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Abstract: As an improved method of the lattice Boltzmann method (LBM), the regularized lattice
Boltzmann method (RLBM) has been widely used to simulate fluid flow. For solving high Reynolds
number problems, large eddy simulation (LES) and RLBM can be combined. The computation of
fluid flow problems often requires a large number of computational grids and large-scale parallel
clusters. Therefore, the high scalability parallel algorithm of RLBM with LES on a large-scale cluster
has been proposed in this paper. The proposed parallel algorithm can solve complex flow problems
with large-scale Cartesian grids and high Reynolds numbers. In order to achieve computational load
balancing, the domain decomposition method (DDM) has been used in large-scale mesh generation.
Three mesh generation strategies are adopted, namely 1D, 2D and 3D. Then, the buffer on the grid
interface is introduced and the corresponding 1D, 2D and 3D parallel data exchange strategies are
proposed. For the 3D lid-driven cavity flow and incompressible flow around a sphere under a high
Reynolds number, the given parallel algorithm is analyzed in detail. Experimental results show
that the proposed parallel algorithm has a high scalability and accuracy on hundreds of thousands
of cores.

Keywords: parallel computing; regularized lattice Boltzmann method; large eddy simulation; domain
decomposition method

1. Introduction

Over the past several decades, computational fluid dynamics (CFD) have undergone
significant development in numerical simulations of both incompressible and compressible
flows. Great progress has been achieved in CFD through the finite difference method [1],
finite volume method [2], finite element method [3], and spectral method [4]. The appli-
cations of CFD have achieved great success in various fields; magnetized-nanofluid [5,6],
nonlinear mixed convection [7–9], molecular dynamics [10], cellular automata [11] and
others have contributed to these developments. In the past few decades, as a mesoscopic
CFD method, the lattice Boltzmann method (LBM) has emerged as an intriguing alternative
in CFD for simulating fluid flow [12–18]. Due to its granular nature and local dynamics,
LBM offers several advantages over traditional CFD methods, especially when dealing
with complex boundary conditions and parallelization requirements. Its notable feature
lies in its suitability for parallel computing, facilitated by localized communication and
inherent additivity schemes in numerical operations.

LBM can be flexibly combined with some existing models to solve CFD numerical
simulation problems for different situations. In recent years, the Immersed Boundary
technique has been seamlessly integrated with LBM, enhancing its capabilities in simulating
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complex geometries and interactions [19]. By incorporating the Immersed Boundary
technique, LBM becomes particularly adept at handling scenarios involving non-circular
particles in an enclosure, where a pulsatile flow acts as a counter-flow [20].

Among the many popular LBM models, the single-relaxation-time LBM (SRT-LBM)
model [21–23] is widely used due to its simplicity and ease of implementation. However,
previous studies have revealed that the SRT-LBM model can become numerically unstable
when simulating fluids with high Reynolds numbers [24]. To address this issue, one
approach suggested for enhancing numerical stability is the introduction of a regularization
procedure, which is executed prior to particle collision [25]. This regularization procedure
restores certain symmetry properties that might not be inherently satisfied in numerical
simulations, leading to higher stability. In addition, the regularized lattice Boltzmann
method (RLBM) maintains the simplicity and computational efficiency of the SRT-LBM
method while significantly improving the numerical stability.

Large Eddy Simulation (LES) is a pivotal numerical simulation method widely utilized
in CFD to investigate turbulent motion. Initially proposed by Smagorinsky in 1963 [26],
LES has evolved as an effective tool for studying turbulence across various engineering
applications. Its integration with LBM has further enhanced its applicability. In LES,
the large turbulent structures are directly resolved, while the smaller ones are modeled,
making it computationally efficient for turbulent flow simulations. The method has gained
prominence due to the advancement in computational resources and techniques, enabling
accurate predictions of complex flow behaviors.

In recent years, researchers have focused on combining LES with LBM, enhancing the
simulation capabilities. Hou et al. successfully integrated the Smagorinsky model with
Single-Relaxation-Time LBM (SRT-LBM) [27], and Tiftikci et al. introduced the Smagorin-
sky model into RLBM [28]. By incorporating the Smagorinsky model with RLBM, these
approaches have achieved improved accuracy in capturing turbulent phenomena. Notably,
the advantage of incorporating the Smagorinsky model in RLBM lies in its completely local
computation, preserving the parallel nature of RLBM simulations. This integration signifies
a significant advancement in simulating turbulence, enabling researchers to delve deeper
into intricate flow dynamics with enhanced precision and computational efficiency.

Since the LES problems handled by RLBM are often large in scale, computing plat-
forms are often required to have high computing power and large storage space. Currently,
servers [29] and supercomputers [30] with multicore systems are the first choice for solving
LES problems using RLBM in computational fluid dynamics. These computational plat-
forms offer high computing power and ample storage space, which are essential for tackling
the large-scale LES problems. As fluid mechanics and artificial intelligence continue to
integrate deeply [31–40], a new computing model is anticipated in the future. However,
the current situation is that reliance on the use of servers and supercomputers based on
multi-core architectures for solving LES with RLBM still performs much better than AI
solutions. It is imperative to employ parallel computing strategies to efficiently address
these computational challenges in the realm of handling LES problems by RLBM.

The high-performance computing (HPC) platform provides for the large amount of
computational resources required during LES simulation. RLBM needs to design parallel
algorithms and formulate computational domain division strategies according to its own
characteristics when solving LES simulation. Due to the local dynamics of RLBM with
LES (RLBM-LES), DDM can be used to achieve parallelism. Related studies have been
presented. Xu et al. [41] used the domain decomposition method to simulate the 3D
incompressible flow past a sphere on multi-GPUs. MPI is the optimum solution for
implementing computation across compute nodes in HPC. Abas et al. [42] used MPI to
accelerate the RLBM simulation implemented on top of the Palabos [43] library, but they
only gave performance results and did not show the details on the parallel algorithm.
Zavodszky and Paal [44] used RLBM to simulated 3D transient flows in complex geometries
on 128 CPU cores but did not provide a performance analysis. Basha and Sidik [45] used
the RLBM method to simulate incompressible laminar convection in 2D and 3D channels
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and the domain decomposition method to parallelize uniform lattice grids, while also
providing a performance analysis on a HPC cluster with 32 nodes.

