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Abstract: The random finite set (RFS) approach for multi-target tracking is widely researched because
it has a rigorous theoretical basis. However, many prior parameters such as the clutter density,
survival probability and detection probability of the target, pruning threshold, merging threshold,
initial state of the birth object and its error covariance matrix are required in the standard RFS-
based filters. In real application scenes, it is difficult to obtain these prior parameters. To address
this problem, an adaptive marginal multi-target Bayes filter without the need for clutter density is
proposed. This filter obviates the need for prior clutter density and survival probability. Instead of
using the prior initial states of newborn targets and their error covariance matrices, it uses two scans of
observations to generate the initial states of potential birth targets and their error covariance matrices
according to the least squares technique. Simulation results reveal that the proposed adaptive filter
has smaller OSPA and OSPA(2) errors as well as less cardinality error than the adaptive RFS-based
filters. The OSPA and OSPA(2) errors have been reduced by more than 20% compared to those of the
adaptive RFS-based filters.

Keywords: multi-target tracking; least squares technique; random finite set; marginal multi-target
Bayes filter; adaptive filter

1. Introduction

Detecting the target and estimating its state at specific times are the major task of
multi-target tracking (MTT). MTT has been widely used in civilian and military fields
such as missile warning, air surveillance, air and ground traffic control, autonomous
driving, etc. The challenge in radar MTT is the presence of clutter and noise and the
uncertainty of data association [1–7]. Traditional radar MTT approaches are based on
data association techniques and they have been used in different radar MTT systems
for several decades [3,8,9]. Generally, the traditional radar MTT approaches detect the
birth object and form its track according to the measurements from several different time
steps, and associate the measurement with the existing object to maintain its track at each
time step. With the establishment of the random finite set (RFS) theory [1] and labeled
RFS theory, the probability hypothesis density (PHD) filter [10,11], cardinality-balanced
multi-Bernoulli (CBMeMber) filter [12] and δ-generalized labeled multi-Bernoulli (δ-GLMB)
filter [13–15] have been proposed to track multiple objects in the presence of clutter, missed
detections, noise and uncertain data associations. These three tractable RFS-based filters
are the approximate implementations of the optimal multi-object Bayes filter. They provide
the three suboptimal solutions for the multi-object tracking problem. The defects of the
CBMeMber filter [12] and the PHD filter [10,11] are that they require a high signal-to-noise
ratio and that they cannot provide the target tracks. The δ-GLMB filter was proposed
to overcome these defects [13–15]. Despite their advantage in theory, the δ-GLMB filter,
CBMeMber filter and the PHD filter need many prior parameters. In order to acquire the
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predicted and updated intensity or density, the clutter density, survival probability and
detection probability of the target are assumed to be known in these three RFS-based filters.
Because each potential target (or Gaussian item) is associated with each observation at each
time step in these three RFS-based filters, severely combinatorial explosion arises as the
filtering recursion increases. The pruning threshold and merging threshold must be applied
in these filters to restrict the combinatorial explosion [1]. In addition, the three RFS-based
filters assume that the birth intensity or density is known a priori. This assumption also
implies that initial states and error covariance matrices of targets are known in advance.

To obviate the need for the prior initial states or error covariance matrices of birth
targets, the adaptive methods for forming the birth object intensity or density are discussed
in [16–22]. The adaptive methods in [16,20,21] use the measurements of previous time
steps to form the birth intensity or birth filtering density. In order to avoid the repeated
use of measurements, the gating technique is needed in these approaches to remove
the measurements near the current multi-target states [16,20]. However, these adaptive
methods still require the known error covariance of birth targets. To obviate the need
for the prior error covariance of birth targets, the adaptive methods in [17–19] use the
measurements of the previous two time steps to build the potential birth track and then
use the potential birth track to form the birth intensity or density. The adaptive δ-GLMB
(AGLMB) filter [22] uses the measurements of the previous three time steps to build the
tentative track based on the rule-based track initiation technique [23], and estimates the
state of the tentative track and its error covariance according to the least squares technique.

