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Abstract: In this study, wireless sensor networks and time base generators are used to solve the
fixed-time containment control problem in multi-agent systems with fixed topologies. A new event-
triggered control protocol is proposed, which combines a fully distributed method and a time base
generator (TBG). The goal is to converge the states of all followers to the convex hull formed by
the leader. The controller reduces communication and improves control efficiency by integrating
a fully distributed control mechanism using wireless sensor networks. In addition, a time base
generator (TBG) is added to ensure that the dwell time continues to be pre-specified and independent
of initial conditions. Using matrix theory, the original system is transformed into an error system,
and its stability is analyzed by the Lyapunov method. The necessary and sufficient conditions for
solving the time consensus containment control problem in multi-agent systems are determined
and Zeno behavior is avoided. The effectiveness of the proposed control algorithm is illustrated by
numerical examples.

Keywords: actual fixed-time consensus; event-triggered control; wireless sensor networks; time base
generator; containment control

1. Introduction

Wireless sensor networks and system collaborations with multiple agents [1] can be
combined to handle complexity, improve system performance, and use wireless sensor
networks in a variety of contexts. This integration not only advances the field of control
but also provides more possibilities for practical applications. The collaborative control
of multi-agent systems involves interactions and cooperation among multiple agents,
requiring the overcoming of challenges such as heterogeneity and uncertainty. The realm of
control, such as cluster control [2–4] and formation control [5–7], has been a significant issue
because it involves the interaction and cooperation between multiple agents, needs to solve
complexity, optimize system performance, apply to a wide range of fields, and overcome
challenges such as heterogeneity and uncertainty, so as to promote the development
and practical application of the control field containment control [8–12], etc. The goal
of containment control is to promote collaboration and cooperation in the multi-agent
system, emphasize respect for the objectives of each agent when resolving conflicts and
coordinating decisions, and seek to maximize common interests. All states of followers must
converge to the leaders’ convex hull. The consistency problem under study is also known
as containment control when the multi-agent system contains a large number of leaders.
A high-frequency feedback was proposed in reference [4]. This involved clustering for a
multi-agent system with an unknown parameter in robust control. Reference [5] studied
the issues of distributed simultaneous estimation and formation control within the same
population of mobile agents with limited communication, perception, and computing
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capabilities. A novel scalable algorithm was proposed, achieving convergence of global
formation statistics and the decoupling of estimation and control performance. Reference [8]
investigated how to control confinement in a second-order linear multi-agent system. We
investigated a time-varying triggering threshold event-triggered control technique that
takes both uniform and irregular input delays into account. The general linear multi-agent
system’s creation, containment, and constraint tracking under time-varying control inputs
were explored in reference [13]. It proposes a formation containment-tracking protocol
that achieves formation, containment, and constraint tracking of intelligent agents by
considering the influence of neighboring relative information and unknown inputs from
tracking leaders. Reference [14] investigated the nonlinear multi-agent system’s finite
time constraint control problem, and used fuzzy logic systems to approximate system
dynamics. By using nonlinear transformation functions to transform state constraints into
unconstrained ones, the follower’s convex hull is converged in a finite amount of time using
adaptive fuzzy control. In [15], the convergence time of the average consensus problem
for networks with heterogeneous random link failures is studied and the influence of
event-triggered communication on consensus performance is considered. A large number
of simulations are carried out to verify the reliability of the method. In [16], inspired by
the cooperative control, a fully distributed and delay-tolerant secondary control scheme is
developed for the droop-controlled AC microgrid. The hierarchical control structure of the
distributed energy unit is considered to ensure the active power sharing between the three
DER units.