On the one hand, there is no research on the scalability of RLBM-LES on large-scale
cluster; on the other hand, parallel algorithms of RLBM only evaluate its parallel per-
formance and still lack practical applications which have no Cartesian grid generation
algorithms. Therefore, this paper proposes a parallel algorithm for RLBM to solve LES
simulations. The algorithm is based on Cartesian grid generation, domain decomposition
method and data exchange strategy on clusters, which empowers RLBM to solve LES with
HPC clusters. The scalability of the algorithm on large-scale clusters is also investigated.

The rest of the paper is arranged as follows. Section 2 introduces RLBM-LES and the
processing method of the boundary. Section 3 illustrates RLBM-LES parallel implementa-
tion. Next, the experimental results are shown and discussed in Section 4. Finally, Section 5
summarizes this paper.

2. RLBM-LES and Boundary Condition
2.1. RLBM-LES

RLBM is an improved model based on LBM. Therefore, RLBM can be derived from
the introduction of LBM. LBM deduced from the kinetic theory consists of three parts:
a discrete lattice velocity model, equilibrium distribution functions (EDFs), and a time
evolution equation [21,46]. The time evolution equation of LBM can be written as:

fi(x + eixδt, y + eiyδt, z + eizδt, t + δt)− fi(x, y, z, t) = − 1
τ
[ fi(x, y, z, t)− f eq

i (x, y, z, t)], (1)

where fi(x, y, z, t) is the particle distribution function (PDF) at site (x, y, z) and time t,
f eq
i (x, y, z, t) is the equilibrium distribution function at site (x, y, z) and time t, δt is the

lattice time step, ei is the discrete velocity, and τ is the dimensionless relaxation time, which
is determined by the fluid viscosity ν of the fluid:

τ =
ν

c2
s
+

∆t
2

, (2)

where cs is the lattice speed of sound, cs =
√

3/3.
According to the characteristics of LBM, Equation (1) consists of the following parts:

collision and streaming,

f+i (x, y, z, t) = fi(x, y, z, t) + (− 1
τ
[ fi(x, y, z, t)− f eq

i (x, y, z, t)]), (3)

fi(x + eixδt, y + eiyδt, z + eizδt, t + δt) = f+i (x, y, z, t), (4)

where f+i (x, y, z, t) denotes the post-collision state of PDF.
When using LBM to simulate three-dimensional fluif flow, the D3Q19 (see Figure 1)

model is the most commonly used, and the corresponding discrete velocities ei are:
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Figure 1. Velocity vectors in the D3Q19 model.
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e =c

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

, (5)

where the lattice speed c =
√

3cs.
The equilibrium function f eq

i (x, y, z, t) is calculated by the following formula:

f eq
i = ρωi

[
1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u2

2c2
s

]
. (6)

In Equation (6), the coefficients of ωi are ωi = 1/3 (e2
i = 0), ωi = 1/18 (e2

i = 1) and
ωi = 1/36 (e2

i = 2). ρ is the fluid density. u is the macroscopic flow velocity.
Latt and Chopard [25] proposed a regularized version of LBM. The main idea of

the regularization version is to add an additional regularization step before the collision
operation of LBM. The introduction of the regularization step enhances the numerical
stability. In the regularized lattice Boltzmann scheme, the non-equilibrium value of the
distribution function is defined as:

f neq
i = fi − f eq

i . (7)

Substitute Equation (7) into Equation (1), Equation (1) can be transformed into:

fi(x + eixδt, y + eiyδt, z + eizδt, t + δt) = (1− 1
τ
) f neq

i (x, y, z, t) + f eq
i (x, y, z, t). (8)

The non-equlibrium part of the distribution function is related to the first order
Chapman-Enskog expansion,

f neq
i ≈ f 1

i = − ti
ωc2

s
Qiaβ∂aρuβ, (9)

where Qiαβ = ciαciβ − c2
s δαβ is a symmetric tensor, which is defined in terms of the Kro-

necker symbol δαβ. ti is the weighting factor of the corresponding grid direction, and the
values of ti are ti = 1/3 (i = 0), ti = 1/18 (i = 1 . . . 6) and ti = 1/36 (i = 7 . . . 18)

From Chapman-Enskog expansion, the stress tensor ∏
neq
aβ =∑

i
f neq
i ciaciβ and the veloc-

ity gradient has the following relations:

∏neq
αβ
≈∑

k
f 1
k ckαckβ = − c2

s
ω
(∂αρuβ + ∂βρuα). (10)

According to the symmetry of Qiαβ = Qiβα, from Equations (9) and (10), we can obtain

f 1
i =

ti

2c4
s

Qiaβ ∏neq
αβ

. (11)

Substituting the above equation into Equation (8), the regularized LBM algorithm can
be written as

fi(x + eixδt, y + eiyδt, z + eizδt, t + δt) = (1− 1
τ
) f 1

i (x, y, z, t) + f eq
i (x, y, z, t). (12)

The macroscopic density and velocity are given by

ρ =
18
∑

i=0
fi,

u = 1
ρ

18
∑

i=0
fiei.

(13)
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In order to simulate the turbulent flow with LES, the Smagorinsky sub-grid scale
(SGS) model is incorated into the RLBM framwork. According to [47], the relationship
between the total viscosity νtotal and the total relaxation time τtotal can be expressed by the
following formula,

νtotal = ν + νt = 3(τtotal −
1
2
), (14)

where νt is an additional viscosity called the turbulent eddy viscosity.
The turbulent eddy viscosity can be expressed as

νt = Csδ2
x|Sαβ|, (15)

where Cs denotes the Smagorinsky constant, δx represents the lattice space, and Sαβ

(α, β ∈ x, y, z) in Cartesian coordinates is the strain rate tensor, i.e., Sαβ = (∂αuβ + ∂βuα)/2

and |Sαβ| =
√

2SαβSαβ. In the RLBM, Sαβ can be computed directly from the non-

equilibrium stress tensor ∏
neq
αβ and the calculation of Sαβ according to the following formula

as in Delbosc et al. [48]:

|Sαβ| =
1

6Csδ2
x
(

√
ν2 + 18C2

s δ2
x

√
∏αβ ∏αβ

− ν). (16)

Therefore, τtotal can be obtained by νtotal , and τtotal is used to replace the original
relaxation time τ in Equation (12).