However, the adaptive RFS-based filters still require that the clutter density and
survival probability are known in advance. The clutter density and survival probability
play important roles in obtaining the predicted and updated densities or intensities in
the adaptive RFS-based filters, but it can be challenging to accurately estimate them in
real-world scenarios. To track multiple objects in the presence of unknown clutter density,
unknown survival probability, and unknown initial state and error covariance, we propose
an adaptive marginal multi-target Bayes (AMTB) filter without the need for clutter density
and survival probability in this paper. The filter delivers the probability density function
(PDF), track label and existence probability of the object in the filtering recursion. Two data
association steps are required in the recursion of this filter. The first data association step is
employed to associate the measurements with the existing target. To do this, the AMTB
filter first uses the gate technique to select the measurements falling inside the acceptance
gates of individual existing targets from the measurements at time step k and then employs
the two-dimensional assignment technique to assign the selected observations to individual
existing objects. If a measurement is assigned to an existing object, the updated PDF of this
existing object that is correlated to this observation is used as its PDF. If no measurement
is assigned to an existing object, its predicted PDF is used as its PDF. The second data
association step is employed to associate the measurements with the potential birth target.
To do this, the AMTB filter selects the measurements falling inside the acceptance gates of
individual potential birth targets from the unused measurements at time step k and then
employs the two-dimensional assignment technique to assign the selected observations to
individual potential birth objects. If a measurement is assigned to a potential birth target,
this potential birth target becomes a newborn target. Moreover, this filter uses the unused
observations at time steps k− 1 and k to form the potential birth targets in terms of the
velocity, and uses the least squares technique to acquire the initial state of each potential
birth target and its error covariance. Due to the use of the gating technique, the proposed
filter obviates the need for prior clutter density, survival probability, initial state of the
birth object and its error covariance. The simulation results demonstrate that the AMTB
filter outperforms the AGLMB filter [22], adaptive CBMeMber (ACBMeMber) filter [20],
adaptive multi-Bernoulli (AMB) filter [19] and adaptive PHD (APHD) filter [17].

Our contribution in this article is that we propose an adaptive marginal multi-target
Bayes filter without the need for clutter density. The main advantage of the proposed
filter over the available adaptive filters is that it obviates the need for clutter density and
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survival probability that are required for the available adaptive filters. Identical to adaptive
RFS-based filters, the proposed filter is applied to radar MTT systems.

The structure of the article is as follows: the AMTB filter without the need for clutter
density for a linear Gaussian noisy system is given in Section 2. An extension of this filter to
nonlinear observations is provided in Section 3. The performance evaluation of the AMTB
filter is given in Section 4 by comparing it with adaptive RFS-based filters. In Section 5, we
provide the conclusions.

2. AMTB Filter without Need for Clutter Density

The object dynamic and observation models are defined as:

xk = Φk−1xk−1 + wk−1 (1)

zk = Hkxk + vk (2)

where xk and zk are the state and observation vectors; Φk−1 and Hk are the state transition
and observation matrices; and wk−1 and vk are the zero-mean Gaussian process and
observation noises where Qk−1 and Rk are their covariance matrices.

The AMTB filter without the need for clutter density propagates the track labels,
existence probabilities of objects and their PDFs. We assume that the set of existing objects
and the set of potential birth objects at time step k− 1 are{

re
i,k−1, N(xi,k−1; me

i,k−1, Pe
i,k−1), `

e
i,k−1

}Ne
k−1

i=1
(3)

{
εi,k−1, mb

i,k−2, N(xi,k−1; mb
i,k−1, Pb

i,k−1)
}Nb

k−1

i=1
(4)

where xi,k−1 denotes the state vector of object i at time step k− 1; Ne
k−1, `e

i,k−1 and re
i,k−1 de-

note the number of existing objects, track label and existence probability of existing object i,
respectively; εi,k−1, `b

i,k−1 and Nb
k−1 are the index of the relative measurement with potential

birth object i, track label of potential birth object i and number of potential birth objects at
time step k− 1, respectively; and mb

i,k−2 denotes the mean vector of potential birth object i
at time step k− 2. The PDFs of the existing object and potential birth object are assumed
to be Gaussian and they are given by N(xi,k−1; me

i,k−1, Pe
i,k−1) and N(xi,k−1; mb

i,k−1, Pb
i,k−1),

respectively, where me
i,k−1 and mb

i,k−1 are the mean vector, and Pe
i,k−1 and Pb

i,k−1 are error
covariance matrices. The recursion of the ATMB filter without the need for clutter density
is as follows:

2.1. Prediction

In terms of (1) and (3), the set of predicted existing objects is:{
re

i,k|k−1, N(xi,k; me
i,k|k−1, Pe

i,k|k−1), `
e
i,k|k−1

}Ne
k−1

i=1
(5)

where

re
i,k|k−1 = re

i,k−1, me
i,k|k−1 = Φk−1me

i,k−1, Pe
i,k|k−1 = Φk−1Pe

i,k−1ΦT
k−1 + Qk−1, `e

i,k|k−1 = `e
i,k−1 (6)

In terms of (1) and (4), the set of predicted potential birth objects is:

{
N(xi,k; mb

i,k|k−1, Pb
i,k|k−1)

