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Abstract: Effective and timely collision avoidance decision support is essential for super-large vessels
navigating in port waters. To guarantee the navigational safety of super-large vessels, this work
proposes a collision avoidance decision support method based on the curve increment strategy with
adaptive particle swarm optimization (CIPSO). Firstly, the objective function is constructed based on
the multi-objective optimization method. Here, a fuzzy comprehensive evaluation (FCE)-based vessel
collision hazard model and vessel speed-varying energy-loss model integrating the Convention on
the International Regulations for Preventing Collisions at Sea (COLREGS) are involved. Furthermore,
in response to the limitations of the PSO algorithm, which is prone to falling into local optima in
the later stages of iteration, a curve increment strategy is incorporated. To improve the performance
of the global optimization, it is optimized using a local followed by global search method. The
iterative evolution of CIPSO is used to obtain the optimal decision value in the set domain of
feasible solutions. Finally, the effectiveness and feasibility of the proposed method are verified by the
numerical simulation and large vessel maneuvering simulator, which can provide collision avoidance
decision support for ship pilots.

Keywords: super-large vessel; speed-varying collision avoidance; collision avoidance decision
support; CIPSO

1. Introduction

Along with the relentless development and global expansion of international trade, the
shipping industry has assumed paramount significance as an essential and irreplaceable
mode of transportation at a global scale. Simultaneously, ship and shipping technologies
have undergone rapid and remarkable advancements, characterized by the discernible
trend toward the construction of large-scale, high-speed, and specialized vessels [1]. No-
tably, the emergence of super-large vessels has solidified their position as a principal
conduit in the realm of global trade. However, the challenges encountered by super-large
vessels while navigating port waters have become increasingly conspicuous. Among these
challenges, collision avoidance assumes critical importance. The problem of collision
avoidance faced by super-large vessels navigating port waters is marked by distinctive
characteristics that set it apart from similar challenges encountered by other vessels. Firstly,
the adjustment of course and speed for super-large vessels, owing to their immense size
and weight, necessitates a more protracted time frame [2]. Secondly, navigation through
narrow waterways and port areas demands a heightened level of dexterity and precision in
vessel handling. Lastly, the considerable inertia inherent in super-large vessels results in
prolonged stopping or course alteration times, thus necessitating a longer reaction time
for executing collision avoidance maneuvers [3]. Consequently, the problem of collision
avoidance encountered by super-large vessels operating in port waters has emerged as a
field of research deserving of profound attention and scholarly inquiry.
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With the development of intelligent algorithms such as Genetic Algorithm (GA) [4],
Neural Networks (NNs) [5], Ant Colony Optimization (ACO) [6], and Particle Swarm
Optimization (PSO) [7], many experts and scholars have applied heuristic algorithms to
the study of vessel collision avoidance issues. Tsou et al. [8,9] used GA to encode four
elements, namely, collision avoidance time, collision avoidance steering angle, resumption
time, and resumption angle, and evolved them generation by generation through selection,
crossover, and mutation operations. The vessel information in the Electronic Chart Display
and Information System (ECDIS) was analyzed and processed, i.e., the vessel information in
the ECDIS was transformed into a navigational network diagram, and the optimal collision
avoidance path was solved using GA. Fiskin et al. [10], Ni et al. [11] Alvarez et al. [12] have
also applied GA to this issue.

ACO can provide safety and efficiency collision avoidance decision support for ves-
sel pilots due to the advantages of their distributed computation and positive feedback
mechanisms (Lazarowska [13,14]). Tsou and Hsueh [15] proposed an ACO-based colli-
sion avoidance path-planning method for vessels. The collision risk between vessels was
first converted into the pheromone concentration of each path, and then the best collision
avoidance path was gradually determined by simulating ants moving on the path with
a high pheromone concentration. Wang et al. [16] proposed a vessel collision avoidance
path-planning method considering spatio-temporal interaction effects. By analyzing the
spatio-temporal characteristics of vessel movements, an effective path-planning algorithm
was designed to avoid vessel collisions. Lyu and Yin [17] proposed an efficient path-
planning algorithm that enables autonomous vessels to plan navigational paths quickly
and safely in restricted waters. The method combined map data and environmental con-
straints with an optimization algorithm to achieve an efficient path search and planning.
Shen et al. [18] proposed a collision avoidance algorithm for multi-ship systems based
on deep reinforcement learning. The best collision avoidance strategy was learned from
experience using a deep neural network, and a collision avoidance training method that
combines ship maneuvering performance, crew maneuvering characteristics, and consider-
ation of the rules was proposed. Simulation results showed that the algorithm performs
better in terms of safety and efficiency than traditional collision avoidance methods.

Hu et al. [19], Xia et al. [20], and Ma et al. [21] have introduced PSO to solve the issue
and achieved excellent effects. Zheng et al. [22] proposed a ship collision avoidance method
based on an improved cultural particle swarm optimization (CPSO). The CPSO was used
to derive the optimal steering angle for ship collision avoidance under the constraints of
the rules, and the resulting decision method was finally integrated into electronic nautical
charts for validation. The results showed that the method can safely and effectively achieve
ship collision avoidance. Compared with other heuristic methods, PSO applied to this
issue has the advantages of computational simplicity and fast convergence, which can
be used to find the optimal solution for the high-latitude optimization issue in a short
period of time [23]. In addition to the above heuristics, many other intelligent evolutionary
algorithms have been used in this issue, such as Beetle Antennae Search (BAS) [24], the
Danger-Immune Algorithm (DIA) [25], and the Cat-Swarm Biological Algorithm (CSO) [26].

This work compares the above heuristic algorithms when applied to the vessel colli-
sion avoidance issue, and analyses these methods item by item, focusing on five aspects:
(1) the number of target vessels; (2) the collision avoidance operation of the vessel; (3) the
application waters (4) whether the motion or maneuvering characteristics of the vessel are
taken into account, classified in terms of high, medium and low; (5) whether the methods
comply with the requirements set out in the Convention on the International Regulations
for Preventing Collisions at Sea (COLREGS).The comparison results are shown in Table 1.
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Table 1. Comparison of vessel collision avoidance methods based on heuristic algorithms.

