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Abstract: This research addresses the challenges of visually impaired individuals’ independent travel
by avoiding obstacles. The study proposes a distance estimation method for uncontrolled three-
dimensional environments to aid navigation towards labeled target objects. Utilizing a monocular
camera, the method captures cuboid objects (e.g., fences, pillars) for near-front distance estimation.
A Field of View (FOV) model calculates the camera’s angle and arbitrary pitch relative to the target
Point of Interest (POI) within the image. Experimental results demonstrate the method’s proficiency
in detecting distances between objects and the source camera, employing the FOV and Point of
View (POV) principles. The approach achieves a mean absolute percentage error (MAPE) of 6.18%
and 6.24% on YOLOv4-tiny and YOLOv4, respectively, within 10 meters. The distance model only
contributes a maximum error of 4% due to POV simplification, affected by target object characteristics,
height, and selected POV. The proposed distance estimation method shows promise in drone racing
navigation, EV autopilot, and aiding visually impaired individuals. It offers valuable insights into
dynamic 3D environment distance estimation, advancing computer vision and autonomous systems.

Keywords: distance estimation; navigation aid; object detection; field of view; visual impairment;
computer vision

1. Introduction

Visual impairment (VI) is a significant public health concern that affects people of
all ages and is caused by a range of factors, including age-related eye diseases, genetic
disorders, injuries, and infections [1]. The global population of individuals suffering from
VI, including those who are completely blind, moderately visually impaired, and severely
visually impaired, has reached more than 300 million [2]. The increasing number of visual
impairment (VI) cases highlights the critical need to improve accessibility and mobility for
visually impaired individuals, who face significant challenges in navigating public spaces
due to the low success rate of obstacle avoidance.

Therefore, governments of different countries are attempting to design various assis-
tive living facilities for individuals with visual impairments. In the United States, guide
dogs and white canes remain essential tools. In addition, the emergence of advanced
technologies has also enhanced the independent mobility of individuals with visual im-
pairments and blindness. GPS-based navigation systems, such as smartphone applications
and standalone devices, provide step-by-step navigation and information about points of
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interest. Furthermore, obstacle detection devices and electronic travel aids, such as ultra-
sonic canes and wearable sensors, assist individuals in navigating their surroundings [3].
In the United Kingdom, tactile pavements and signage have been implemented in public
spaces to improve accessibility and orientation [4]. The “Haptic Radar” system in Japan
utilizes vibrations to provide real-time feedback on surrounding objects [5].

However, the accessibility of these facilities is often inadequate in older districts,
leading to the use of personal navigation tools such as white canes and guide dogs [6].
While white canes are a popular option, their short range and potential interference with
other pedestrians may hinder mobility in crowded spaces. Alternatively, guide dogs offer
effective guidance, but their high cost and restrictions on public transportation may limit
their widespread use [7]. For the existing advanced technologies, engineers and manu-
facturers face technical challenges in ensuring the accuracy and reliability of navigation
and object detection systems [3]. In daily life, it is essential to prioritize efforts to address
the challenges faced by visually impaired individuals, as the loss of eyesight can be a
debilitating experience.

Recently, machine learning techniques have greatly improved object recognition ac-
curacy in computer vision [8]. This has led to the development of sophisticated models
that can recognize objects in complex environments. These advancements have enabled
the creation of highly accurate and reliable computer vision systems for applications such
as self-driving cars, medical imaging, and surveillance. Near-field object detection can
also benefit from these machine-learning techniques [9], allowing for accurate real-time
detection of nearby objects. To locate the fences in the street, object detection is required,
and it can be accomplished by a deep learning approach [10]. The distance information
can then be utilized for various applications, including robotics, drone racing, autonomous
vehicles, and navigation assistance tools [11–14]. Based on the trained model on the dataset,
detection of the fences from public objects by the images and videos are captured by the
user camera. Detected objects and their categories are remarked on in the corresponding
media content. After eliminating duplicated and low-confident detection, the result is then
passed to the distance estimation process.

In this article, machine learning is applied to obstacle detection of near distance
in front, allowing visually impaired people to walk freely and safely. The objective of
this work is to develop a new approach to navigation aid that assists visually impaired
people to travel independently with confidence. A solution, Near Front Distance (NFD)
for estimating near-front distance using a monocular camera on public objects based on
a deep learning approach is proposed, which consists of camera calibration and distance
estimation modeling. A distance estimation process is applied to the images taken by the
camera on intrinsic parameters after calibration. The position of detected objects on images
are converted from the image coordinates to the actual coordinates based on the position
or size information and within assumptions. Our distance estimation model can combine
deep-learning-based object detection methods to accurately measure the distance between
objects and the camera inside the field of view. Ultimately, our work contributes to bridging
the gap between computer vision advancements and practical applications, particularly in
scenarios where the accurate measurement of distances to obstacles is crucial.

We utilized a published dataset on public objects in the uncontrolled environment,
which was specifically designed for navigation-aiding purposes [15]. The primary contri-
butions of this work can be summarized as follows:

1. Development of a novel integration algorithm that utilizes image data from a monoc-
ular camera and the camera’s pose to estimate the distance to target objects effectively.
The algorithm calculates the object’s distance on the front by the pixel on the picture
after YOLOv4 detection.