}Nb
k−1

i=1
(7)

where
mb

i,k|k−1 = Φk−1mb
i,k−1, Pb

i,k|k−1 = Φk−1Pb
i,k−1ΦT

k−1 + Qk−1 (8)
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In terms of (2) and (5), the predicted measurement vector of the existing target and its
error covariance matrix are:

ze
i,k|k−1 = Hkme

i,k|k−1, Se
i,k = HkPe

i,k|k−1(Hk)
T (9)

In terms of (2) and (7), the predicted measurement vector of the potential birth target
and its error covariance matrix are:

zb
i,k|k−1 = Hkmb

i,k|k−1, Sb
i,k = HkPb

i,k|k−1(Hk)
T (10)

2.2. Update of Existing Objects

In this step, we associate the observations at step k with the existing targets. The
existence of an object is confirmed and its state is updated if a measurement is assigned to
it. An object is not detected if no measurement is assigned to it, and its state is given by its
predicted state.

The Mahalanobis distance is used to measure the correlation between the target and

the measurement, and denoting the measurement set at time step k by yk =
{

zj,k

}Mk

j=1
where Mk is the observation number. The Mahalanobis distance between measurement zj,k
and existing object i may be given by:

qe
ij = (zj,k − ze

i,k|k−1)
T
(

Se
i,k + Rk

)−1
(zj,k − ze

i,k|k−1) (11)

qe
ij follows a chi-square distribution, and its degree of freedom equals the dimension of

observation zj,k. An acceptance threshold qα may be determined in terms of the chi-square
distribution table after giving a confidence level α. If qe

ij < qα, we confirm that zj,k falls in
the acceptance gate of existing target i.

To avoid the track splitting, we use the 2-dimensional assignment to associate the
measurement with the existing target. The cost matrix for the 2-dimensional assignment is:

C =
[
C1 C2

]
(12)

where

C1 =
[
qe

ij

]
Ne

k−1×Mk

=


qe

11 qe
12 · · · qe

1,Mk
qe

21 qe
22 · · · qe

2,Mk
...

...
. . .

...
qe

Ne
k−1,1 qe

Ne
k−1,2 · · · qe

Ne
k−1,Mk

, C2 =


qα ∞ · · · ∞
∞ qα · · · ∞
...

...
. . .

...
∞ ∞ · · · qα


Ne

k−1×Ne
k−1

(13)

According to C, we acquire an optimal solution with the minimum cost by using the
optimized Murty algorithm [24]. The optimal solution can be given as:

Θ =
[
θ1, θ2, · · · , θNe

k−1

]
(14)

where θi ∈
{

1, 2, · · · , Mk + Ne
k−1

}
for i = 1, 2, · · · , Ne

k−1. 1 ≤ θi ≤ Mk demonstrates that
zθi ,k

is assigned to existing object i, while θi > Mk reveals that no measurement is assigned
to existing object i.

To detect the potential birth objects and form newborn tracks, the proposed filter needs
a set of unused measurements. We use binary variable gj,k to denote whether measurement
zj,k is used or not, and set gj,k = 0 for j = 1, 2, · · · , Mk.

If 1 ≤ θi ≤ Mk, we set j = θi and use observation zj,k to update the predicted PDF of
object i. The PDF of object i at time step k can be given by:

N(xi,k; me
i,k, Pe

i,k) = N(xi,k; me
ij, Pe

ij) (15)
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where
me

ij = me
i,k|k−1 + Ae

i · [zj,k −me
i,k|k−1] (16)

Pe
ij = Pe

i,k|k−1 −Ae
i HkPe

i,k|k−1 (17)

Ae
i = Pe

i,k|k−1(Hk)
T[HkPe

i,k|k−1(Hk)
T + Rk]

−1
(18)

In this case, its existence probability is:

re
i,k = 1 (19)

Since measurement zj,k is used, gj,k is updated by:

gj,k = 1 (20)

If θi > Mk, object i is not detected because no observation is assigned to it. Its PDF at
time step k can be given by its predicted PDF as:

N(xi,k; me
i,k, Pe

i,k) = N(xi,k; me
i,k|k−1, Pe

i,k|k−1) (21)

Using pD to denote the detection probability, the existence probability of object i is
as follows:

re
i,k = (1− pD)r

e
i,k|k−1 (22)

No matter whether existing object i is detected, its track label can be given by:

`e
i,k = `e

i,k|k−1 (23)

After dealing with the optimal solution, the set of the existing objects can be given by:{
re

i,k, N(xi,k; me
i,k, Pe

i,k), `
e
i,k

}Ne
k−1

i=1
(24)

The set of unused observations at time step k is given by:

Zu
k =

{
zj,k

∣∣∣gj,k = 0
}

(25)

Algorithm 1 gives the pseudo-code for updating existing objects.