This article examines numerous control protocols in order to adapt to distinct needs
and application histories. Based on the switching topology, reference [17] studied the
event-triggered dichotomous consistency of multi-agent systems. In [18], for a class of
strict feedback nonlinear systems with external disturbances, a robust fuzzy adaptive
prescribed performance finite-time control strategy based on event-triggering is proposed.
The event-triggered signal based on a relative threshold is introduced to reduce the commu-
nication burden, and the dynamic surface control technology is used to solve the problem
of computational complexity. In response to the need to reduce the frequency of event
triggering, reference [19] introduced a dynamic event-triggering mechanism that optimizes
the utilization of communication resources via internal dynamic variables. This mechanism
can adaptively adjust event-triggering conditions based on changes in the system state,
thus more effectively achieving consistency control objectives [20]. This further proves that
the dynamic event-triggering method can significantly reduce communication overhead
and improve system stability and performance. Referring to [21], it was determined how
backstepping controllers affect parameter uncertainty and how they are used to manage
the fixed-time creation of a heterogeneous multi-agent system. Reference [22] applies the
integral to create a sliding mode using a sliding mode control mechanism controller, con-
sidering the effects of external interference. Multi-agent systems typically have constrained
communication resources in real-world applications. Discontinuous control techniques
can conserve energy and cut back on communication. Reference [23] investigated the
fuzzy distributed impulsive control in the nonlinear multi-agent system protocol and
achieved system consistency with regard to denial-of-service (DoS) assaults. Multi-agent
systems, including [24,25], have extensively exploited event-triggered control techniques.
Reference [24] studied the distributed two-part tracking control protocol based on event
triggering for a stochastic multi-agent nonlinear system with input saturation. By con-
structing a novel observer and adopting an event-triggering mechanism, boundedness
and distributed consistency tracking of signals were achieved. For linear multi-agent
systems, reference [25] put forth a fully distributed event-triggered control approach.
In addition, control protocols can also be used to achieve self-triggering. Reference [26]
studied the robust synchronization problem of a class of master–slave neural networks
with network-induced delays, unknown time-varying uncertainties, and exogenous distur-
bances, and developed an event-triggered control protocol to obtain the synchronization of
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MSNNs. While the aforementioned literature references do consider event triggering to
reduce communication, they do not specify the timing.

In order to correct the issue where the convergence time of multi-agent systems
depends on initial conditions, it is crucial to conduct research on the timing control issues
associated with multi-agent systems. The event-triggered controller utilizing sliding mode
control technology was suggested in reference [27] in order to achieve the timing consensus
of the leader polling multi-agent system. A high-order leader–follower multi-agent system’s
fixed-time technique was examined in reference [28] to assess the leadership state and
arrive at a tracking consensus simultaneously, and reference [29] further discussed how to
implement the fixed-time strategy in the face of unknown interference. In reference [30],
the weighted directed topology-based fixed-time consistent tracking control issue of second-
order multi-agent systems with bounded input uncertainty was examined. Fast and
stable consistency tracking control has been achieved by forming unique non-singular fast
terminal sliding with fixed-time surfaces and distributed control protocols. Reference [31]
investigated how a multi-agent system’s fixed-time group consistency was affected by
external interference and constructed two fixed-time guidance control algorithms for the
system. References [32,33] discussed the fixed-time consistency of two different forms of
multi-agent systems. Regarding a first-order heterogeneous multi-agent system that is
nonlinear to achieve timing consistency, reference [32] provided a new protocol design
framework. Reference [33] explored the distributed fixed-time observer and fixed-time
tracking controller of heterogeneous multi-agent systems. For the integrator-based multi-
agent system, reference [34] proposed a fixed-time consensus technology based on TBG,
which has more advantages than traditional fixed-time consensus technology. The above
literature has taken into account the introduction of fixed time in order to better achieve the
control objectives, but the method adopted has yet to be improved. Therefore, this paper
studies the combination of the time base generator and event triggering.

This article’s primary contributions can be summed up in two ways. (1) We discussed
the containment control protocol based on TBG and achieved practical timing consensus.
The confinement control protocol is an efficient solution to the multi-agent system’s tempo-
ral consensus issue because it can indicate the system’s settling time in advance and reduce
the initial control input. (2) A fully distributed event-triggered control mechanism was
used in the architecture of the control protocol to reduce system utilization. In this mecha-
nism, each controller samples only based on local information and does not require global
information. Once the leader has created a convex hull using a fully distributed technique,
the controller ultimately modifies the state of the followers to match it. This control method
not only enhances the system’s robustness and collaboration but also elevates the efficacy
of the system.