Methods Authors Collision
Avoidance Operation Applied Waters Motion

Characteristics COLR-EGS

GA Tsou et al. [8,9] steering open water med yes
ACO Lazarowska [13,14] steering open water high yes
NNs Shen et al. [18] steering open water high yes
PSO Zheng et al. [22] steering open water med yes
BAS Xie et al. [24] steering open water med yes
DIA Xu [25] steering open water med yes
CSO Wei et al. [26] steering open water low yes

Within the comparative analysis of the aforementioned literature, three primary is-
sues are identified. Firstly, a significant limitation is found in the fact that some studies
are geared towards single-vessel collision avoidance, primarily conducting simulation
tests for encounter, crossover, and chase-over situations. However, there is still room
for improvement in terms of the applicability of multi-vessel collision avoidance. The
second predicament pertains to the collision avoidance measures employed in the majority
of studies, which primarily focus on steering collision avoidance practices applicable to
open-water scenarios. However, the efficacy of these measures in the context of narrow
waterways has not been adequately addressed. Lastly, a fundamental concern relates to
the alignment with the COLREGS, as well as the consideration of the target vessel’s size,
type, and maneuvering characteristics. It is important to ascertain the extent to which these
factors are taken into account when formulating collision avoidance strategies.

Based on the above issues, an adaptive particle swarm optimization based on a curve
increment strategy (CIPSO) for the vessel speed-varying collision avoidance decision
method is proposed in this work. Super-large vessels adopt speed-varying collision avoid-
ance measures to ensure navigation safety in the face of multiple vessels encountered
during navigation within the port. The method also considers the impact of super-large
vessels, deceleration strokes and stroke time on collision avoidance. A vessel collision risk
model based on a fuzzy comprehensive evaluation strategy is introduced in this work,
wherein COLREGS, navigation safety, and economy are considered to establish a vessel
speed-varying energy-loss model. Finally, the CIPSO algorithm is used to find the optimal
decision value in the feasible solution domain.

The framework of the decision support method is shown in Figure 1. The navigation
of super-large vessels within ports involves the utilization of advanced navigational equip-
ment, such as the Automatic Identification System (AIS), Automatic Radar Plotting Aid
(ARPA), and GPS. These tools enable the acquisition of crucial information regarding the
vessel’s encounters with other target vessels. During this process, the ship’s pilot assesses
whether an encounter or an emergency situation is unfolding based on the preliminary
encounter situation, which relies on the calculated Distance to Closest Point of Approach
(dCPA) and Time to Closest Point of Approach (tCPA) (in Section 2.2). In the event of an
encounter, the collision risk index (CRI) is determined from the encounter information
using the CRI sub-model (in Section 3.1). This sub-model takes into account both the ship
domain and maneuvering characteristics of the super-large vessel (in Section 2.1). The
encounter situation itself can be divided into two distinct phases: the free action phase and
the urgent situation phase. The CRI is compared against a threshold of 0.5 to classify the
encounter situation. If the CRI is below 0.5, normal navigation can proceed, and no imme-
diate collision avoidance measures are required. However, ongoing real-time assessment
of the encounter situation remains essential. Conversely, if the CRI exceeds 0.5, an urgent
situation may arise, necessitating the prompt implementation of appropriate collision
avoidance operations. This work introduces a speed-varying collision avoidance decision
support model, which combines the CRI sub-model and a speed-varying energy-loss sub-
model (in Section 3.3). By incorporating the requirements of COLREGS as constraints for
speed-varying collision avoidance, the model ensures that collision avoidance decisions
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are both safety-oriented and economically optimal (in Section 3.2). The model function is
used as an adaptation of CIPSO (in Section 4). Through an iterative optimization process
facilitated by CIPSO, safe speed-varying collision avoidance decision values can be derived.
Eventually, collision avoidance decision support can be provided to ship pilots to ensure
the safety of super-large vessels navigating in the port.
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In conclusion, this work aims to enhance the safety and efficiency of maritime traffic
in port waters by providing an effective collision avoidance decision support method that
assists port managers and vessel operators in making accurate collision avoidance decisions
in complex water environments. The main contributions of this work are as follows:

1. A method is proposed for effective collision avoidance in port waters, considering
the maneuvering characteristics and compliance with COLREGS regulations for
super-large vessels. The method’s suitability and effectiveness are demonstrated in
multi-vessel collision avoidance scenarios within ports.

2. A vessel CRI assessment model is developed using the comprehensive judgment
theory of fuzzy mathematics. This enables a comprehensive evaluation of multiple
factors, including navigational information, deceleration strokes, and stroke time,
enhancing risk assessment accuracy for super-large vessels.

3. This work introduces the KIJIMA ship domain model to objectively determine safe
encounter distances. This model overcomes the limitations of traditional methods
and provides a reliable evaluation of risk severity.

4. PSO is enhanced with a curve increment strategy. This strategy adjusts particle
weights dynamically, achieving a balanced exploration of global and local search
spaces. The proposed CIPSO algorithm demonstrates faster convergence, improved
computational accuracy, and enhanced efficiency, resolving the issue of local optima.

2. Problem Description

Researchers face multiple challenges when studying collision avoidance for super-
large vessels proceeding in port waters. Initially, it is imperative to acknowledge the
intricacy of the environment surrounding the navigation of a super-large vessel within
port waters. Various factors need to be considered, such as port characteristics, vessel
characteristics, traffic flow, and weather conditions. The sheer size of a super-large vessel
requires special care and coordination to ensure the safety of the vessel. Vessels in port
waters have high density, and the risk of collision (CR) between vessels is very high,
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requiring effective collision avoidance strategies to reduce risk. In addition, since the control
of super-large vessel requires a lot of human and material resources, advanced technologies
and methods are needed to improve operational efficiency and reduce human errors.

2.1. Maneuvering Characteristics of Super-Large Vessel in Port Waters

The main navigational characteristics of super-large vessels in port waters include
their poor stopping performance, large turning radius, poor maneuvering flexibility, and
the influence of external environmental factors such as side wind and cross waves. All
these factors increase the CR and grounding of super-large vessels, so special measures and
techniques are needed to ensure navigational safety:

• The inertia of the super-large vessel is large and the stopping performance is relatively
poor due to its large scale, displacement, and mass;

• The line shape of the super-large vessel is fat and the block coefficient (Cb) is large,
although the rudder area coefficient ratio of the vessel is low (generally lower than
1/65), the vessel has good turning and the turning ability index (k) value is large. This
means that the scale of water required for a super-large vessel to turn around by itself
larger;

• The large inertia and small rudder area coefficient of the super-large vessel make the
vessel’s sailing stability and turning lag generally poor, i.e., it has a large turning lag
index (T) value;

• The quality and size of the super-large vessel make it more susceptible to external
environmental factors, such as side winds and cross waves. These factors can cause
the vessel to deviate from its intended course and require more time and resources
to adjust.