2.3. Establishment of Newborn Objects

In this step, we associate the unused observations at step k with the potential birth
objects. A newborn object is established if a measurement is assigned to a potential
birth object.

Let Zu
k =

{
zu

g,k

}Mu
k

g=1
denote a set of unused measurements where Mu

k is the number of

unused measurements. The Mahalanobis distance between unused measurement zu
g,k and

potential birth object i is:

qb
ig = (zu

g,k − zb
i,k|k−1)

T(
Sb

i,k + Rk

)−1
(zu

g,k − zb
i,k|k−1) (26)

Identical to Section 2.2, we use the 2-dimensional assignment to associate the measure-
ment with the potential birth object. The cost matrix for the 2-dimensional assignment is:

C =
[
C1 C2

]
(27)

where
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C1 =
[
qb

ig

]
Nb

k−1×Mu
k

=


qb

11 qb
12 · · · qb

1,Mu
k

qb
21 qb

22 · · · qb
2,Mu

k
...

...
. . .

...
qb

Nb
k−1,1

qb
Nb

k−1,2
· · · qb

Nb
k−1,Mu

k

, C2 =


qα ∞ · · · ∞
∞ qα · · · ∞
...

...
. . .

...
∞ ∞ · · · qα


Nb

k−1×Nb
k−1

(28)

Algorithm 1 Update of existing objects

1: for i = 1 : Ne
k−1

2: for j = 1 : Mk

3: qe
ij = (zj,k − ze

i,k|k−1)
T
(

Se
i,k + Rk

)−1
(zj,k − ze

i,k|k−1).
4: end for
5: end for
6: Form cost matrix C in terms of (12) and (13).
7: Acquire an optimal solution Θ =

[
θ1, θ2, · · · , θNe

k−1

]
according to C.

8: Set Zu
k =Ø; and gj,k = 0 for j = 1, 2, · · · , Mk.

9: for i = 1 : Ne
k−1

10: if 1 ≤ θi ≤ Mk

11: j = θi, re
i,k = 1, Ae

i = Pe
i,k|k−1(Hk)

T[HkPe
i,k|k−1(Hk)

T + Rk]
−1

,
12: me

i,k = me
i,k|k−1 + Ae

i · [zj,k −me
i,k|k−1], Pe

i,k = Pe
i,k|k−1 −Ae

i HkPe
i,k|k−1, gj,k = 1.

13: else
14: me

i,k = me
i,k|k−1, Pe

i,k = Pe
i,k|k−1, re

i,k = (1− pD)r
e
i,k|k−1.

15: end if
16: `e

i,k = `e
i,k|k−1

17: end for
18: for j = 1 : Mk
19: if gj,k = 0
20: Zu

k = [Zu
k zj,k]

21: end if
22: end for
23: Output:

{
re

i,k, me
i,k, Pe

i,k, `e
i,k

}Ne
k−1

i=1
,Zu

k .

In terms of C, we can acquire an optimal solution with the minimum cost by using the
optimized Murty algorithm [24]. The optimal solution can be given as:

Θ =
[
θ1, θ2, · · · , θNb

k−1

]
(29)

where θi ∈
{

1, 2, · · · , Mu
k + Nb

k−1

}
for i = 1, 2, · · · , Nb

k−1. 1 ≤ θi ≤ Mu
k demonstrates that

zu
θi ,k

is assigned to potential birth object i.
A newborn object is established if a measurement is assigned to a potential birth object.

Since 1 ≤ θi ≤ Mu
k demonstrates that zu

θi ,k
is assigned to potential birth object i, a newborn

object h is established according to potential birth object i and measurement zu
θi ,k

. The PDF
of newborn object h is:

N(xh,k; mh,k, Ph,k) (30)

where
mh,k = mb

i,k|k−1 + Ab
i · [zu

θi ,k −mb
i,k|k−1] (31)

Ph,k = Pb
i,k|k−1 −Ab

i HkPb
i,k|k−1 (32)

Ab
i = Pb

i,k|k−1(Hk)
T[HkPb

i,k|k−1(Hk)
T + Rk]

−1
(33)
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The track label of newborn object h and its existence probability are:

`h,k =

[
k
h

]
; rh,k = 1 (34)

The mean vectors of newborn object h at time steps k− 2 and k− 1 are given by:

mh,k−2 = mb
i,k−2; mh,k−1 = mb

i,k−1 (35)

Since zu
θi ,k

and zu
εi,k−1,k−1 are used to establish newborn object h, they should be removed

from sets Zu
k and Zu

k−1 as:

Zu
k = Zu

k \z
u
θi ,k, Zu

k−1 = Zu
k−1\z

u
εi,k−1,k−1 (36)

Dealing with each potential birth object according to optimal solution Θ, we can
acquire a set of newborn objects and the updated sets Zu

k and Zu
k−1. The set of newborn

objects are: {
rh,k, N(xh,k; mh,k, Ph,k), `h,k

}Na
k

h=1
(37)

where Na
k is the number of newborn objects. We use the mean vectors of newborn objects

and their track labels at time steps k− 2, k− 1 and k to form three sets Xb
k−2, Xb

k−1 and Xb
k.