2.2. Boundary Condition
2.2.1. Grid-Aligned Botundary

The handling of the boundary condition affects the calculation accuracy, numerical
stability and calculation efficiency of RLBM. In this paper, the non-equilibrium extrapolation
method developed by Guo et al. [49] is used to deal with the flat boundary. The non-
equilibrium extrapolation method has the advantages of reliable numerical stability and
second-order accuracy. The non-equilibrium extrapolation scheme can be expressed as:

fi(xw, yw, zw, t) = f eq
i (ρ(x f , y f , z f , t), uw) + [ fi(x f , y f , z f , t)− f eq

i (x f , y f , z f , t)], (17)

where ρ(x f , y f , z f , t) is the density of the adjacent grid point (x f , y f , z f ) of the boundary
grid point (xw, yw, zw), and uw is the velocity of the boundary grid point (xw, yw, zw).

2.2.2. Curved Boundary

The above boundary scheme requires that the grid nodes are on the physical boundary.
For more complex curved boundaries, it is difficult for the grid nodes to be exactly on
the physical biundary; thus, a new boundary scheme is needed to deal with the curved
boundary. In Figure 2, the curved boundary separates the solid nodes from the fluid nodes.
The solid circles are the solid nodes and the hollow circles are the fluid nodes. x f is the fluid
node near the boundary and xb is the solid node near the boundary. x f f is the adjacent fluid
node of x f . The solid square xw on the curve represents the intersections of the boundary
and various lattice links. uw is the boundary velocity at point xw. The curved boundary
scheme can be expressed as follows,

f ī(x f , t + δt) =
1

1 + q

[
(1− q) f+i (x f f , t) + q f+i (x f , t) + q f+ī (x f , t)

]
, (18)

where ī is the opposite direction of i, and q is the fraction of an intersected link in the fluid
region, which is given by:

q =
|x f − xw|
|x f − xb|

, 0 ≤ q ≤ 1. (19)
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Figure 2. Illustration of Curved Boundary.

The specific implementation steps of RLBM can be summarized as Figure 3.
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Figure 3. Flow chart of RLBM.
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3. RLBM Parallel Strategy

According to the execution order of the propagation method, it can be divided into
two types, one is to execute the collision step before the propagation step and the other is
to execute the propagation step before the collision step [50]. The order of execution in this
paper is to use the collision step before the propagation step.

In the RLBM, the execution of the regularization and collision operation is local,
and the streaming operation only involves adjacent grid points; thus, the RLBM algorithm
is particularly suitable for parallel implementation, and it is a reasonable parallel strategy
to divide the flow domain into a sub-domain using the DDM [51]. DDM is a technique in
parallel computing; according to the process analysis of RLBM and LES computation, it can
be found that under the same scale of the grid, it mainly includes the process of collision,
migration, boundary processing, etc., and the process of computation is basically the same
at each grid point, so the DDM is used to decompose the whole computational grid area
into domains in accordance with the principle of computational load balancing.

3.1. Domain Decomposition

For the three-dimensional case, the domain decomposition can be decomposed in one
direction (1D) (see Figure 4a), two directions (2D) (see Figure 4b) or three directions (3D)
(see Figure 4c).

x

yz

(a) 1D

x

yz

(b) 2D

x

yz MPI process

DDX
0

DDY

DDZ

(c) 3D

Figure 4. Domain decomposition.

As shown in Figure 4c, after domain decomposition, each sub-domain corresponds
to an MPI process. Because the process is one-dimensional, the dimension of domain
decomposition may be one-dimensional, two-dimensional or three-dimensional. There-
fore, a connection needs to be established between them. Taking the three-dimensional
subdomain (i, j, k) as an example, the relationship is as follows:

i = mod(mod(prank, nDDX× nDDY), nDDX)

j =
mod(prank, nDDX× nDDY)

nDDX

k =
prank

nDDX× nDDY

. (20)

where nDDX, nDDY, and nDDZ represent the number of domain decompositions along
the directions of x, y and z, respectively, and prank is the MPI process rank. Then, the size
of the sub-domain in the x direction can be calculated as follows:

XBeg = i× nLatX
nDDX

+ minInt(i, mod(nLatX, nDDX)), (21)
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XEnd =


XBeg +

nLatX
nDDX

− 1 mod(nLatX, nDDX) ≤ i

XBeg +
nLatX
nDDX

mod(nLatX, nDDX) > i
, (22)

where nLatX represents the number of lattice nodes in the x direction. XBeg and XEnd are
the begin and end points of the lattice node of sub-domain along x direction, respectively.
Similarly, the sub-domain range in the direction of y and z.

When two of nDDX, nDDY, and nDDZ are set to 1, that is 1D, and one is set to 1,
that is 2D.

3.2. Data Exchange

In order to ensure that the calculation results of each sub-domain are accurate, a data
exchange with adjacent MPI processes is required. When data are exchanged, it is not
necessary to exchange possessive data f+i in all 18 directions; it is only needed to exchange
the f+i in the directions required for the streaming operation.

In this work, buffers are introduced in order to reduce the complexity of the parallel
algorithm design and the ease of program implementation. A buffer is a unit with a data
storage function that ensures that the computation is essentially the same at each grid point
in each process. At the same time, the increased buffer does not need to participate in
the computation and is only used for data storage in the parallel data exchange process.
This enables the reduction of the complexity of the algorithm implementation without
increasing the amount of computations. According to DDM, these received data are stored
in the buffer in the sub-domain, and the size of the buffer depends on DDM.