Due to the large tonnage and draft of the super-large vessel, the rudder effect response
is slow, and it is difficult to change the course well in a short period of time. Therefore,
the speed-varying operation is preferred to avoid collision in port. During speed-varying
collision avoidance operations, deceleration is common, and considering the requirements
of a “substantial” collision avoidance operation in COLREGS Article 8, deceleration requires
a reduce in speed by at least 1/2 [27]. In addition, the speed value cannot be lower than
the minimum speed of the vessel to maintain rudder efficiency (except for emergencies).
Therefore, COLREGS constrains the range of speed values for speed-varying operations.

2.2. Geometrical Model of Speed-Varying Collision Avoidance for Super-Large Vessels

The geometric model of vessel speed-varying collision avoidance plots the dynamic
information of the vessel and the incoming vessel obtained by radar or AIS in the same
chart. Plane geometry drawing is used to obtain relevant parameters, determine whether
there is a CR, and provide a reference for drivers to take corresponding vessel maneuvering.
Let the speed and heading of this vessel be v0 and C0, respectively, the speed and heading
of the target vessel be v1 and C1, respectively, the true bearing of the target vessel be TB,
the distance be D, the speed v01, and relative heading C01 of this vessel relative to the
target vessel. Then, the dCPA and tCPA between vessels can be calculated from the above
parameters [28]. The expressions are as follows:

dCPA = fdCPA(v0, C0, v1, C1, D, TB) (1)

tCPA = ftCPA(v0, C0, v1, C1, D, TB, v01) (2)

The vessel slows down to the predetermined speed, requiring a deceleration stroke
(Ds) and stroke time (Ts) before slowing down to the predetermined speed. The dCPA value
of each target vessel is affected by Ds and Ts. Ts refers to the time required for a vessel to
move from the point of loss of control until its inertia disappears. Its size can be calculated
according to Equation (3):

Ts = −Tst(vt/ v0) (3)
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Ds refers to the distance traveled by vessel in the direction of vessel speed during the
time of impact Ts, which can be estimated by Equation (4):

Ds = v0Tst

(
1− e−Ts/ Tst

)
(4)

This vessel maintains its course and takes deceleration and collision avoidance opera-
tions, assuming the target vessel maintains its course and speed. During the deceleration
process, the dCPA values between vessels will continue to change. When the deceleration
reaches the predetermined speed v0N, the dCPA will no longer change, and the position of
the target vessel relative to the vessel at this time is obtained (x1, y1).{

x1 = DsinB + v1TssinC1 + Dssin(C0 + 180◦)
y1 = DcosB + v1TscosC1+Dscos(C0 + 180◦)

(5)

Then, we can obtain the new distance DN of the target vessel

DN =

√
(x1)

2 + (y1)
2 (6)

The velocity components of the vessel’s speed on the x and y axes are:{
vx0 = v0NsinC0
vy0 = v0NcosC0

(7)

The velocity components of the target vessel’s speed on the x and y axes are:{
vx1 = v1sinC1
vy1 = v1cosC1

(8)

The velocity components of the relative speed of two vessels on the x and y axes are:{
vx01 = vx1 − vx0

vy01 = vy1 − vy0

(9)

The relative speed of the two vessels v01N is:

v01N =
√

vx01
2 + vy01

2 (10)

The relative heading of the two vessels C01N is:

C01N =



arctan
(
vy01 /vx01

)
vx01 ≥ 0, vy01 ≥ 0

90
◦

vx01 ≥ 0, vy01 = 0
180

◦
+ arctan

(
vy01 /vx01

)
vy01 < 0

270
◦

vx01 < 0, vy01 = 0
360

◦
+ arctan

(
vy01 /vx01

)
vx01 < 0, vy01 < 0

(11)

The true orientation of the target vessel TBN is:

TBN =


arctan(x1/y1) y1 > 0

180◦ + arctan(x1/y1) y1 < 0
0◦ y1 = 0, x1 = 0

90◦ y1 = 0, x1 > 0
270◦ y1 = 0, x1 < 0

(12)
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dCPA1 and tCPA1 after deceleration are denoted as:{
dCPA1 = DNsin(C01N − TBN − 180◦)
tCPA1 = DNcos(C01N − TBN − 180◦)/ v01N

(13)

3. Super-Large Vessel Collision Avoidance Model
3.1. CRI Objective Function Model

CRI is a fuzzy concept that measures the degree of collision risk between vessels.
The CRI ∈ [0,1], specifically, CRI = 0 indicates that there is no CR between vessels, and
the vessel can continue sailing in its current state; 0 < CRI < 1 indicates that there is a
CR between vessels [29]. By setting a safety threshold, it can be divided into several
levels, such as “low risk”, “moderate risk”, and “high risk”, and appropriate avoidance
operations can be undertaken based on this. CRI = 1 indicates that the vessel has entered an
emergency, and relying solely on the vessel’s avoidance operation will not avoid collision
with the target vessel. The main way to determine whether there is a CR between vessels
is to comprehensively analyze the distance D and relative orientation between the two
vessels θ, vessel speed ratio K, nearest encounter distance dCPA, recent meeting time tCPA,
Li et al. [30] used the above five elements as basic evaluation parameters and quantitatively
analyzed the vessel risk model using the fuzzy comprehensive evaluation method based
on fuzzy mathematics.

Considering the five factors that affect the risk of vessel collision, establish a target
factor set:

U ={D, θ, K, dCPA, tCPA} (14)

Establish a comment set:
V ={u1, u2} (15)

where u1 indicates danger; u2 indicates security.
W is the weight matrix of influencing factors:

W =
(
wD, wθ , wK, wdCPA , wtCPA) = (0.14, 0.10, 0.08, 0.36, 0.32) (16)

Establish an evaluation matrix:

r =


uD 1− uD
uθ 1− uθ

uK 1− uK
udCPA 1− udCPA
utCPA 1− utCPA

 (17)

where rD, rθ , rK, rdCPA and rtCPA represent risk membership for each influencing factor; the
range of values is [0,1].

uD =


1 0 ≤ D ≤ D1(

D2−D
D2−D1

)2
D1 < D ≤ D2

0 D > D2

(18)

uθ = 1/2
(

cos(θ − 19) +
√

400/289 + cos2(θ − 19)
)
− 5/17 (19)

uK = 1/
(

1 + kw/K
√

K2 + 1 + 2KsinC
)

(20)

where C is the collision angle between two vessels, kw is a constant taken as 2,
D1 = K1K2K3DLA, and DLA is the distance of the last-minute action, whose value is generally
taken as 12 times the vessel’s length [31]. D2 = K1K2K3R; the value of K1 depends on the
visibility, the value of K2 depends on the waters in which the vessel is navigating, and the
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value of K3 depends on the human factor. R is the radius of the dynamic boundary area of
this vessel.