The following is the structure for the remaining portions of this paper: The second
segment addresses a few key ideas and provides a thorough description of the issue. The
third section describes the proposed containment control protocol, including TBG and a
fully distributed event-triggered control mechanism, and validates the theoretical findings
presented in the fourth section with simulation examples. The fifth and final section
concludes by summarizing the findings.

Symbols: The notations Rn×m and Rn represent n-vectors of order n × m and real
moments. || · || denotes a vector’s Euclidean norm. λmax() and λmin() designate the matrix’s
maximum and minimum eigenvalues, respectively. ⊗ is a representation of the Kronecker
product. In denotes an n× n identity matrix. The identity matrix is a square matrix with
1’s on the diagonal and 0’s everywhere else. A diagonal matrix is represented by diag(, ).

2. Preliminary Knowledge and a Description of the Issue
2.1. Graph Theory

This article utilizes directed sign graphs G = {V , E ,A}. The symbolic graph
G = {V , E ,A} represents the N-agent communication topology. Here, the node set
V = {V1,V2, . . . ,VN}, the edge set E ⊆ V ×V and the adjacency matrixA = (aij) ∈ RN×N .
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The self-loop assumption states that there are no self-loops in the topology of the network,
specifically, aii = 0 for i = 1, . . . , N. The following definition applies to the Laplacian
matrix L = (lij) ∈ RN×N : lii = ∑N

j=1,j 6=i |aij| and lij = −aij for (i 6= j). If there is a path
connecting any two different nodes in the graph, it is said that the graph G is totally linked.
The expression (i, j)∈ E indicates that agent i can receive information from agent j. If the
directed symbolic graph G contains a root node that can reach all other nodes, the directed
spanning tree is said to be present.

Assumption 1. Structure-wise, G is a balanced directed sign graph.

2.2. Time Base Generator

The function known as the time base generator (TBG) can be continuously differ-
entiated, where certain requirements must be met by both the original and first-order
time derivative.

Definition 1 ([35]). The continuous differentiable function ξ(t) satisfies the following characteristics:

• if t ∈ [0,+∞), ξ(t) is a minimum of C2.
• When time first begins, t0 = 0, and at the time moment t f , the value of ξ(t) satisfies ξ(0) = 0,

ξ(t f ) = 1, and ξ(t) is a function that does not decrease.
• The initial derivative of ξ(t)’s temporal function at the instant t = 0 and at t f satisfies

lim
t→0+

dξ(t)
dt = 0 and lim

t→t f

dξ(t)
dt = 0.

• When t ∈ [t f ,+∞), ξ(t) and ξ̇(t) maintain the same, where ξ(t) = 1 and ξ̇(t) = 0.

TBG is corresponding to function ξ(t) in this case.

Lemma 1 ([36]). Think of a dynamic model where the system status is indicated as p(t) ∈ R,
which can be said in the following manner:

ṗ(t) = −k(t) · p(t), p(0) = p0 (1)

The TBG gain, denoted by k(t), aims to

k(t) =
ξ̇(t)

1− ξ(t) + δ
(2)

where ξ(t) is the TBG and the known constant δ satisfies the condition 0 < δ� 1. The result is
that p(t f ) =

δ
1+δ p0.

Remark 1. A time base generator provides an accurate time signal that serves as a reference for the
timing of multiple agents within a multi-agent system. By synchronizing the time base generator
with the individual agents, it ensures that they maintain a consistent time reference during task
execution and interaction. In comparison to traditional fixed-time control approaches, time base
generators offer enhanced accuracy, stability, and flexibility. They can adapt to dynamic environ-
ments and the specific demands of multi-agent systems, thereby facilitating time synchronization
and bolstering system consistency and reliability.