The three sets are given by:

Xb
k−2 =

{
mh,k−2, lh,k

}Na
k

h=1
, Xb

k−1 =
{

mh,k−1, lh,k

}Na
k

h=1
, Xb

k =
{

mh,k, lh,k

}Na
k

h=1
(38)

Algorithm 2 gives the pseudo-code for the establishment of newborn objects.

Algorithm 2 Establishment of newborn objects

1: for i = 1 : Nb
k−1

2: for g = 1 : Mu
k

3: qb
ig = (zu

g,k − zb
i,k|k−1)

T
(

Sb
i,k + Rk

)−1
(zu

g,k − zb
i,k|k−1).

4: end for
5: end for
6: Establish cost matrix C according to (27) and (28).

7: Acquire an optimal solution Θ =
[
θ1, θ2, · · · , θNb

k−1

]
according to C.

8: Set h = 0, Xb
k−2 = Ø, Xb

k−1 = Ø and Xb
k = Ø.

9: for i = 1 : Ne
k−1

10: if 1 ≤ θi ≤ Mu
k

11: h = h + 1, Ab
i = Pb

i,k|k−1(Hk)
T[HkPb

i,k|k−1(Hk)
T + Rk]

−1
.

12: mh,k = mb
i,k|k−1 + Ab

i · [z
u
θi ,k
−mb

i,k|k−1], Ph,k = Pb
i,k|k−1 −Ab

i HkPb
i,k|k−1, rh,k = 1,

13: `h,k =

[
k
h

]
.

14: Xb
k−2 =

[
Xb

k−2 [mb
i,k−2; `h,k]

]
, Xb

k−1 =
[
Xb

k−1 [mb
i,k−1; `h,k]

]
,

15: Xb
k =

[
Xb

k [mh,k; `h,k]
]
.

16: Remove zu
θi ,k

and zu
ε i,k−1,k−1 from sets Zu

k and Zu
k−1, respectively.

17: end if
18: end for
19: Na

k = h.

20: Output:
{

rh,k, mh,k, Ph,k, `h,k

}Na
k

h=1
, Zu

k−1, Zu
k , Xb

k−2, Xb
k−1, Xb

k .
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2.4. Generation of Potential Birth Objects

In this step, we generate the potential birth objects based on the unused measurements
at steps k and k− 1. A potential birth object is formed if the two picked measurements
satisfy the given speed gating criterion.

Let Zu
k−1 =

{
zu

f ,k−1

}Mu
k−1

f=1
and Zu

k =
{

zu
g,k

}Mu
k

g=1
denote two sets of unused measure-

ments at time steps k− 1 and k. We pick observations zu
f ,k−1 and zu

g,k from sets Zu
k−1 and

Zu
k , respectively, and then test whether they satisfy (39).

vmin <
‖zu

g,k − zu
f ,k−1‖2

T
< vmax (39)

where T is the scan period, and vmin and vmax are two speed thresholds. A potential birth
object is detected if zu

f ,k−1 and zu
g,k satisfy (39). The mean vectors of the potential birth object

at the time steps k− 1 and k according to the least squares technique [25] are:

mb
i,k−1 = (ΛT

1 Λ1)
−1

ΛT
1

[
zu

f ,k−1
zu

g,k

]
(40)

mb
i,k = (ΛT

2 Λ2)
−1

ΛT
2

[
zu

f ,k−1
zu

g,k

]
(41)

where

Λ1 =


1 0 0 0
0 0 1 0
1 T 0 0
0 0 1 T

, Λ2 =


1 −T 0 0
0 0 1 −T
1 0 0 0
0 0 1 0

 (42)

Its error covariance at time steps k is:

Pb
i,k = (ΛT

2 Λ2)
−1

ΛT
2

[
Rk−1 0

0 Rk

]
Λ2(ΛT

2 Λ2)
−1

(43)

Assume that potential birth object i is generated based on measurements zu
f ,k−1 and

zu
g,k. This potential birth object is given by:{

εi,k = g, mb
i,k−1, N(xi,k; mb

i,k, Pb
i,k)
}

(44)

where g denotes the index of measurement zu
g,k. εi,k = g implies that measurement zu

g,k is
used to form potential birth object i.