R = 1.7cos(θ − 19) +
√

4.4 + 2.89cos2(θ − 19) (21)

rdCPA =


1 0 ≤ dCPA ≤ d1
1/2− 1/2sin(180◦/(d2 − d1)(dCPA − (d2 − d1)/2)) d1 ≤ dCPA ≤ d2
0 dCPA ≥ d2

(22)

where d1 is the vessel’s safe encounter distance and d2 is the absolute safe encounter
distance; generally, take d2 = 2d1.

In the traditional method of determining the safe encounter distance of vessels, a fixed
threshold is mainly set. There may be a greater CR when the distance between vessels is
less than this determined threshold, but the accuracy of this method can be limited due to
the complexity and dynamics of vessel movements in ports. Incorporating a ship domain
model can improve the accuracy of encounter distance calculations by more accurately
simulating vessel motion and behavior and considering factors such as vessel size, shape,
draft, speed, and maneuvering. The ship domain is a water area around the vessel that
exists to avoid collision accidents and ensure the safety of vessel navigation, and its size is
affected by a variety of factors, such as the size of the vessel, speed and angle of encounter,
and visibility of the water [32].

Since the inception of the elliptical ship domain concept established by FUJII [33],
numerous experts and scholars worldwide have conducted relevant research in the ship
domain model, establishing various ship domain models of different shapes and applying
them to domains such as maritime traffic risk assessment, collision avoidance, and water-
way traffic planning. These models include the sector model for open water proposed by
GOODWIN [34], the circular model with center offset proposed by DAVIS et al. [35], the
elliptical model proposed by COLDWELL [36] and KIJIMA et al. [37], and the azimuthal
octagonal model proposed by PIETRZYKOWSKI et al. [38]. Wang et al. [39] classified
these into three types of ship domain model, such as circular, elliptical, and polygonal,
based on which corresponding mathematical models were established for simulation and
analysis. The results indicate that the DAVIS and PIETRZYKOWSKI models are suitable
for risk assessment in maritime traffic, while the FUJII, GOODWIN, COLDWELL, and
KIJIMA models are suitable for collision avoidance. In practical applications, the use of
the GOODWIN or KIJIMA models is safer than use of the COLDWELL and FUJII models.
Although the GOODWIN model considers the different safe encounter distances of vessels
in different encounter scenarios, it is a static model related only to the length of the vessel.
In contrast, the KIJIMA model is influenced by multiple parameters, such as vessel length,
width, course, and speed, and is a dynamic domain model that comprehensively considers
vessel scale and encounter situations, better reflecting the characteristic differences of the
vessel’s safe encounter distances in different scenarios.

The KIJIMA model consists of two parts: watching and blocking areas. The watching
area is a section of the vessel in the forward direction, which is used to detect the obstacles
in front of the vessel. The length of the watching area can be set according to the actual
situation, which usually depends on the vessel’s speed and reaction time and other factors.
The blocking area refers to some area around the ship, which describes a situation in
which the vessel is blocked during movement. The blocking area is calculated based on
information such as the location and size of obstacles detected in the watching area. Figure 2
shows that the KIJIMA model is an approximate ellipse shape, consisting of two differently
shaped semi-ellipses at the top and bottom. They share the half-axis Sb in the forward
transverse direction of the vessel, while the lengths of the half-axes Rb f and Rb f in the bow
and transom directions are different. In addition, the lengths of all the semi-axes change
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dynamically with the vessel’s speed and parameters such as the encounter situation to
adapt to different sailing situations and environmental conditions.

Rb f = L + (1 + s)T90v0
Rba = L + T90v0
Sb = B + (1 + t)DT

(23)

T90 = 0.67/v0

√
A2

D + (DT / 2) 2 (24)

{
AD = Le0.3591logv0+0.0952

DT = Le0.5441logv0−0.0795 (25)


s = 2− (v0 − v1)/ v0, t = 1 Headon
s = 2− α/180◦, t = α/180◦ Crossing
s = 1, t = 1 Overtaking

(26)

α = |180◦ − 〈v0, v1〉| (27)

where, in (23)–(27), the x-axis represents the vessel’s bow direction and the y-axis represents
the vessel’s positive transverse direction; L and B are the length and breadth of the vessel,
respectively; v0 and v1 are the speeds of the vessel and the target vessel, respectively; T90 is
the time required for the vessel to steer at 90◦; AD and DT are the inlet and initial diameter
of the corresponding vessel’s gyrations, respectively; s and t are the influence coefficients
of the vessel’s domain in different encounter situations; α is the complementary angle to
the angle of the heading line between vessels.
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s = 2 − α / 180°, t = α / 180°  Crossing     

s = 1, t = 1                                 Overtaking 
 (26) 

α = |180° − 〈v0,v1〉| (27) 

where, in (23)–(27), the x-axis represents the vessel’s bow direction and the y-axis repre-
sents the vessel’s positive transverse direction; L and B are the length and breadth of the 
vessel, respectively; v0 and v1 are the speeds of the vessel and the target vessel, respec-
tively; T90 is the time required for the vessel to steer at 90°; AD and DT are the inlet and 
initial diameter of the corresponding vessel’s gyrations, respectively; s and t are the influ-
ence coefficients of the vessel’s domain in different encounter situations; α is the comple-
mentary angle to the angle of the heading line between vessels. 
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The safe encounter distance d1 (within the blocking area, the intrusion of other vessels
is rejected, and the intrusion is regarded as rdCPA = 1, where d1 is taken as the boundary
of the blocking area of the vessel’s domain) and the safe passage distance d2 (the vessel
does not empirically consider collision avoidance operation when D ≥ 2d1, i.e., rdCPA = 0)
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were obtained based on the KIJIMA model. This work is based on the ellipse origin to edge
distance equation:

d =
√

a2b2/(a2sinr2 + a2cosr2) (28)

where a is the long half-axis of the ellipse, b is the short half-axis of the ellipse, and r is the
angle with the long half-axis a.

