trend given
that it is worthwhile to research on different ways of improving on the pre-training. For
instance, whereas OSCAR [38], Unified VLP [101], VinVL [39] and VIVO [40] all employed
pre-training, VIVO focused on a different kind of pre-training which leveraged on building
a visual vocabulary and pre-training without the use of complete image captions. This had
the consequent result of its better performance in out-of-domain captioning as measured by
results drawn from the Nocaps dataset [57]. Recent approaches have entailed pre-training
on image-text pairs.

7.5. Bigger Datasets and Models

In machine learning, bigger datasets and models have often resulted in better per-
formance. In image captioning, this has been shown to a great extent by models such as
OSCAR [38] and VinVL [39], which combined a number of big datasets to create an even
bigger dataset for pre-training and training. Following those works, models trained on
even bigger datasets have been presented. The ALT200M [52], WebImageText used by
CLIP [53] and the ALIGN [54] datasets have sizes to the tune of 200 million, 400 million
and 1.8 billion image-text pairs, respectively. As [52] showed that with sufficient data, the
performance keeps improving as the model size increases, we can expect to see increasingly
larger datasets.

The larger datasets are accompanied by increasingly larger models. It was also shown
by [52] that the model capacity is the performance bottleneck. The big model of the original
transformer [36] had 213 million parameters, whereas models such as GIT [111], OFA [106]
and CoCa [110] have 545 M, 930 M and 2.1 B parameters, respectively, for their large or
giant models. Although the original transformer was purely in the NLP domain whereas
GIT, OFA and CoCa combine vision and language, the difference in sizes is, however,
illustrative of the fact that the models are getting bigger and bigger.

7.6. More Out-of-Domain Captioning

The results of the works reviewed show that there is still plenty of room for research
and improvement, especially when it comes to out-of-domain captioning. Many of the
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high-performing models were initially geared towards the MS COCO dataset, which largely
involved in-domain captioning. Moving forward, we will see more works based on this
challenging Nocaps benchmark [57] and similar datasets. Nocaps also improves on the
previous approach of a held-out MS COCO subset [122]. Further research in out-of-domain
captioning is useful since the captioning systems are eventually intended to be used in all
environments including those that are markedly different from the training environment.

7.7. Few-Shot and Zero-Shot Learning

Many of the current state-of-the-art vision-language models involve weakly super-
vised pre-training and subsequent task adaptation through fine-tuning on the downstream
tasks of interest. It often happens that the fine-tuning still necessitates the use of large
datasets to achieve good performance. A current research trend is to develop models that
require less data for the downstream fine-tuning.

In few-shot learning, the effort is to develop high-performing models which only require
a few training samples in the downstream fine-tuning. A number of works ([103,143–145])
have focused on this kind of model. Flamingo [143] takes inspiration from large language
models, which perform quite well on few-shot language-only tasks, and applies similar
methods to achieve good performance in vision-language tasks. Flamingo achieves state-
of-the-art few-shot learning performance in 16 multimodal language and image/video
understanding tasks with as few as 32 examples per task.

When taken to the limit, a situation arises in which a model that is pre-trained can
perform competitively without the need for any downstream fine-tuning. This constitutes
zero-shot learning and is a more challenging research area. Multimodal vision-language
models ([53,54]) have used large-scale contrastive learning to enable zero-shot generaliza-
tion with regard to novel downstream tasks. However, current zero-shot models are still
mainly effective in limited use cases such as classification [143]. LEMON [52] demonstrated
a capability for zero-shot caption generation but they noted that their zero-shot captions
were very short due to the nature of the pre-training datasets. As more research is carried
out these models will improve and will be capable of carrying out more open-ended tasks
such as captioning or visual question answering. This will be useful as models will be able
to rapidly adapt to diverse and challenging tasks.

7.8. Single Models Performing Multiple Tasks

Some of the recent high-performing models have been effective for multiple
tasks [38,39,101]. A trend that is emerging, thanks in large part to the effectiveness of
vision-language pre-training, is the design and training of models that can perform well on
several downstream tasks, including image-text retrieval, image captioning, novel object
captioning, visual question answering and visual reasoning. These models are generally
pre-trained on a large common corpus and then fine-tuned on different datasets depending
on the downstream task in question. The transformer architecture lends itself to this
and we will, therefore, continue to see many models which have good performance on
multiple tasks.

7.9. All-Transformer Design

Many of the current captioning systems mainly employ the transformer for the en-
coding and decoding functions. For a number of models, the visual feature extraction is
still carried out based on a CNN of one form or another. A recent line of research is in the
use of transformers as well for the feature extraction, thus showing that the reliance on
CNNs and explicit object detectors may not be necessary. Dosovitskiy et al. [99] experi-
mented with applying a standard transformer directly to images instead of using a feature
extractor, e.g., Faster-RCNN. They came up with the Vision Transformer (ViT). In their
work, an image is split into patches and then passed through a linear embedding whose
output is then used as input to a transformer. The image patches are treated as tokens
and the transformer is then trained on an image classification task in a supervised fashion.
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Their vision transformer matches or exceeds the state-of-the-art on a number of image
classification datasets while requiring less computational resources. Since ViT, a number
of other transformer-based feature extractors have been developed, e.g., CoAtNet [104],
CoSwin [107], CLIP-ViT [53] and DaViT [118]. These have become the basis of the current
state-of-the-art models ([103,106,110–112]).

Touvron et al. [146] improve on ViT and achieve competitive results in image classifica-
tion on ImageNet while requiring even less computational resources than [99] and without
the use of external datasets. Carion et al. [121] and Zhu et al. [140] applied transformers to
the task of object detection and achieved competitive results. He et al. [90] also explored
the idea of an image transformer.

A continuing research area still remains in effectively applying the vision transformer
to other computer vision tasks. Another active research area is in improving self-supervised
pre-training methods for the vision transformer so as to achieve comparable performance
with large-scale supervised pre-training. The transformer architecture was born in the
language domain and although it has been used in computer vision tasks, it is by its nature
very suited to NLP tasks. There is a need for further research in developing a more refined
vision transformer which is well adapted to the nature of images and other computer vision
tasks. Improvements in these areas would make possible the design of image captioning
systems that are entirely built on transformers.

8. Conclusions

The application of transformers has yielded many performance improvements, first in
natural language processing and then in computer vision. In this paper we have looked at
the application of transformers to the specific computer vision task of image captioning.
We focused on transformer-based approaches because they are the backbone of the current
state-of-the-art models and also because other traditional models have been adequately
assessed in other reviews. We first reviewed the various datasets and metrics used in
training and evaluation of image captioning systems. We also reviewed the concept of
pre-training and saw how the kind of pre-training used in natural language processing
has found application in computer vision in the form of vision-language pre-training. We
then studied a number of captioning models that are based on the vanilla transformer
architecture as well as those that employ vision-language pre-training. We made an in-
depth analysis of these models, which entailed a study of a number of the design choices
for each model. We also compared the performance of the different models and looked
at the chief contributions of each model. In general, the current state-of-the-art models
are those that use vision-language pre-training. We concluded by looking at some of the
challenges faced, the emerging trends and future directions. Transformer-based systems
continue to be dominant in vision and language models and their application to image
captioning in particular is a vibrant area of research.
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