2.3. Problem Description

In this study, we address the case of several leaders within an N-agent linear multi-
agent system, where M(M < N) agents are followers and the leaders constitute the
remaining N −M agents. We specify the set of leaders as E = {M + 1, . . . , N} and the set
of followers as F = {1, . . . , M}.

The following is a representation of the dynamics of the follower i:

ẋi(t) = Axi(t) + Bui(t), i ∈ F (3)
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where the status and input controls for agent i are represented by xi(t) and ui(t), respec-
tively, in ∈ Rnx and ∈ Rnu . Matrices A ∈ Rnx×nx and B ∈ Rnx×nx are system matrices.

Assumption 2. (A, B) is a stable matrix.

For each leader, assuming their control input is ui(t) = 0, the dynamics equation for
the leaders can be stated as follows:

ẋi(t) = Axi(t), i ∈ E (4)

In the given equation, xi(t) ∈ Rnx is an indication of the leaders’ condition. Since
the leaders do not have neighbors, the G Laplacian matrix of the graph can be broken
down into:

L =

[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
(5)

where L1 is expressed in RM×M and L2 is expressed in RM×(N−M). Furthermore, matrix L1
represents the information flow between the M followers, and the information flow from
the N −M leaders to the M followers is represented by matrix L2.

Assumption 3. To ensure how connected graph G is, each follower must have a guided path to
at least one leader, who in turn must have at least one follower. In other words, at least one leader
agent is globally reachable.

Lemma 2 ([33]). According to Assumption 1, each member of −L−1
1 L2 is non-negative, and posi-

tive real components can be found in each L1’s eigenvalue. In addition, the matrix −L−1
1 L2 has row

sums of 1.

Definition 2 ([32]). Let the actual vector space Rn be represented by X = {x1, x2, . . . , xn}. The
convexity of the hull of X is represented by CO(X), and defined as:

CO(X) =

{
n

∑
i=1

λixi

∣∣∣ xi ∈ X, λi > 0,
n

∑
i=1

λi = 1

}
(6)

Definition 3. Multi-agent systems (3) and (4) achieve bilateral leader–follower consensus if agent
i (i = 1, . . . , M) satisfies the following conditions:

lim
t→t f

∥∥∥∥∥ N

∑
j=1

aij(xi(t)− xj(t))

∥∥∥∥∥ ≤ c,∥∥∥∥∥ N

∑
j=1

aij(xi(t)− xj(t))

∥∥∥∥∥ ≤ c, t > t f

lim
t→∞

∥∥∥∥∥ N

∑
j=1

aij(xi(t)− xj(t))

∥∥∥∥∥ = 0.

(7)

where c is a known constant.

The control protocol is designed using a completely distributed event-triggered tech-
nique to reduce the amount of system resources used. According to the definition:

x̄i(t) =
N

∑
j=1

aij(xi(t)− xj(t)), i ∈ F (8)

ei(t) = x̄i(ti
k)− x̄i(t) (9)
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where the event-triggered condition determines the kth sample instant for follower i.
The following describes the event-triggering conditions for follower i

fi = ‖Kei(t)‖2 − θ

ϕ(t) + 1
‖Kx̄i(t)‖2 (10)

θ is a constructive constant, and a time-varying function is ϕ(t).
Equation (10) determines the sample period,

ti
k+1 = inf

t>ti
k

{t | fi(ei(t), x̄i(t), t) = 0} (11)

where i = 1, . . . , M, k ∈ N, and ti
0 = 0.

In order to achieve containment control, fixed time, and reduce communication bur-
den, the controller is designed by using a time reference generator and event trigger.
The event-triggered containment control framework for multi-agent systems based on wire-
less sensor networks and time base generators is shown in Figure 1. The follower obtains
local information through the communication network, calculates the relative state error,
and analyzes whether it satisfies the trigger condition, according to the trigger function,
and then updates the control input. The control input’s UI can be transmitted from the
controller i to the actuator i, and then the follower state is controlled and uploaded to the
communication network.