Derive the formula for d1:

d1 =


√

R2
b f S2

b/
(

R2
b f sinr2

1 + S2
bcosr2

1

)
y ≥ 0√

R2
baS2

b/
(

R2
basinr2

2 + S2
bcosr2

2
)

y < 0
(29)

where (x, y) are the coordinates of the closest point of approach in the coordinate system
established in the ship domain; r1, r2 are the angles between the line from the vessel to the
closest point of approach and Rb f , Rba, respectively.

rtCPA =


1 0 ≤ tCPA ≤ t1(

t2−tCPA
t2−t1

)2
t1 < tCPA ≤ t2

0 tCPA ≥ t2

(30)

t1 =


√

D2
1 − d2

CPA/v01 dCPA ≤ D1

(D1 − dCPA)/v01 dCPA ≥ D1
(31)

t2 =
√

D2
2 − d2

CPA/v01 (32)

CRI = wDuD + wθuθ + wKuK + wdCPA udCPA + wtCPA utCPA (33)

Build a collision risk objective function as follows:

f1(xi) = max
1 ≤ i ≤ N

fi
(
uD, uθ , uK, udCPA , utCPA

)
(34)

where f1(xi) is the collision risk between the i-th target vessel and the vessel, f1(xi) ∈ [0,1];
N is the number of target vessels, and the smaller the objective function value, the lower
the collision risk.

3.2. Speed-Varying Energy-Loss Function Model

The deceleration and collision avoidance operation of the vessel is subject to the
constraints of the COLREGS, and the speed range of the vessel should be between the
minimum speed vse and the initial speed v0 that maintains the steering effect, which
means that the feasible solution domain for vessel deceleration and collision avoidance
is [vse, v0/2]. The bigger the deceleration of a vessel, the greater the loss in the vessel’s
energy consumption when restoring speed. Therefore, the speed of the vessel after a speed
reduction should be as large as possible within the limited range, and the speed-varying
energy loss function f 2 should be taken as:

f2(xi) =
xi − v0 / 2
vse − v0 / 2

(35)

where f2(xi) is the value range of [0,1], and the smaller the value, the greater xi and the
higher the value of i.
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3.3. Total Objective Function Model

The value range of the collision risk function and constructed speed-varying energy-
loss function is between 0 and 1, and the smaller the value of the function, the better
the effect of speed-varying collision avoidance. To facilitate the search for the optimal
value of the objective function, certain weights can be assigned to each of the above two
sub-objective functions. Thus, the super-large vessel speed-varying collision avoidance
model can be optimized accordingly.

f (xi) =α f1(xi) + β f2(xi) (36)

where xi is the vessel speed value of individual i-th in the population of the CIPSO algo-
rithm; α and β are weight coefficients with α + β = 1. The assignment of weights to α and β
should be determined through experimental tests.

4. Collision Avoidance Decision Support Based on CIPSO Algorithm
4.1. Basic Principles of PSO

Assume that the total number of particles in a D-dimensional search space is N, where the
i-th particle is represented as a D-dimensional vector Xi = (xi1, xi2, · · · , xiN), i = 1, 2, · · ·N.
The flight speed of the i-th particle is also a D-dimensional vector, denoted as
Vi = (vi1, vi2, · · · , viD), i = 1, 2, · · · N . The individual extreme value found before the i-
th particle is denoted as Pbest = (Pi1, Pi2, · · · , PiD), i = 1, 2, · · · N . The global extremum of
particle swarm is denoted as gbest = (g1, g2, · · · , gD). In the elementary particle swarm,
particles update their speed and position according to the following formula:

vij
(
t+1) = wvij

(
t) + c1r1(t)

[
Pij(t)− xij(t)

]
+ c2r2(t)

[
Pgj(t)− xij(t)

]
(37)

xij
(
t+1) = xij

(
t) + vij(t+1) (38)

where c1 and c2 are acceleration factors; r1 and r2 are a uniform random number of [0,1].
The first part of Equation (37) represents the speed of particles before each update, which
is used to ensure the algorithm’s global convergence. The second and third parts provide
the algorithm with a local convergence ability. The inertia weight value w represents the
degree of inheritance of the original speed.

4.2. CIPSO Algorithm

In the PSO, the inertia weight controls the speed and direction of the particles moving
in the search space. If the inertia weight is excessively large, the particles may skip the
global optimal solution and fall into the local optimal solution. Conversely, if the inertia
weight is excessively small, particles may persistently meander around the local optimal
solution and find it difficult to jump out. By dynamically adjusting the inertia weights, the
curve-increasing strategy can gradually increase the inertia weights when the individual
optimal value of the particle continuously decreases, thus prompting the particle to jump
out of the local optimal solution and move toward the global optimal solution. When
the particle approaches the global optimal solution, the inertia weight will gradually
decrease, thus enabling the particle to search repeatedly near the local optimal solution and
improving the search accuracy of the algorithm. Therefore, the curve-increasing strategy
can help the PSO to avoid falling into the local optimal solution too early, while maintaining
a balance between global search and local search, thus improving the algorithm’s search
efficiency and convergence accuracy.

Curve increasing is a control strategy based on the exponential function image pro-
posed in this work, as shown in Figure 3, which tends to become smoother as the inde-
pendent variable increases. Given the value of inertia weight wmax, the curve-increasing
formula is:

w1 = wmax − (wmax/Tmax)t(time) (39)
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w = e−w1 (40)

where wmax is the set of larger inertia weights (wmax ≥ 1), t(time) is the number of current
iterations, and the maximum number of iterations is Tmax; as the number of iterations
increases, w1 gradually decreases and w gradually increases. Using the above adaptive
weight-change formula, the particle has a fine search ability in the early stage due to the
small weight value and, combined with the image, it can be seen that the algorithm iterates
the early w1 value in a large reduction trend range. This is extremely slow, ensuring the
adequacy of the particle local search, and the later change trend gradually increases, causing
a certain perturbation effect on several local solutions and ensuring that a global search is
possible. wmax value late trend changes occur; the purpose of these is no longer to ensure
faster convergence in the conventional sense, as the trend of change is actually relatively
steep and absolutely smooth after the two transformations of Equations (39) and (40).
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Refarding the acceleration factor, this work proposes an improved second-order oscil-
lation method, which introduces a curve-increasing strategy that combines two populations
to improve the diversity of the population and further improve the global search ability of
the algorithm. The improved formula is as follows:

vij

(
t) = e−w1 vij

(
t) + r1

[
Pij(t)− (1 + µ1)xij

(
t) + µ1x∗ij(t)

]
+ r2

[
Pgi(t)− (1 + µ2)xij

(
t) + µ2x∗ij(t)

]
x∗ij(t) = xij(t)

xij(t +1) = xij
(
t) + vij(t +1)

(41)

where x∗ij is a new species group; T is the current iteration number; second-order oscillation
factor µ1,2 is denoted as

µ1 = (2
√

c1rand()− 1) · rand() · rand()/c1 w < 2/3wmax (42)

µ1 = (2
√

c1rand()− 1) · rand() · (1+rand())/c1 w ≥ 2/3wmax (43)

where c1 and c2 are an artificially set acceleration factor; rand () is a random number from 0
to 1. The optimization process of the CIPSO algorithm is shown in Figure 4.
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Finally, to further understand the solution process of the CIPSO algorithm, the pseudo-
code of Algorithm 1 is presented.