Figure 5 shows the data exchange of 1D domain decomposition. The sub-domain
(i, j, k) exchange data with the adjacent sub-domain that includes four surfaces. The f+i
exchanged in each direction are shown in the table in Figure 5.

12

direction out-going

1

2

in-coming

1 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

( , , )i j k( 1, , )i j k− ( 1, , )i j k+

2 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

14 ( , , , )f i j k t+

9 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

13 ( , , , )f i j k t+

2 ( 1, , , ),f i j k t+ + 8 ( 1, , , ),f i j k t+ + 10 ( 1, , , ),f i j k t+ + 12 ( 1, , , ),f i j k t+ + 14 ( 1, , , )f i j k t+ +

1 ( 1, , , ),f i j k t+ − 7 ( 1, , , ),f i j k t+ − 9 ( 1, , , ),f i j k t+ − 11 ( 1, , , ),f i j k t+ − 13 ( 1, , , )f i j k t+ −

Figure 5. One-dimensional data exchange along x direction.

Figure 6 shows the data exchange of the 2D domain decomposition. In Figure 6,
the sub-domain (i, j, k) exchange data with the adjacent sub-domain, including eight
surfaces of data and eight edges of data. The f+i exchanged in each direction are shown in
the table in Figure 6.
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12

33

44

7

98

10

2

3

direction out-going in-coming

1

4

7

8

9

10

( , , )i j k

( 1, 1, )i j k+ +

( 1, 1, )i j k+ −

( 1, , )i j k+( 1, , )i j k−

( , 1, )i j k−

( , 1, )i j k+( 1, 1, )i j k− +

( 1, 1, )i j k− −

1 ( , , , ),f i j k t+

8 ( 1, , , ),f i j k t+ +

7 ( , , , )f i j k t+

8 ( , , , )f i j k t+

9 ( , , , )f i j k t+

10 ( , , , )f i j k t+

7 ( , , , ),f i j k t+

2 ( 1, , , ),f i j k t+ +9 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

13 ( , , , )f i j k t+

2 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

14 ( , , , )f i j k t+

3 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

15 ( , , , ),f i j k t+

17 ( , , , )f i j k t+

4 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

9 ( , , , ),f i j k t+

16 ( , , , ),f i j k t+

18 ( , , , )f i j k t+

10 ( 1, , , ),f i j k t+ + 12 ( 1, , , ),f i j k t+ +

1 ( 1, , , ),f i j k t+ −

8 ( 1, 1, , )f i j k t+ + +

7 ( 1, 1, , )f i j k t+ − −

10 ( 1, 1, , )f i j k t+ + −

9 ( 1, 1, , )f i j k t+ − +

14 ( 1, , , )f i j k t+ +

7 ( 1, , , ),f i j k t+ − 9 ( 1, , , ),f i j k t+ − 11 ( 1, , , ),f i j k t+ − 13 ( 1, , , )f i j k t+ −

4 ( , 1, , ),f i j k t+ + 8 ( , 1, , ),f i j k t+ + 9 ( , 1, , ),f i j k t+ + 16 ( , 1, , ),f i j k t+ + 18 ( , 1, , )f i j k t+ +

3 ( , 1, , ),f i j k t+ − 7 ( , 1, , ),f i j k t+ − 10 ( , 1, , ),f i j k t+ − 15 ( , 1, , ),f i j k t+ − 17 ( , 1, , )f i j k t+ −

Figure 6. Two-dimensional surfaces of data exchange.

Figures 7 and 8 show the data exchange of 3D domain decomposition. In Figure 7,
the sub-domain (i, j, k) exchanges 12 surfaces of data with the adjacent sub-domain. In
Figure 8, the sub-domain (i, j, k) exchanges 24 edges of data with the adjacent sub-domain
The f+i exchanged in each direction are shown in the table in Figures 7 and 8.

12

33

44

5

6

5

2

3

4

6

direction out-going in-coming

1
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( , 1, )i j k−

( , , 1)i j k −

1 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

9 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

13 ( , , , )f i j k t+

2 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

14 ( , , , )f i j k t+

3 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

15 ( , , , ),f i j k t+

17 ( , , , )f i j k t+

4 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

9 ( , , , ),f i j k t+

16 ( , , , ),f i j k t+

18 ( , , , )f i j k t+

5 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

14 ( , , , ),f i j k t+

15 ( , , , ),f i j k t+

18 ( , , , )f i j k t+

6 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

13 ( , , , ),f i j k t+

16 ( , , , ),f i j k t+

17 ( , , , )f i j k t+

2 ( 1, , , ),f i j k t+ + 8 ( 1, , , ),f i j k t+ + 10 ( 1, , , ),f i j k t+ + 12 ( 1, , , ),f i j k t+ + 14 ( 1, , , )f i j k t+ +

1 ( 1, , , ),f i j k t+ − 7 ( 1, , , ),f i j k t+ − 9 ( 1, , , ),f i j k t+ − 11 ( 1, , , ),f i j k t+ − 13 ( 1, , , )f i j k t+ −

4 ( , 1, , ),f i j k t+ + 8 ( , 1, , ),f i j k t+ + 9 ( , 1, , ),f i j k t+ + 16 ( , 1, , ),f i j k t+ + 18 ( , 1, , )f i j k t+ +

3 ( , 1, , ),f i j k t+ − 7 ( , 1, , ),f i j k t+ − 10 ( , 1, , ),f i j k t+ − 15 ( , 1, , ),f i j k t+ − 17 ( , 1, , )f i j k t+ −

6 ( , , 1, ),f i j k t+ + 12 ( , , 1, ),f i j k t+ + 13 ( , , 1, ),f i j k t+ + 16 ( , , 1, ),f i j k t+ + 17 ( , , 1, )f i j k t+ +

5 ( , , 1, ),f i j k t+ − 11 ( , , 1, ),f i j k t+ − 14 ( , , 1, ),f i j k t+ − 15 ( , , 1, ),f i j k t+ − 18 ( , , 1, )f i j k t+ −