Communication network

Leader agent 1

Sensor 1

Leader agent i

Sensor i

Leader agent M

Sensor M

Event triggering 

device 1

TBG

Controller 1Actuator 1

Follower 1

Sensor 1

Event triggering 

device i

TBG

Controller iActuator i

Follower i

Sensor i

Event triggering 

device N

TBG

Controller NActuator N

Follower N

Sensor N

x
 

x
 

x
 

u1 ui uN

x1
xi xN

x1 xi xM

Figure 1. Event-triggered containment control algorithm for multi-agent systems based on wireless
sensor networks and time base generators.
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3. Main Results

This section suggests an event-triggered containment control procedure based on
relative information perception for the realistic consensus with a predetermined leader.
The follower (ii) control protocol is created as

ui(t) = −(ϕ(t) + 1)Kx̄i(ti
k) (12)

where K is an adequate dimensional constant matrix.
So,

u(t) = −(ϕ(t) + 1)(IM ⊗ K)(e(t) + x̄(t)) (13)

where u(t) = col{u1(t), . . . , uM(t)}, e(t) = col{e1(t), . . . , eM(t)}, and x̄(t) = col{x̄1(t), . . . ,
x̄M(t)}. The control protocol can address the system containment control issue, given the
following conditions.

Theorem 1. If there is a control protocol ui, such that all follower states asymptotically converge to
the convex hull created by the leader states, then system (3) solves the containment control issue for
any beginning conditions xi(0), i ∈ F, i.e.,

lim
t→∞

(x f (t)−ω(t)) = 0 (14)

where ω(t) = (−L−1
1 L2 ⊗ eAt)

xM+1(0)
...

xN(0)

.

By substituting Equation (4) into Equation (3), we obtain:{
ẋi(t) = Axi(t) + Bui(t), i ∈ F

ẋi(t) = Axi(t), i ∈ E
(15)

where x f =
[
xT

1 . . . xT
M
]T , xl =

[
xT

M+1 . . . xT
N
]T .

By substituting Equation (13) into Equation (15), it can be stated succinctly as follows:{
ẋ f = (IM ⊗ A)x f − (ϕ(t) + 1)(IM ⊗ BK)(e(t) + x̄(t)),

ẋl = (IM ⊗ A)xl ,
(16)

where l ∈ E, f ∈ F.
In accordance with the meaning of x̄i(t), we have

x̄ = (L1 ⊗ IM)ẋ f + (L2 ⊗ IM)ẋl (17)

where x̄ =
[
x̄T

1 , . . . , x̄T
M
]T .

Taking the derivative of Equation (16), we have

˙̄x = (L1 ⊗ IM)ẋ f + (L2 ⊗ IM)ẋl

= (IM ⊗ A)x̄− (ϕ(t) + 1)(L1 ⊗ BK)(e + x̄)
(18)

where e =
[
eT

1 , . . . , eT
M
]T

Theorem 2. To achieve an actual fixed-time leader following consensus under Assumptions 1 and 2,
the requirements that follow have to be satisfied:

1. Let us find a positive definite matrix P ∈ Rnx×nx that satisfies:

AT P + PA− λmin(L1)(1− θ)PBBT P ≤ −Q (19)
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2. K = BT P.

3. ϕ(t) = λmax(P)ξ̇(t)
λmin(L1)(1−ξ(t)+δ)q , q = λmin(Q)

λmin(L1)(1−θ)
.

where the constant 0 < θ < 1 and Q > 0 is a matrix with a positive definite, respectively.