Algorithm 1: Pseudo code of CIPSO algorithm.

1 FOR each particle (i)
2 Set up parameters (wmax, c1, c2)
3 Initialize particle position (xij) randomly within the permissible range
4 Initialize particle velocity (vij) randomly within the permissible range
5 Initialize the particle’s best position (Pbest)
6 IF the particle’s fitness value is better than the global best fitness value (gbest)
7 Update global best position (gbest)
8 END
9 END

10 Iteration t = 1
11 DO
12 FOR each particle (i)
13 Calculate inertia weight (w) according to Equations (39) and (40)
14 Calculate second-order oscillation factor (µ1, µ2) according to Equations (42) and (43)
15 Update particle velocity and particle position according to Equation (41)
16 Calculate fitness value
17 IF the particle’s fitness value is better than its best fitness value (Pbest)
18 Update the particle’s best position (Pbest)
19 END
20 IF the particle’s fitness value is better than the global best fitness value (gbest)
21 Update global best position (gbest)
22 END
23 t = t + 1
24 WHILE maximum iteration or minimum error criteria are not attained

5. Simulation Analysis
5.1. Method Validation

To validate the proposed speed-varying collision avoidance method for super-large
vessels, a simulator was selected to conduct single-vessel collision avoidance experiments
in this work. Speed-varying collision avoidance and steering collision avoidance were
used for simulations. The data were compared and analyzed from the perspectives of
CR, and changes in dCPA and tCPA values. According to rule 8 of COLREGS, the vessel
needs to undertake substantial collision avoidance operations. After several simulator
experiments, it was decided to set the steering collision avoidance angle to 30◦ in the
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steering collision avoidance experiment, and to decelerate the ship to half of the original
speed in the speed-varying collision avoidance experiment.

Simulation parameter settings: The vessel (OS) is 290.5 m in length L, 50 m in breadth
B, 202,000 t deadweight tonnage (DWT), heading C0 = 330◦, speed v0 = 8 knots; the target
vessel (TG) is 230 m in length L, 36.7 m in breadth B, 83,752 t DWT, heading C1 = 257◦,
speed v1 = 10 knots; TG is 3 n miles away from OS, and TG’s true bearing TB is 31.6◦.

Figure 5 shows the simulation results of the speed-varying collision avoidance opera-
tion and the steering collision avoidance operation in the simulator. The green trajectory is
OS decelerating to avoid TG, and the red trajectory is OS steering to avoid TG. The numbers
in the figure represent different time points, where 1 is the start time, and the time interval
is 2 min. In the deceleration collision avoidance operation, OS reduces from 8 knots to
4 knots at the 2nd moment and maintains smooth sailing, and TG passes through the bow
of OS at the 10th moment and maintains a safe distance of 1 n miles. During the steering
collision avoidance operation, OS starts to steer at the position of 2 n miles away from
TG at the 5th moment. Due to channel constraints, the vessel is unable to steer in narrow
channels, so steering operations can only be carried out at the intersection of two channels.
After several simulations, it was concluded that the steering collision avoidance operation
takes 15 min, and there is a risk of touching the channel buoys. Through an analysis of the
results, it was concluded that it is feasible for the super-large vessel to vary its speed to
avoid collision when it faces the intersection of the vessels in the port, which can ensure
the super-large vessel’s safe navigation.
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Figure 6 presents the variation curve of CRI derived from the calculation. The speed-
varying collision avoidance operation reduces the risk degree to 0.3 within 5 min, while
the steering collision avoidance operation maintains a high-risk degree within 20 min,
and OS navigation is riskier. Figure 7 shows the graphs of dCPA value and tCPA value
changes during the two collision avoidance operations. The comparison shows that the
dCPA value of TG in the speed-varying collision avoidance, relative to OS, stays above 1 n
miles within 20 min. In conclusion, considering the unique characteristics of port waters
and the constraints of navigational channels, the findings from the simulation experiments
and data analysis suggest that employing speed-varying collision avoidance holds a certain
degree of rationale. This approach can serve as a valuable reference for ship navigators
when operating within port environments.
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5.2. Method Application

To verify the feasibility and effectiveness of the decision support method, a case
study of multiple vessels encountered in the port is selected. The vessel (OS) is 290.5 m in
length (L) and 50 m in breadth (B), has a deadweight weight of 202,000 tons, a heading of
C0 = 330◦, a speed of v0 = 13 knots, and a minimum speed of vse = 2 knots to maintain
rudder effectiveness. The vessel was navigating normally in a port area with good visibility,
and the ship pilots had excellent seamanship. At the same time, three vessels (numbered
TG1–TG3) were encountered and were not in mutual view. The information regarding
the encounter situation of each target vessel, obtained through radar plotting and AIS, is
presented in Table 2. Here, a positive value of dCPA indicates that TG passed through the
bow of OS, while a negative value indicates passing through the stern of OS.

In Table 2, it can be seen that if all four vessels comply with COLREGS, the safe
encounter distance (d1) is calculated to be 1.0463 n miles and the distance between the
vessel and TG1, TG2, and TG3 is less than d1; then, OS needs to give way to all TGs. Priority
should be given to avoiding the TG1 with the shortest tCPA, and the OS should adopt a
reverse-deceleration collision avoidance method.
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Table 2. Target vessels encounter situational parameters.