The set of potential birth objects can be acquired by repeating the above process and is
given by: {

εi,k, mb
i,k−1, N(xi,k; mb

i,k, Pb
i,k)
}Nb

k

i=1
(45)

where Nb
k denotes the number of potential birth objects.

Algorithm 3 gives the pseudo-code for the generation of potential birth objects.
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Algorithm 3 Generation of potential birth objects

1: i = 0
2: for f= 1 : Mu

k−1
3: for g= 1 : Mu

k
4: if vmin < ‖zu

g,k − zu
f ,k−1‖2

/T < vmax

5: i = i + 1
6: εi,k = g; Acquire mb

i,k−1, mb
i,k and Pb

i,k according to (40), (41) and (43).
7: end if
8: end for
9: end for
10: Nb

k = i.

11: Output:
{

εi,k, mb
i,k−1, mb

i,k, Pb
i,k

}Nb
k

i=1
.

2.5. Formation of Existing Objects

The surviving objects are acquired by picking the object with re
i,k > τr from the updated

set of existing objects in (24) where τr is a given picking probability. We suggest that its
value range is from 0.001 to 0.009. The set of acquired survival objects is:{

re
i,k, N(xi,k; me

i,k, Pe
i,k), `

e
i,k

}Ns
k

i=1
(46)

We use the mean vectors of survival objects and their track labels to form set Xs
k as:

Xs
k =

{
me

i,k, `e
i,k

}Ns
k

i=1
(47)

where Ns
k is the number of survival objects.

The existing objects include the survival objects and the newborn objects. The set of
existing objects at time step k can be acquired by combining the set of the newborn objects
in (37) and the set of survival objects in (46) as:{

re
i,k, N(xi,k; me

i,k, Pe
i,k), `

e
i,k

}Ne
k

i=1

=
{

re
i,k, N(xi,k; me

i,k, Pe
i,k), `

e
i,k

}Ns
k

i=1
∪
{

rh,k, N(xh,k; mh,k, Ph,k), `h,k

}Na
k

h=1

(48)

where Ne
k = Ns

k + Na
k is the number of existing objects at time step k. The set of existing

objects in (48) and the set of potential birth objects in (45) along with unused measurement
sets Zu

k are delivered to the next time step.
Combining set Xs

k in (47) with the set in (38), we acquire set Xk as:

Xk = Xs
k ∪Xb

k (49)

Set Xk is regarded as the output of the filter at time step k, and sets Xb
k−2 and Xb

k−1
in (38) are used to supply the output of the filter at steps k− 2 and k− 1 as:

Xk−2 = Xk−2 ∪Xb
k−2, Xk−1 = Xk−1 ∪Xb

k−1 (50)

Algorithm 4 gives the pseudo-code for the formation of existing objects.
According to the implementation steps of the AMTB filter, the clutter density and

survival probability of the target needed in the adaptive RFS-based filters are obviated
in the proposed filter. Therefore, it has an important application value in the situation
where obtaining the clutter density and survival probability is difficult. In addition, the
pruning threshold and merging threshold required in the adaptive RFS-based filters are
also avoided in the proposed filter.
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Algorithm 4 Formation of existing objects

1: Xs
k = Ø, q = 0.

2: for i = 1 : Ne
k−1

3: if re
i,k > τr

4: q = q + 1.

5: me
q,k = me

i,k, Pe
q,k = Pe

i,k, re
q,k = re

i,k, `e
q,k = `e

i,k, Xs
k =

[
Xs

k [m
e
i,k; `e

i,k]
]
.

6: end if
7: end for
8: for h = 1 : Na

k
9: q = q + 1, me

q,k = mh,k, Pe
q,k = Ph,k, re

q,k = rh,k, `e
q,k = `h,k.

10: end for
11: Ne

k = q, Xk =
[
Xs

k Xb
k

]
, Xk−1 =

[
Xk−1 Xb

k−1

]
, Xk−2 =

[
Xk−2 Xb

k−2

]
.

12: Output:
{

re
i,k, me

i,k, Pe
i,k, `e

i,k

}Ne
k

i=1
, Xk, Xk−1, Xk−2.

3. Extension to Nonlinear Observations

In a real radar multi-target tracking system, the observation model is usually nonlinear:

zk =

[
θ
r

]
= h(xk) + vk (51)

where θ and r are azimuth and range, and h(x) is as follows:

h(x) =

arccos

(
ηx−sx√

(ηx−sx)
2+(ηy−sy)

2

)
√
(ηx − sx)

2 + (ηy − sy)
2

 (52)

where x =
[
ηx

.
ηx ηy

.
ηy

]T
and [sx sy]

T denote the state vector and position of a sensor,
respectively. In this case, a conversion of the observation is required. The converted
measurement is given by:

zxy =

[
sx + r cos θ
sy + r sin θ

]
(53)

The error covariance of zxy is:

Rxy = G
[

σ2
θ 0

0 σ2
r

]
GT = GRkGT (54)

where σθ and σr are the standard deviations of angle and range noises, and matrix G can be
given by:

G =

[
−r sin θ cos θ
r cos θ sin θ

]
(55)

In the case of a nonlinear observation, the measurements in (11), (16), (26), (31), (36)
and (39)–(41) are the converted measurement, and the error covariance Rk in (18), (26), (33)
and (43) should be replaced by converted error covariance Rxy.