Proof of Theorems 1 and 2. The candidate function for the Lyapunov described below is

V(t) =
1
2

x̄T(t)Px̄(t) (20)

The V(t) derivative in Equation (18), which occurs when 0 ≤ t ≤ t f , is given as

V̇(t) = x̄T(t)(IM ⊗ P) ˙̄x(t)

=
1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

− (ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)e(t)

− (ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

(21)

In addition,
−(ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)e(t)

≤ 1
2
(ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

+
1
2
(ϕ(t) + 1)eT(t)(L1 ⊗ PBBT P)e(t)

(22)

By substituting Equation (22) into Equation (21), we obtain

V̇(t) ≤1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

+
1
2
(ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

+
1
2
(ϕ(t) + 1)eT(t)(L1 ⊗ PBBT P)e(t)

− (ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

(23)

≤ 1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

− 1
2
(ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

+
1
2
(ϕ(t) + 1)eT(t)(L1 ⊗ PBBT P)e(t)

+ γ(t)x̄T(t)(L1 ⊗ (AT P + PA))x̄(t)

(24)

where γ(t) = ϕ(t)
2(1−θ)

.
In accordance with event-triggered condition (6), we have

||Kei(t)||2 ≤
θ

ϕ(t) + 1
||Kx̄i(t)||2 (25)

Therefore,

||(L1 ⊗ K)e(t)||2 ≤ θ

ϕ(t) + 1
||(L1 ⊗ K)x̄i(t)||2. (26)
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By substituting Equation (26) into Equation (25), we discover:

V̇(t) ≤1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

− 1
2
(ϕ(t) + 1)x̄T(t)(L1 ⊗ PBBT P)x̄(t)

+
θ

2
x̄T(t)(L1 ⊗ PBBT P)x̄(t)

+ γ(t)x̄T(t)(L1 ⊗ (AT P + PA))x̄(t)

≤1
2

x̄T(t)(IM ⊗ (AT P + PA

− λmin(L1)(1− θ)PBBT P))x̄(t)

+ γ(t)x̄T(t)(L1 ⊗ (AT P + PA

− λmin(L1)(1− θ)PBBT P))x̄(t)

(27)

According to (19), there are

V̇(t) ≤ −γ(t)x̄T(t)(L1 ⊗Q)x̄(t)

≤ − ϕ(t)λmin(L1)q
λmax(P)

= −k1(t)V(t)

(28)

where k1(t) = ξ̇(t)
1−ξ(t)+δ

. Lemma 1 states that we can directly obtain V(t) ≤ δ
1+δ V(0).

Therefore,

lim
t→t f

∥∥∥∥∥ N

∑
j=1

aij
(
xi(t)− xj(t)

)∥∥∥∥∥ ≤
√

2δV(0)
λmin(P)λmin(L1)

(29)

When t ≥ t f , we can obtain the following equation:

˙̄x = (IM ⊗ A)x̄− (L1 ⊗ BK)(e(t) + x̄(t)) (30)

Using Equation (30) and the time-derivative of V(t), we obtain

V̇(t) =
1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

− x̄T(t)(L1 ⊗ PBBT P)e(t)

− x̄T(t)(L1 ⊗ PBBT P)x̄(t)

≤1
2

x̄T(t)(IM ⊗ (AT P + PA))x̄(t)

− 1
2

x̄T(t)(L1 ⊗ PBBT P)x̄(t)

− 1
2

eT(t)(L1 ⊗ PBBT P)e(t)

≤1
2

x̄T(t)
(

IM ⊗
(

AT P + PA

−λmin(L1)(1− θ)PBBT P
))

x̄(t)

≤− 1
2

x̄T(t)(L1 ⊗Q)x̄(t)

≤− k2V(t)

(31)
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The equation for k2 is given by

k2 =
λmin(Q)λmin(L1)

λmax(P)
(32)

Consequently, it is evident that

V(t) ≤ V(t f )e
−k2(t−t f ) (33)

Hence, the result is:

lim
t→t f

∥∥∥∥∥ N

∑
j=1

aij(xi(t)− xj(t))

∥∥∥∥∥ = 0 (34)

Thus, Theorem 2 is proved.
The eigenvalues of L1 are known to all have positive real portions under the assump-

tion of Condition 3 and according to Lemma 2. From Equation (17), it follows that

lim
t→∞

∥∥∥∥∥ N

∑
j=1

aij(xi(t)− xj(t))

∥∥∥∥∥ = 0 (35)

This implies
lim
t→∞

∥∥∥(x f (t)− (−L−1
1 L2 ⊗ Inx )xl(t)

)∥∥∥ = 0 (36)

By substituting xi(t) = eAtxi(0) for i ∈ E, we can obtain limt→∞

(
x f (t)−ω(t)

)
= 0

where ω(t) = (−L−1
1 L2 ⊗ eAt)

xM+1(0)
...

xN(0)

.