12

3

4

5

6

5

2

3

4

6

direction out-going in-coming

1

( , , )i j k

( , , 1)i j k +

( , 1, )i j k+

( 1, , )i j k+( 1, , )i j k−

( , 1, )i j k−

( , , 1)i j k −

1 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

9 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

13 ( , , , )f i j k t+

2 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

14 ( , , , )f i j k t+

3 ( , , , ),f i j k t+

7 ( , , , ),f i j k t+

10 ( , , , ),f i j k t+

15 ( , , , ),f i j k t+

17 ( , , , )f i j k t+

4 ( , , , ),f i j k t+

8 ( , , , ),f i j k t+

9 ( , , , ),f i j k t+

16 ( , , , ),f i j k t+

18 ( , , , )f i j k t+

5 ( , , , ),f i j k t+

11 ( , , , ),f i j k t+

14 ( , , , ),f i j k t+

15 ( , , , ),f i j k t+

18 ( , , , )f i j k t+

6 ( , , , ),f i j k t+

12 ( , , , ),f i j k t+

13 ( , , , ),f i j k t+

16 ( , , , ),f i j k t+

17 ( , , , )f i j k t+

2 ( 1, , , ),f i j k t+ + 8 ( 1, , , ),f i j k t+ + 10 ( 1, , , ),f i j k t+ + 12 ( 1, , , ),f i j k t+ + 14 ( 1, , , )f i j k t+ +

1 ( 1, , , ),f i j k t+ − 7 ( 1, , , ),f i j k t+ − 9 ( 1, , , ),f i j k t+ − 11 ( 1, , , ),f i j k t+ − 13 ( 1, , , )f i j k t+ −

4 ( , 1, , ),f i j k t+ + 8 ( , 1, , ),f i j k t+ + 9 ( , 1, , ),f i j k t+ + 16 ( , 1, , ),f i j k t+ + 18 ( , 1, , )f i j k t+ +

3 ( , 1, , ),f i j k t+ − 7 ( , 1, , ),f i j k t+ − 10 ( , 1, , ),f i j k t+ − 15 ( , 1, , ),f i j k t+ − 17 ( , 1, , )f i j k t+ −

6 ( , , 1, ),f i j k t+ + 12 ( , , 1, ),f i j k t+ + 13 ( , , 1, ),f i j k t+ + 16 ( , , 1, ),f i j k t+ + 17 ( , , 1, )f i j k t+ +

5 ( , , 1, ),f i j k t+ − 11 ( , , 1, ),f i j k t+ − 14 ( , , 1, ),f i j k t+ − 15 ( , , 1, ),f i j k t+ − 18 ( , , 1, )f i j k t+ −

Figure 7. Three-dimensional surfaces of data exchange.



Appl. Sci. 2023, 13, 11078 10 of 23

9

710

8

12

14 11

13

15

16

17

18

direction out-going in-coming

7

8

9

10

11

12

13

14

15

16

17

18

( , , )i j k

( 1, 1, )i j k+ −

( 1, 1, )i j k+ +

( 1, , 1)i j k+ −

( 1, , 1)i j k+ +

( , 1, 1)i j k+ +

( , 1, 1)i j k− +

( 1, , 1)i j k− +

( 1, 1, )i j k− +

( 1, 1, )i j k− −

( , 1, 1)i j k+ −

( , 1, 1)i j k− −

( 1, , 1)i j k− −

7 ( , , , )f i j k t+

8 ( 1, 1, , )f i j k t+ + +

8 ( , , , )f i j k t+

9 ( , , , )f i j k t+

10 ( , , , )f i j k t+

11 ( , , , )f i j k t+

12 ( , , , )f i j k t+

13 ( , , , )f i j k t+

14 ( , , , )f i j k t+

15 ( , , , )f i j k t+

16 ( , , , )f i j k t+

17 ( , , , )f i j k t+

18 ( , , , )f i j k t+

7 ( 1, 1, , )f i j k t+ − −

10 ( 1, 1, , )f i j k t+ + −

9 ( 1, 1, , )f i j k t+ − +

12 ( 1, , 1, )f i j k t+ + +

11 ( 1, , 1, )f i j k t+ − −

14 ( 1, , 1, )f i j k t+ + −

13 ( 1, , 1, )f i j k t+ − +

16 ( , 1, 1, )f i j k t+ + +

15 ( , 1, 1, )f i j k t+ − −

18 ( , 1, 1, )f i j k t+ + −

17 ( , 1, 1, )f i j k t+ − +

Figure 8. Three-dimensional edges of data exchange.

In 1D domain decomposition along the x direction, communication data count is

4 sur f aces = 4× 5× nLatY× nLatZ = 20× nLatY× nLatZ, (23)

where nLatY and nLatZ are the number of lattice nodes along the y and z direction, respec-
tively.

In 2D domain decomposition along the x and y direction, the communication data
count is

8 sur f aces+8 edges=4×5× nLatX
nDDX

×nLatZ+4×5× nLatY
nDDY

×nLatZ

+8× nLatZ

=20× nLatX
nDDX

×nLatZ+20× nLatY
nDDY

×nLatZ

+8×nLatZ,

(24)

In 3D domain decomposition along the x, y and z direction, the communication data
count is

12sur f aces+24edges=4×5× nLatX
nDDX

× nLatY
nDDY

+4×5× nLatY
nDDY

× nLatZ
nDDZ

+4×5× nLatX
nDDX

× nLatZ
nDDZ

+8× nLatX
nDDX

+8× nLatY
nDDY

+8× nLatZ
nDDZ

=20× nLatX
nDDX

× nLatY
nDDY

+20× nLatY
nDDY

× nLatZ
nDDZ

+20× nLatX
nDDX

× nLatZ
nDDZ

+8× nLatX
nDDX

+8× nLatY
nDDY

+8× nLatZ
nDDZ

.

(25)

As is observed from Table 1, various DDMs are compared according to the lattice scale
512× 512× 512.