4. Simulation Results

We use the OSPA error [26] and OSPA(2) error with p = q = 2, c = 100 m and
Lw = 5 [27] and cardinality error as the metrics to test the performance of the AMTB filter.
Φk−1 and Qk−1 in (6) and (8) are given by:
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Φk−1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, Qk−1 =


T2

2 0
T 0
0 T2

2
0 T


[

T2

2 T 0 0
0 0 T2

2 T

]
σ2

v (56)

where T = 1 s and σv = 2 ms−2. The Rk used in (54) is given by:

Rk =

[
σ2

θ 0
0 σ2

r

]
(57)

where σr = 2.5 m and σθ = 0.3π
180 rad. The used detection probability is pD = 0.9 and the

radar is located at
[
0 0

]T. The average clutter density in the simulation measurements is
λc = 1.6883× 10−3 rad−1 m−1 (i.e., the average number of clutter is Nc = 15).

Two examples were considered in the simulation. In first example, we compared the
AMTB filter with the AGLMB filter [22], ACBMeMber filter [20], AMB filter [19] and APHD
filter [17] in terms of OSPA and OSPA(2) errors and cardinality error to exhibit the tracking
performance of the AMTB filter. In the second example, we compared the AMTB filter with
the above four filters to demonstrate the performance of the AMTB filter for maneuvering
object tracking.

Example 1. We consider eleven objects in example 1. The initial states of objects 1, 2, 3,
4, 5, 6, 7, 8, 9, 10 and 11 are [−860, 17, 620, 0]T , [−860, 17, 560, 0]T , [−620, 0, 860,−17]T ,
[−560, 0, 860,−17]T , [−860, 24,−620, 0]T , [−860, 24,−560, 0]T , [−860, 19, 200,−8]T ,
[−860, 19,−50, 0]T , [−860, 19,−300, 8]T , [620, 0, 860,−26]T and [560, 0, 860,−26]T , respec-
tively. They appear at t = 1 s, 1 s, 4 s, 4 s, 9 s, 9 s, 9 s, 27 s, 27 s, 32 s and 32 s, respectively, and
disappear at t = 100 s, 100 s, 100 s, 100 s, 68 s, 68 s, 68 s, 100s, 100 s, 100s and 100 s, respectively.
The eleven objects consist of close objects (such as objects 10 and 11, objects 8 and 9, objects 3 and 4,
and objects 1 and 2) and crossing objects (such as objects 5, 6 and 7). Objects 5, 6 and 7 cross their
paths at t = 39.25 s. The true trajectories of the eleven objects is given in Figure 1.

In the experiment, the relevant parameters of the AMTB filter were set to τr = 0.005,
qa = 7.824, vmax = 50 ms−1 and vmin = 5 ms−1. Using the five adaptive filters to handle
the simulated measurements for 200 Monte Carlo runs, we obtained their tracking results.
According to the OSPA error in Figure 2 and Table 1, the ACMeMber filter, AMB filter
and APHD are inferior to the AMTB filter and AGLMB filter. This is because the former
three filters require a high detecting probability, whereas the latter two filters avoid this
requirement. As seen in Table 1 and Figures 2 and 3, the AGLMB filter had larger OSPA
and OSPA(2) errors than the AMTB filter, which indicates that the AMTB filter performs
better than the AGLMB filter although it obviates the requirement for clutter density. The
cardinality error in Table 1 and cardinality estimation in Figure 4 reveal that the cardinality
error of the AMTB filter is the lowest and its cardinality estimation is the most accurate.
As seen in Table 1, the AMTB filter requires significantly less computation time than the
AGLMB filter. Several peaks appear in Figures 2 and 3 because of the delayed response of
the filter to the object appearing and disappearing.

Table 1. OSPA and OSPA(2) errors, cardinality error and performing time in Example 1.