Thus, Theorem 1 is proved.

Remark 2. In this study, the term "fixed-time control" refers to the use of TBG control protocols
to make sure the system’s status changes to the intended level within a given time interval t f .
Consensus can be achieved through the−Kx̄i

(
ti
k
)

term in the control protocol (12). A key advantage
of our approach, compared to many existing fixed-time containment control studies, is the relatively
small initial control input, which effectively reduces system costs.

Remark 3. The time delay may cause oscillation, instability, or slow convergence. This is a
challenge for the design of control systems. It is necessary to consider the time delay influence on
the stability of the system. The shortcoming of this paper is that the communication delay is not
considered. We plan to further explore this topic in future work to improve the control performance
and propose better solutions to deal with communication delays.

Remark 4. Event-triggered containment control can effectively reduce communication and com-
puting loads and improve the energy efficiency of the system. The containment control based on
the time reference generator can ensure that each agent in the system operates and communicates
according to a unified time axis, so as to achieve coordinated and synchronous control. The choice of
the appropriate method for the two control schemes depends on the specific application scenarios
and system requirements, as well as the trade-off considerations for the communication load, energy
efficiency, and synchronization requirements.

Theorem 3. When neither party can reach an agreement, Zeno behavior is circumvented in control
protocol (12) and under the event-triggering condition (10).
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Proof of Theorem 3. For the time interval 0 ≤ t ≤ t f , where

d||Kei(t)||2
dt

= −2eT
i (t)K

TK ˙̄ ix(t) (37)

The prior study led to the conclusion that ei(t) has an upper bound ϑ = max(|ei(t)|).
By using Equation (18), we can further derive

˙̄xi(t)max = λmax(A)v− (ϕmax + 1)ψ(ϑ + v) (38)

The following expression can be used to obtain the greatest value of v, of x̄i(t), in
Equation (29):

v =

√
2δV(0)

λmin(P)λmin(L1)
(39)

Furthermore, ψ represents the maximum value of L1⊗ BK, and ϕmax represents the
maximum value of ϕ(t), which can be determined using Theorem 2.

Therefore, we can conclude that

d||Kei(t)||2

dt
≤ −2ϑ||KTK||(λmax(A)v− (ϕ(t)max + 1)ψ(ϑ + v)) (40)

Define Φi = −2ϑ||KTK||(λmax(A)v− (ϕ(t)max + 1)ψ(ϑ + v)). Thus, we have
d||Kei(t)||2

dt ≤ Φi ≤ ∞.
Therefore, we obtain

||Kei(t)||2 ≤ Φi(t− ti
ki

t
) (41)

where ti
ki

t
< t represents the most recent event-triggered moment of follower i at time t.

Thus, ki
t = argι minι∈N;t≥ti

ι

{
t− ti

ι

}
.

Furthermore, we can deduce that

||Kei(ti
ki

t+1)||
2 ≤ Φi(ti

ki
t+1 − ti

ki
t
) (42)

where ti
ki

t+1
represents the next event-triggered instant.

By Equation (10), we can deduce that

||Kei(ti
ki

t+1)||
2 =

θ

ϕ(ti
ki

t+1
) + 1

||Kx̄i(ti
ki

t+1)||
2

≥ θ

ϕmax + 1
||Kx̄i(ti

ki
t+1)||

2

> 0

(43)

Therefore, we can conclude that ti
ki

t+1
− ti

ki
t
≥ Φi

−1||Kei(ti
ki

t+1
)|| > 0.