Target Vessel TG1 TG2 TG3

Vessel type Fish boat LNG Bulk carrier
Course (◦) 90.0 253.0 93.0

Direction (◦) 313.5 008.4 307.8
Speed (knot) 7 9 9

Distance (n mile) 3.561 4.522 5.483
dCPA (n mile) 0.242 0.075 0.080

tCPA (min) 12.13 19.32 16.93
Displacement (t) 286.0 89,634.0 23,565.0

Length (m) 24.4 274.3 182.9
Breadth (m) 7.2 43.3 22.6

Model parameter settings: By analyzing the navigational environment and human
factors of the case, the values of K1, K2 and K3 are taken as 1, 2 and 1, respectively. Following
several iterations of the optimization algorithm, the final test resulted in an optimal weight
assignment of α = 0.8, β = 0.2. To verify the superiority of the proposed CIPSO algorithm,
three classical intelligent algorithms were selected for comparison experiments: Simulated
Annealing Algorithm (SA), GA, and PSO. The population size in all algorithms was set to
100 and the maximum number of iterations was set to 300. Parameter settings in SA were
as follows: the initial temperature was set to 100◦, and the temperature decay coefficient
was set to 0.95 [40]. Parameter settings in GA were as follows: the crossover probability
was 0.8, and the variance probability was 0.05 [41]. Parameter settings in CIPSO were as
follows: the update speed limit range of particles was [−1.5, 1.5], wmax was set to 1.2, and
the individual position (vessel speed) constraint was set to [vse, v0/2], that is, [2, 6.5]. The
particle inertia weight w of the PSO algorithm was set to 0.9, the acceleration factors c1 and
c2 were set to 2 [42], and other parameter settings were the same as CIPSO.

Result analysis: Figure 8 shows the iteration process and convergence results of
each algorithm. It is observed that the CIPSO algorithm converges faster and stabilizes
around the 23rd generation, and the standard PSO algorithm only stabilizes around the
41st generation. However, the GA algorithm and SA algorithm only stabilized in the 35th
and 59th generations, respectively, and did not find the optimal solution within the set
number of iterations, so the accuracy of these algorithms remains to be discussed. The
CIPSO algorithm takes 5–10 s to execute, which can ensure the real-time collision avoidance
decision. This indicates that the curve incremental strategy adopted in this work can
effectively adjust the behavior of the particles, enabling the algorithm to better balance the
relationship between global and local searches, thus improving the search efficiency and
convergence accuracy of the algorithm.

The CIPSO algorithm calculated the optimal value as (3.7372, 0.345644), which means
this vessel’s optimal collision avoidance operation requires it to slow down to 3.7372 knots.
The vessel decelerated from 13 knots to 3.7 knots, with a reverse deceleration stroke of
1.04 n miles and a stroke time of 8.3 min. After stabilizing to 3.7 knots, the dCPA values
with TG1, TG2, and TG3 were [1.10, 2.57, 1.54], the dCPA values between OS and each TG
were greater than the set d1 value, and the OS could safely navigate the port, avoiding
all vessels. Figure 9 shows the change curve of collision risk when the vessel undertakes
the deceleration collision avoidance operation; the CRI value of each TG relative to OS is
gradually reduced to below 0.3 within 10 min, which reduces the CR.

Figure 10 shows the change in the distance between each TG and OS during the
collision avoidance process, and the encounter distance between each TG and OS is higher
than d1. The value of the closest encounter distance between TG1 and OS is very similar
to the value of d1, which also indicates that the speed value given by the speed-varying
collision avoidance decision makes the energy loss of the vessel as small as possible, and
simultaneously maximizes the safety of the vessel’s encounter. The above analysis can
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conclude that the speed-varying collision avoidance decision is effective and can feasibly
safely avoid all target vessels.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21 
 

Model parameter settings: By analyzing the navigational environment and human 
factors of the case, the values of K1, K2 and K3 are taken as 1, 2 and 1, respectively. Follow-
ing several iterations of the optimization algorithm, the final test resulted in an optimal 
weight assignment of α = 0.8, β = 0.2. To verify the superiority of the proposed CIPSO 
algorithm, three classical intelligent algorithms were selected for comparison experi-
ments: Simulated Annealing Algorithm (SA), GA, and PSO. The population size in all al-
gorithms was set to 100 and the maximum number of iterations was set to 300. Parameter 
settings in SA were as follows: the initial temperature was set to 100°, and the temperature 
decay coefficient was set to 0.95 [40]. Parameter settings in GA were as follows: the cross-
over probability was 0.8, and the variance probability was 0.05 [41]. Parameter settings in 
CIPSO were as follows: the update speed limit range of particles was [−1.5, 1.5], wmax was 
set to 1.2, and the individual position (vessel speed) constraint was set to [vse, v0/2], that is, 
[2, 6.5]. The particle inertia weight w of the PSO algorithm was set to 0.9, the acceleration 
factors c1 and c2 were set to 2 [42], and other parameter settings were the same as CIPSO.  

Result analysis: Figure 8 shows the iteration process and convergence results of each 
algorithm. It is observed that the CIPSO algorithm converges faster and stabilizes around 
the 23rd generation, and the standard PSO algorithm only stabilizes around the 41st gen-
eration. However, the GA algorithm and SA algorithm only stabilized in the 35th and 59th 
generations, respectively, and did not find the optimal solution within the set number of 
iterations, so the accuracy of these algorithms remains to be discussed. The CIPSO algo-
rithm takes 5–10 s to execute, which can ensure the real-time collision avoidance decision. 
This indicates that the curve incremental strategy adopted in this work can effectively 
adjust the behavior of the particles, enabling the algorithm to better balance the relation-
ship between global and local searches, thus improving the search efficiency and conver-
gence accuracy of the algorithm. 

 
Figure 8. Comparison diagram of fitness changes. 

The CIPSO algorithm calculated the optimal value as (3.7372, 0.345644), which means 
this vessel’s optimal collision avoidance operation requires it to slow down to 3.7372 
knots. The vessel decelerated from 13 knots to 3.7 knots, with a reverse deceleration stroke 
of 1.04 n miles and a stroke time of 8.3 min. After stabilizing to 3.7 knots, the dCPA values 
with TG1, TG2, and TG3 were [1.10, 2.57, 1.54], the dCPA values between OS and each TG 
were greater than the set d1 value, and the OS could safely navigate the port, avoiding all 
vessels. Figure 9 shows the change curve of collision risk when the vessel undertakes the 
deceleration collision avoidance operation; the CRI value of each TG relative to OS is grad-
ually reduced to below 0.3 within 10 min, which reduces the CR. 

Figure 8. Comparison diagram of fitness changes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

 
Figure 9. Change curve of CRI in the collision avoidance process. 