Filter ACMeMber AMB APHD AGLMB AMTB

OSPA error (m) 33.8873 30.6815 31.6086 12.8324 10.2323
OSPA(2) error (m) NA NA NA 19.2660 15.4079
Cardinality error 0.3165 0.5113 1.0810 0.1954 0.1696

Performing time (s) 1.2703 0.6614 0.3933 9.0452 0.7310
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The experimental results for different noisy standard deviations, different detecting
probabilities and different clutter densities over 200 Monte Carlo runs are exhibited in
Tables 2–4, which reveal that the AMTB filter had the lowest OSPA error at each pair of
noisy standard deviations, each detecting probability and each clutter density. The above
fact demonstrates the robustness of the AMTB filter.

Table 2. Effect of clutter density on OSPA error at pD = 0.9.

Nc ACMeMber AMB APHD AGLMB AMTB

5 28.8650 29.6414 31.2185 11.1668 8.2281
10 31.2189 29.9661 31.2191 11.2753 8.5712
15 33.8873 30.6815 31.6086 12.8324 10.2323
20 36.0720 31.2233 31.7726 14.0930 12.6169
25 38.0561 31.5900 32.0667 16.7082 16.2992

Table 3. Effect of detection probability on OSPA error at Nc = 15.

pD ACMeMber AMB APHD AGLMB AMTB

1.00 12.3744 11.1873 10.9080 5.9300 5.1357
0.95 24.3627 21.6667 22.2138 8.8006 8.0763
0.90 33.8873 30.6815 31.6086 12.8324 10.2323
0.85 38.9061 38.0461 39.1806 13.9446 12.8517
0.80 42.3854 41.9417 45.7909 17.5125 14.9649
0.75 45.3814 45.2975 51.9196 20.7581 18.1959

Table 4. Effect of noisy deviation on OSPA error at pD = 0.9 and Nc = 15.

σα (◦) σr (m) ACMeMber AMB APHD AGLMB AMTB

0.2 2 33.2311 29.6021 30.9143 10.9250 8.5825
0.3 3 33.9630 30.7171 31.6724 13.0685 10.8013
0.4 4 34.4782 31.6870 32.5023 16.2794 13.3886
0.5 5 34.8680 32.2220 32.9217 21.0756 15.7999
0.6 6 35.4487 33.1801 33.9049 26.6639 18.7992
0.7 7 36.1280 33.9897 34.8693 34.5188 21.6057
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Example 2. We consider four maneuvering objects. Objects 1, 2, 3 and 4 appear at t = 1 s, 1 s,
5 s and 5 s and then disappear at t = 100 s. Objects 1 and 2 cross their tracks at t = 55.8 s
and t = 88.89 s, respectively. Objects 3 and 4 cross their tracks at t = 63.92 s and t = 92.75 s,
respectively. The real trajectories of maneuvering objects is given in Figure 5.
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We used the five filters to handle the simulated measurements over 200 Monte Carlo
runs. The OSPA and OSPA(2) errors and cardinality error in Table 5 and Figures 6 and 7
and cardinality in Figure 8 indicate that the AMTB filter performed the best among these
five filters. As seen in Table 5, the AMTB filter required significantly less computation time
than the AGLMB filter.
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Table 5. OSPA and OSPA(2) errors, cardinality error and performing time in Example 2.

Filter ACMeMber AMB APHD AGLMB AMTB

OSPA error (m) 29.3956 21.5289 24.7589 12.2358 8.4621
OSPA(2) error (m) NA NA NA 18.1280 12.6685
Cardinality error 0.2029 0.2976 0.4577 0.1287 0.0908

Performing time (s) 1.0739 0.4489 0.2995 5.0927 0.4370

5. Conclusions

To track multiple targets in the presence of unknown clutter density, unknown sur-
vival probability and unknown initial state and error covariance, we propose an adaptive
marginal multi-target Bayes filter without the need for clutter density. This filter delivers the
track label, existence probability and PDF of the object. It uses the least squares technique to
deal with two consecutive scans of the unused measurements to establish the potential birth
target, uses the gating technique to remove the clutter-originated measurements, and uses
the 2-dimensional assignment to associate the measurements with the existing targets. In
terms of the assignment result, the AMTB filter selects either one of multiple updated PDFs
of an existing object or its predicted PDF as its PDF. It establishes newborn targets by using
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the 2-dimensional assignment to associate the unused measurements with the potential
birth targets. A newborn target is established if an unused measurement is assigned to a
potential birth target. The simulation results demonstrate that higher tracking accuracy
can be acquired by the AMTB filter than by the adaptive RFS-based filters. Its OSPA and
OSPA(2) errors, and cardinality error were lower than those of the adaptive RFS-based
filters. The AMTB filter achieved higher tracking accuracy than the adaptive RFS-based
filters, and therefore it has potential applications in real-world multi-target tracking sys-
tems, especially in situations where obtaining the clutter density and survival probability
is difficult. This article involves the application of the AMTB filter in radar MTT. Further
research and real-world testing may help solidify its practical utility in various applications.
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