When t > t f , similar to the example 0 ≤ t ≤ t f , the study of inter-event timings
and the conclusion ti

ki
t+1
− ti

ki
t
> 0 can be directly obtained. Hence, Zeno behavior can

be avoided.
Theorem 3 has been fully demonstrated.

4. Simulation Example

To check the accuracy of the theoretical findings, we employ a simulation example
in this section. Consider a multi-agent system with eight followers and four leaders to
demonstrate the use of the control protocol. The dynamics of each agent are described by
Equations (3) and (4), where x f (t), xl(t) ∈ R2, f = 1, . . . , 8, l = 1, 2, 3, 4. The initial states
of each follower and leader are set to x f j(0) ∈ (−2; 2), xl1(0) = (3;−2), xl2(0) = (−4; 4),
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xl3(0) = (1;−1), xl4(0) = (2;−2). It is possible to choose the parameter θ, system matrices
A and B, and matrix Q with positive definiteness, as follows:

θ = 0.5.

A =

[
−1 0
1 0

]
, B =

[
0.1
1

]
, Q =

[
0.3 0
0 0.3

]
.

According to inequality (19), the conclusion can be obtained as

P =

[
4.4448 4.1448
4.1448 4.1448

]
.

Figure 2 depicts the topology of the communication. While the other nodes represent
the followers, nodes 1, 2, and 3 represent the leaders.

Figure 2. Communication topology.

Clearly, Assumption 1 is satisfied. Corresponding to Equation (3),

L1 =



2 0 0 −1 0 0 −1 0
−1 3 0 0 0 0 −1 −1
0 0 1 0 0 0 −1 0
0 −1 0 2 0 0 0 0
0 0 −1 0 2 0 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 −1 0 −1 0 0 −1 4
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L2 =



0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 −1 0
0 0 0 0
0 −1 0 0
0 0 0 −1


According to Definition 2, TBG ξ(t) can be chosen as

ξ(t) =

{
10
46 t6 − 24

45 t5 + 24
45 t4, 0 ≤ t ≤ t f

1, t > t f

t f = 4 s in this case.
Figure 3 shows the change in the state trajectory of the multi-agent system. It can be

seen that all followers gradually converge to the convex hull formed by the leader state,
indicating that the control method is effective. The control input is shown in Figure 4.
When t = 4 s, the control input tends to be stable, indicating that the controller remains
stable in the subsequent period, which further proves that the containment control problem
of the system is solvable (3). Figure 5 shows the instants and intervals of event triggering.
The line indicates whether the event is triggered (if triggered, there are line circles), and
the vertical distance of a single circle is the interval time between the triggering and
the previous moment.It can be seen that the followers have no Zeno phenomenon (i.e.,
continuous points) and the trigger interval is long, indicating that the control scheme
effectively reduces the communication.
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Figure 3. State trajectory under the control protocol.
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Figure 4. Evolution of the control input under the control protocol.
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Figure 5. Moments and intervals triggered by events.
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5. Conclusions

This research suggests an event-triggered containment control algorithm that is fully
distributed based on wireless sensor networks and a time base generator (TBG) to effectively
address the timing-consistent containment control issue in directed, fixed-topology multi-
agent systems. The control protocol aims to ensure consensus consistency in the system
by reducing the state divergence to a specific level within a known stable time. Through
analysis and proof using Lyapunov methods and matrix inequalities, it is demonstrated
that all follower agent states can converge within the hull of the leader state when the
suggested control technique is used, which is convex. In comparison with traditional
methods, the algorithm presented in this study enables faster convergence of multi-agent
system followers to the convex hull of the leader while avoiding Zeno behavior. Finally,
simulated examples are used to show that the suggested control strategy is preferable.
The shortcoming is that the time delay problem is not considered in this paper. In future
research, it will be necessary to consider the time delay influence on multi-agent systems.
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