Figure 10 shows the change in the distance between each TG and OS during the col-
lision avoidance process, and the encounter distance between each TG and OS is higher 
than d1. The value of the closest encounter distance between TG1 and OS is very similar 
to the value of d1, which also indicates that the speed value given by the speed-varying 
collision avoidance decision makes the energy loss of the vessel as small as possible, and 
simultaneously maximizes the safety of the vessel’s encounter. The above analysis can 
conclude that the speed-varying collision avoidance decision is effective and can feasibly 
safely avoid all target vessels. 

 
Figure 10. Change the curve of encounter distance between OS and each TG. 

To further validate the feasibility and effectiveness of the method, a large-vessel ma-
neuvering simulator was used to conduct multi-vessel simulation experiments. Figure 11 
shows the trajectory generated after manipulating collision avoidance in the simulation 
case in the simulator. In the figure, the green vessel (OS) is the simulated vessel, while the 
other vessels (TG1, TG2, TG3) are the simulated target vessels. The virtual shadow of the 
vessel represents the position of the vessel at a certain time. The numbers in the figure 
represent different time points, with 1 being the starting time point, and a time interval of 
4 min. From Figure 11, it can be seen that the distance between the trajectories of OS is 
equal at the third moment, indicating that OS is reversing and decelerating to the prede-
termined safe speed. At the fourth moment, the TG1 has safely passed the bow of the OS 
and is a long, safe distance from the OS. At the sixth moment, TG2 and TG3 are also sailing 
in their respective directions past the bow of the OS. This indicates that the safe speed 
provided by this decision support method meets the safety requirements of super-large 
vessel navigation. 

Figure 9. Change curve of CRI in the collision avoidance process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

 
Figure 9. Change curve of CRI in the collision avoidance process. 

Figure 10 shows the change in the distance between each TG and OS during the col-
lision avoidance process, and the encounter distance between each TG and OS is higher 
than d1. The value of the closest encounter distance between TG1 and OS is very similar 
to the value of d1, which also indicates that the speed value given by the speed-varying 
collision avoidance decision makes the energy loss of the vessel as small as possible, and 
simultaneously maximizes the safety of the vessel’s encounter. The above analysis can 
conclude that the speed-varying collision avoidance decision is effective and can feasibly 
safely avoid all target vessels. 

 
Figure 10. Change the curve of encounter distance between OS and each TG. 

To further validate the feasibility and effectiveness of the method, a large-vessel ma-
neuvering simulator was used to conduct multi-vessel simulation experiments. Figure 11 
shows the trajectory generated after manipulating collision avoidance in the simulation 
case in the simulator. In the figure, the green vessel (OS) is the simulated vessel, while the 
other vessels (TG1, TG2, TG3) are the simulated target vessels. The virtual shadow of the 
vessel represents the position of the vessel at a certain time. The numbers in the figure 
represent different time points, with 1 being the starting time point, and a time interval of 
4 min. From Figure 11, it can be seen that the distance between the trajectories of OS is 
equal at the third moment, indicating that OS is reversing and decelerating to the prede-
termined safe speed. At the fourth moment, the TG1 has safely passed the bow of the OS 
and is a long, safe distance from the OS. At the sixth moment, TG2 and TG3 are also sailing 
in their respective directions past the bow of the OS. This indicates that the safe speed 
provided by this decision support method meets the safety requirements of super-large 
vessel navigation. 

Figure 10. Change the curve of encounter distance between OS and each TG.

To further validate the feasibility and effectiveness of the method, a large-vessel
maneuvering simulator was used to conduct multi-vessel simulation experiments. Figure 11
shows the trajectory generated after manipulating collision avoidance in the simulation
case in the simulator. In the figure, the green vessel (OS) is the simulated vessel, while
the other vessels (TG1, TG2, TG3) are the simulated target vessels. The virtual shadow
of the vessel represents the position of the vessel at a certain time. The numbers in the
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figure represent different time points, with 1 being the starting time point, and a time
interval of 4 min. From Figure 11, it can be seen that the distance between the trajectories
of OS is equal at the third moment, indicating that OS is reversing and decelerating to the
predetermined safe speed. At the fourth moment, the TG1 has safely passed the bow of
the OS and is a long, safe distance from the OS. At the sixth moment, TG2 and TG3 are
also sailing in their respective directions past the bow of the OS. This indicates that the
safe speed provided by this decision support method meets the safety requirements of
super-large vessel navigation.
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Figure 12 presents the curves of the dCPA and tCPA of each TG relative to OS over
time. From the figure, it can be seen that, after driving for about 8 min under the given
decision, the dCPA values of OS and each TG are greater than 1 n miles. This indicates that
the speed-varying collision avoidance measures for super-large vessels are highly feasible
and in line with the “substantial” collision avoidance operation required in COLREGS.
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6. Conclusions

In this paper, a CIPSO-based speed-varying collision avoidance decision support
method is proposed for super-large vessel navigation in port waters. Focusing on the
maneuvering characteristics of super-large vessels and the special characteristics of port
waters, a vessel CRI sub-model is established, which takes the vessel domain and maneu-
vering performance into account, and the real-time CRI can be calculated to evaluate the
safety of navigation. The speed-varying energy loss sub-model is constructed by limiting
the range of decision values according to COLGERS. The two sub-models are weighted and
combined to derive the total objective function for vessels’ speed-varying collision avoid-
ance, which is used as the fitness of CIPSO. A safety and effectiveness collision avoidance
decision value can be derived through the iterative optimization process of CIPSO. Finally,
a simulation analysis was performed based on numerical simulation and the simulator
platform, and the simulation results demonstrate that the speed-varying collision avoid-
ance method is suitable for the port waters. The performance of the CIPSO is compared
with three well-established intelligent algorithms. The results indicate that the CIPSO
exhibits a faster convergence, higher accuracy, and shorter iteration times when obtaining
the optimal decision value. In addition, the feasibility and effectiveness of the proposed
method are validated through the examination of the CRI, safe encounter distance, and
simulator experiments.

The method can provide decision support for the navigation of super-large vessels in
the port. It assumes compliance with COLREGS by all vessels. However, it is important to
acknowledge that in real multi-vessel encounter situations, there is a possibility of human
error or uncoordinated collision avoidance measures between vessels. Therefore, future
work should further consider the existence of vessels that do not comply with COLREGS and
set up scenarios in which vessels encounter uncoordinated collision avoidance operations.
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