Appl. Sci. 2023, 13, 11078 11 of 23

Table 1. Communication data amount among three kinds of DDMs.

DDM nDDX nDDY nDDZ nLatX
nDDX

nLatY
nDDY

nLatZ
nDDZ Communication Amount

1D (0, nLatX) 1 1 (0, nLatX) 512 512 5,242,880

2D
256 8 1 2 64 512 679,936

128 16 1 4 32 512 372,736

64 32 1 8 16 512 249,856

3D

256 4 2 2 128 256 673,808

128 8 2 4 64 256 355,872

128 4 4 4 128 128 350,240

64 16 2 8 32 256 212,288

64 8 4 8 64 128 196,160

32 32 2 16 16 256 171,264

32 16 4 16 32 128 134,528

32 8 8 16 64 64 124,032

16 16 8 32 32 64 103,424

From Table 1, it can be noted that the 1D domain decomposition does not change
the communication data count. When nLatX

nDDX , nLatY
nDDY , nLatZ

nDDZ gradually becomes equal, the
3D DDM has less communication data count than the 2D one, and the 2D DDM has
less communication data count than the 1D one. Thus, the 3D DDM should have better
scalability than the 2D one, and the 2D DDM has better scalability than the 1D one.

3.3. Generate the Cartesian Grid

According to the domain decomposition, each sub-domain can judge their lattice
type based on the read surface mesh file of geometry, respectively, and there is no need to
communicate with other MPI processes. The parallel algorithm of Cartesian grid generation
is shown in Algorithm 1.

Algorithm 1 Parallel algorithm of Cartesian grid generation.

1: Obtain the lattice count (noted as latticeCount) of the sub-domain based on Equa-
tions (21) and (22);
2: Each MPI process generates the initial Cartesian grid, repectively;
3: Judge the lattice type;
4: For (int i = 0; i < latticeCount; i++)
5: Product type (type[i]) of all lattice in each MPI process according to the relationship
between

point and geometry;
6: if(type[i] == ’boundary’)
7: Compute the distance between curved boundary lattice and boundary wall [52]
and obtain q by

Equation (19);

As is shown in Algorithm 1, each MPI process has to determine each lattice type
in the buffer which has an effect on the parallel efficiency of Cartesian grid generation.
The amount of Cartesian grid of three kinds of domain decomposition needed to be judged
in each MPI process and can be described as follows:

A1D =

(
nLatX
nDDX

+ 2
)
× nLatY× nLatZ, (26)
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A2D =

(
nLatX
nDDX

+ 2
)
×
(

nLatY
nDDY

+ 2
)
× nLatZ, (27)

A3D =

(
nLatX
nDDX

+ 2
)
×
(

nLatY
nDDY

+ 2
)
×
(

nLatZ
nDDZ

+ 2
)

, (28)

where A1D, A2D, and A3D denote the amount of lattice needed to judge the lattice type in
1D, 2D, and 3D DDM, respectively. It can be observed from Table 2 that A1D, A2D, and A3D
are compared based on the lattice scale 2048× 512× 512. Different DDMs have similar
computational complexities; the difference depends on the buffers of different domain
decomposition. When nLatX

nDDX , nLatY
nDDY , nLatZ

nDDZ gradually become equal, 3D DDM has least
amount of lattice needed to be judged.

3.4. RLBM Parallel Algorithm

RLBM parallel iterative calculation can be described as an Algorithm 2. We first read
the surface mesh file, then the domain decomposition and the calculation of sub-domain
range are carried out. After generating a Cartesian grid, the flow field information is
initialized, and then the RLBM parallel iterative calculation starts. The regularization
calculation is required before the collision. After the collision, the MPI process must
exchange data with the neighboring processes based on DDM. After the data exchange,
the propagation operation is carried out, and finally the boundary and macro-quantity
calculations are carried out. Compared to the serial RLBM algorithm shown in Figure 3,
the parallel RLBM Algorithm 2 includes the domain decomposition method, Cartesian grid
generation and MPI communication.

Table 2. Comparison of lattice needed to be judged among three kinds of domain decomposition.

DDM nDDX nDDY nDDZ nLatX
nDDX

nLatY
nDDY

nLatZ
nDDZ Lattice Amount

1D 2048 1 1 1 512 512 786,432

2D
256 8 1 8 64 512 337,920

128 16 1 16 32 512 313,344

64 32 1 32 16 512 313,344

3D

256 4 2 8 128 256 335,400

128 8 2 16 64 256 306,504

128 4 4 16 128 128 304,200

64 16 2 32 32 256 298,248

64 8 4 32 64 128 291,720

32 32 2 64 16 256 306,504

32 16 4 64 32 128 291,720

32 8 8 64 64 64 287,496

16 16 8 128 32 64 291,720

According to the computational features of the combination of RLBM and LES, since
RLBM involves only the information of local neighboring nodes in the process of compu-
tation, it adopts the computational volume load priority (i.e., the computational volume
corresponding to the mesh division is basically the same), and then designs the communi-
cation strategy based on it to realize the load balancing based on MPI. Parallel algorithms
need to be designed with adaptability on high performance computers in mind. Since
high performance computers have a departmental structure with distributed storage, MPI
techniques must be used to implement the data exchange.
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Algorithm 2 RLBM Parallel Iterative Computation.

1: Read the STL file to generate a calculation model;
2: Select the appropriate dimension to decompose the domain and compute the range of
sub-domain;
3: Generate the Cartesian grid;
4: Initial flow field informance;
5: RLBM parallel iterative computation until satisfying the convergence condition:

(a) Regularization calculation through Equation (11);
(b) Collision through Equation (12);
(c) Exchange data with neighbor MPI processes;
(d) Streaming through Equation (12);
(e) Deal with boundary conditions;
(f) Calculate the macroscopic density ρ and velocity u based by Equation (13).

4. Numerical Experiment
4.1. High Reynolds Number Simulation

In this section, a 3D lid-driven cavity flow with a constant lid velocity U was simulated
as a numerical test for our experiments.The 3D lid-driven cavity flow is a regularly shaped
computational region, which can be used as a benchmark for verifying a parallel algorithm
in terms of acceleration ratio and parallel efficiency. Therefore, the 3D lid-driven cavity
flow is used in this paper, through which the results of the parallel algorithm designed in
this paper are proved to be accurate. On this basis, it is further verified that the parallel
algorithm designed in this paper also has good parallel speedup and parallel efficiency.
In terms of units, for the sake of ease in experimental programming, we conducted a
dimensionless analysis on all physical quantities and ensured that the dimensionless flow
and heat transfer criteria remained consistent before and after the nondimensionalization
process. Figure 9 shows the geometry of the lid-driven cavity flow. In Figure 9, B is the
cavity width, D is the cavity height, L is the cavity length, and U is a constant lid velocity.
In the experiments of this paper, the spanwise aspect ratio (SAR = L/B) is 0.5:1 or 1:1, and
the depthwise aspect ratio (DAR = D/B) is fixed at 1:1.

x

y

z

 B 

D

L
U

Figure 9. Three-dimensional lid-driven cavity flow.

The RLBM algorithm using MPI is used to simulate the 3D lid-driven cavity flow with
different Reynolds numbers. We prove the accuracy of the algorithm by simulating the
Reynolds number of 100, 400, and 1000. Figures 10–12 show a comparison of the RLBM
results of the lid-driven cavity flow with the results of Ku et al. [53] and Jiang et al. [54]. It
can be found that the RLBM algorithm using MPI in this paper is accurate.
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Figure 10. Comparison with benchmark values for (a) v velocity at y = 0.5 [53]; (b) u velocity at
x = 0.5 at Re = 100 and SAR = 1:1 [53,54].
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Figure 11. Comparison with benchmark values for (a) v velocity at y = 0.5 [53]; (b) u velocity at
x = 0.5 at Re = 400 and SAR = 1:1 [53,54].
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Figure 12. Comparison with benchmark values for (a) v velocity at y = 0.5 [53]; (b) u velocity at
x = 0.5 at Re = 1000, and SAR = 1:1 [53,54].

Then, we added Sub-Grid Scale(SGS) to the RLBM algorithm using MPI to simulate
the 3D lid-driven cavity flow with a high Reynolds number. Figures 13–16 show the
comparision between the results of the RLBM-SGS algorithm using MPI under the high
Reynolds number and the results of Prasad et al. [55]. It can be found that the RLBM-SGS
has a good stability under the high Reynolds number.
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Figure 13. Compariso n with benchmark values for (a) v velocity at y = 0.5, (b) u velocity at x = 0.5 at
Re = 3200, and SAR = 0.5:1.
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Figure 14. Comparison with benchmark values for (a) v velocity at y = 0.5, (b) u velocity at x = 0.5 at
Re = 5000, and SAR = 0.5:1.
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Figure 15. Comparison with benchmark values for (a) v velocity at y = 0.5, (b) u velocity at x = 0.5 at
Re = 7500, and SAR = 0.5:1.
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Figure 16. Comparison with benchmark values for (a) v velocity at y = 0.5, (b) u velocity at x = 0.5 at
Re = 10,000, and SAR = 0.5:1.
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4.2. Comparison of Three Kinds of Domain Decomposition Methods

In this section, a 3D incompressible flow around a sphere with a constant velocity
profile, u = U∞ = {0.2Ma, 0, 0}, was simulated as a numerical test for our various domain
decomposition methods. Figure 17 shows the schematic diagram of a three-dimensional
flow past a circular cylinder. In order to eliminate the influence of the boundary, the three-
dimensional (length × width × height) size of the calculation domain is 51.2D, 12.8D and
12.8D, respectively. D is the radius of the sphere, and its value is 40. The grid scale is
2048 × 512 × 512.

3.2D

3.2D
6.4D

Inlet Outlet

Figure 17. Schematic diagram of three-dimensional flow past a circular cylinder.

This comparison experiment was carried out on the third-generation cluster high-
performance computer-“Ziqiang 4000” of Shanghai University. The cluster includes
140 CPU compute nodes. Each node has two Intel SandyBridge architecture CPUs (Intel
E5-2690, 2.9 GHz/8-core), and the cluster has a total of 2240 cores. The shared running
memory of each node is 64 GB. The code is compiled under the mpich2 and GCC compila-
tion environment, and the optimization level of the code is “-O3”.

The drag force on the sphere Fd is computed with the momentum-exchange method [56],
and the drag force coefficient [57] is obtained by

Cd = − 8Fd
ρu2

∞D2 . (29)

The Figure 18 shows that our experiments are in good agreement with theoretical
value [58]. Figures 19 and 20 describe the vortical structure when Re = 1000 and 3700, re-
spectively.

10,000

Figure 18. Drag force coefficient.
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Figure 19. Vortical structure, Re = 1000.

Figure 20. Vortical structure, Re = 3700.

In Table 3, the time with 100 iterations to generate the grid; communication time
and iterative time, including collision time, streaming time, and communication time;
are presented.

In 1D DDM, the amount of data needed to be transferred is fixed in accord with
Equation (23); thus, the communication time is about same. Using 2D or 3D DDM, the com-
munication time decreases with the increase in nPX, nPY or nPZ, and the communication
time is less under the same cores when adopting the 3D one.

The lattice scales are the same in different DDM; thus, the time to generate the grid
is relative when cores are same. The values among three kinds of DDMs show that the
iterative time of the 3D one is shorter than the 2D one, and the 2D one has a shorter iterative
time than the 1D one. Based on the values of Table 3, speedup and efficiency are shown in
Figures 21 and 22. It can be observed that 3D DDM has the best scalability among the three
divisions.The 3D DDM also has less communication in the design of the parallel algorithmic
data exchange. Since in large-scale clusters, the computational resources are very large,
to be able to fully utilize the computational resources, a large number of computational
sub-regions are needed, and the domain decomposition strategy used in this paper needs
to decompose enough sub-computational domains; thus, the 3D division strategy is the
most appropriate.

The three-dimensional division strategy of LBM given by Xu et al. [59] is similar to our
three-dimensional division strategy of RLBM, but we also provide the one-dimensional and
two-dimensional division strategies and communication strategies in the paper. Due to the
high difficulty of 3D division, large amount of communication and complicated procedures,
it is necessary to study the 1D and 2D division strategies. Through experiments, we found
that when the number of cores is less than 1000, the speedup ratio of two-dimensional
partitioning is close to that of three-dimensional partitioning. When the number of cores is
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greater than 1000, the advantages of three-dimensional partitioning are shown. Therefore,
we can choose the division strategy reasonably according to the requirements.

Figure 23 shows the parallel efficiency of our 3D partitioning algorithm compared to
the results of Xu et al. [59]. It is found that our parallel efficiency is better than Xu et al. [59]
when the number of cores is less than 2048. However, when the number of cores is 2048,
the parallel efficiency is lower than that of Xu et al. [59]. The main reasons include two parts.
First, the lattice scale of Xu et al. [59] is much larger than ours, and the parallel performance
is positively correlated with the grid scale [60]; second, we use RLBM. Compared with
the LBM used by Xu et al. [59], RLBM has the advantages of less iterations and numerical
stability under high Reynolds number, but the computational complexity is higher than
that of LBM. Thus, overall, we observe that the RLBM parallel algorithm in this paper
is ideal.

Table 3. Computational time among three kinds of domain decomposition.

nPX nPY nPZ Iterative Time (s) Communication Time (s) Time to Generate Grid (s)

1D

256 1 1 1410.78 53.2321 13.9915
512 1 1 882.0 54.5075 9.30438

1024 1 1 616.1 53.7755 6.59018
2048 1 1 482.4 54.7407 5.28579

2D

32 8 1 1172.85 12.9407 14.0736
64 8 1 624.2 10.3737 10.2649
64 16 1 321.2 7.70774 6.99043
128 16 1 183.9 6.26043 5.32507

3D

16 4 4 1152.59 10.3427 9.4711
32 4 4 592.6 7.17983 8.72643
16 8 8 301.9 4.81678 5.17024
64 8 4 157.9 3.48762 8.16628
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Figure 21. Speedup comparison among three kinds of DDMs.
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Figure 22. Efficiency comparison among three kinds of DDMs.
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Figure 23. Compared with the results of Xu et al. [59].

4.3. Performance of 3D Domain Decomposition on Hundreds of Thousands of Cores

The simulation was carried out on Sunway BlueLight MPP supercomputer in National
Supercomputing Center in Jinan. Sunway BlueLight MPP consists of 8706 CPUs. The CPU
model is SW1600, with 16 cores; the frequency is 1600 MHz; and each CPU is matched
with 16 GB of DDR3 memory. Its peak speed is 1.07 Pflops/s, and its continuous speed is
795.9 Tflop/s.

Figures 24 and 25 show the speedup and efficiency of 3D domain decomposition on
a large-scale cluster, respectively. Figure 26 shows the weak scaling. It can be concluded
that the proposed algorithms are still effective even on hundreds of thousands of cores.
The parallel speedup and efficiency on large-scale computing clusters (Figures 24–26)
validate the load balancing capabilities and high scalability of RLBM parallel algorithms.
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Figure 24. Speedup of 3D domain decomposition on hundreds of thousands of cores.
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Figure 25. Efficiency of 3D domain decomposition on hundreds of thousands of cores.
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Figure 26. Weak scaling (scaleup) on hundreds of thousands of cores. The global simulation domain
increases proportionally to the number of cores.

5. Conclusions

In this paper, we analyze the serial computing details of RLBM with LES in detail.
Considering the architecture characteristics of the large-scale computing cluster, the highly
scalable parallel algorithm with computing load balancing is proposed. This paper used the
domain decomposition method to design three grid partition strategies, and introduced the
buffer technology to provide the corresponding parallel data exchange strategy. MPI is used
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for parallel data exchange between computing nodes. The proposed parallel algorithm has
the properties of computational load balancing and high scalability.

We used this parallel algorithm to simulate the flow of the 3D lid-driven cavity
flow under the high Reynolds number, and compare with the results of Prasad et al.
The experimental results show that RLBM with LES has a good stability under the high
Reynolds number. When computing resources are relatively small, DDM decomposition
along one direction is feasible. However, when the operating environment becomes a
large cluster with hundreds of thousands of cores, the three-dimensional decomposition
is reasonable and efficient. By analyzing the experimental results calculated on Shanghai
University’s “Ziqiang 4000” and Sunway BlueLight MPP in NSCC-JN, we prove that
the effect of 3D decomposition is the best and the presented algorithms are efficient and
scalable. It is foreseeable that even on one million CPU cores, the speedup ratio will not
drop significantly.

In the field of HPC, integrating parallel algorithms with Multigrid techniques is
crucial, especially in LES turbulence modeling. The multigrid method, a sophisticated
hierarchical approach, excels in solving LES equations on multiple grid levels, ensuring
rapid convergence in turbulent flow simulations. Its adaptability is vital in understanding
complex turbulence phenomena within LES. Moreover, the parallel algorithms of RLBM
and LES under multi-layer mesh will be studied in depth in the future work.

The challenge in using multiple GPUs lies in efficient communication. Within a single
node, communication is easier and more efficient. However, when GPUs span multiple
nodes, factors such as grid partitioning and communication strategies complicate matters.
Achieving a high efficiency in cross-node GPU communication is difficult and requires
careful planning and strategic implementation of communication methods and compu-
tational coordination. Despite challenges in adapting our proposed parallel algorithm to
heterogeneous CPU-GPU platforms, future efforts will refine our approach for multi-GPU
or multi-MIC configurations in LES simulations. These endeavors will optimize the syn-
ergy between parallel algorithms and the Multigrid framework, not only in LES but also
exploring integrations with other turbulence models, such as Reynolds stress models or
detached eddy simulation. This pursuit promises advanced solutions for large-scale LES
simulations, marking a significant step in this evolving computational field.
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