2. Evaluation of the performance of deep learning models when applied to the novel
algorithm for distance estimation.

The remainder of the work is divided into the following sections: The related works
are comprehensively addressed in Section 2. In Section 3, the methodology used in this



Appl. Sci. 2023, 13, 11038 3 of 20

study is described in detail, including the approach for measuring distance from various
positions and points of interest. The results of the suggested approach are shown in
Section 4, which also presents the empirical findings. Finally, in Section 5, we offer a
comprehensive summary of the study, highlighting the main conclusions, and provide
some closing thoughts.

2. Related Works

In this section, conventional and deep learning approaches are investigated for depth
estimation. In order to understand the conditions of the surroundings and the distances to
the targets or obstacles, sensors such as cameras, radar, and LiDAR are commonly used.

2.1. Sensors for Distance Measurement

The camera is a widely used and cost-effective sensor for environmental perception. It
mimics the capabilities of the human visual system, excelling in the recognition of shapes
and colors of objects. However, it does have limitations, particularly in adverse weather
conditions with reduced visibility.

The radar (radio detection and ranging) is widely used to precisely track the distance,
angle, or velocity of objects. Radars can be broken down into a transmitter and receiver.
The transmitter sends radio waves in the targeted direction and the waves are reflected
when they reach a significant object. The receiver picks up the reflected waves and gives
information about the object’s location and speed. The greatest advantage of the radar
is that it is not affected by visibility, lighting, and noise in the environment. However,
compared to a camera, a radar is low-definition modeling and is weak at providing the
precise shape of objects and identifying what the object is.

The mechanism of the LiDAR (light detection and ranging) is similar to the radar
but utilize laser light to determine ranges instead of radio wave. The LiDAR is a more
advanced version of a radar that can provide extremely low error distance measurement. It
is also capable of measuring thousands of points at the same time to model up a precise 3D
depiction of an object or surrounding environment [16]. The disadvantages of the LiDAR
are its high cost and the requirement of a remarkable amount of computing resources
compared to cameras and radars.

Although the costs of cameras, radar systems, and LiDAR can vary significantly due to
factors such as brand, specifications, and quality, a general assessment of equipment costs
with comparable capabilities reveals the following: Cameras typically range in price from
$100 to several thousand dollars, depending on factors such as resolution, image quality,
and additional features. Radar systems used for object detection and tracking start at a few
hundred dollars for basic short-range sensors, while more advanced and specialized radar
systems can cost several thousand dollars or more. Likewise, LiDAR sensors range in price
from a few hundred dollars for entry-level sensors to several thousand dollars for high-end
models with extended range, higher resolution, and faster scanning capabilities.

Considering the pros and cons of the three types of sensors for distance measurement,
the camera is the most appropriate sensor to be utilized in the research due to its low cost,
being less sophisticated, and its high definition. The 2D information recognized by the
camera can be adopted directly by the deep learning algorithms of object detection.

2.2. Traditional Distance Estimation

Typical photos taken from a monocular camera are shown in two dimensions that
would require extra information for distance estimation. Distance estimation (also known
as depth estimation) is an inverse problem [17] that tries to measure the distance between
3D objects from insufficient information provided in the 2D view.

The earliest algorithms for depth estimation were developed based on stereo vision.
Researchers utilize geometry to constrain and replicate the idea of stereopsis mathematically.
Scharstein and Szeliski [18] conducted a comparative evaluation of the best-performing
stereo algorithms at that time. Meanwhile, Stein et al. [19] developed methods to estimate
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the distance from a monocular camera. They investigated the possibility of performing
distance control to an accuracy level sufficient for an Adaptive Cruise Control system. A
single camera is installed in a vehicle using the laws of perspective to estimate the distance
based on a constrained environment: the camera is at a known height from a planar surface
in the near distance and the objects of interest (the other vehicles) lie on that plane. A
radar is equipped for obtaining the ground truth. The results show that both distance and
relative velocity can be estimated from a single camera and the actual error lies mostly
within the theoretical bounds. Park et al. [20] also proposed a distance estimation method
for vision-based forward collision warning systems with a monocular camera. The system
estimates the virtual horizon from information on the size and position of vehicles in the
image, which is obtained by an object detection algorithm and calculates the distance from
vehicle position in the image with the virtual horizon even when the road inclination varies
continuously or lane markings are not seen. To enable the distance estimation in vehicles,
Tram and Yoo [21] also proposed a system to determine the distance between two vehicles
using two low-resolution cameras and one of the vehicle’s rear LED lights. Since the poses
of the two cameras are pre-determined, the distances between the LED and the cameras,
as well as the vehicle-to-vehicle distance can be calculated based on the pinhole model of
the camera as the focal lengths of the cameras are known. The research also proposes a
resolution compensation method to reduce the estimation error by a low-resolution camera.
Moreover, Chen et al. [22] proposed an integrated system that combines vehicle detection,
lane detection, and vehicle distance estimation. The proposed algorithm does not require
calibrating the camera or measuring the camera pose in advance as they estimate the
focal length from three vanishing points and utilize lane markers with the associated 3D
constraint to estimate the camera pose. The SVM with Radial Basis Function (RBF) kernel
is chosen to be the classifier of vehicle detection and Canny edge detection and Hough
transform are employed for the lane detection.

2.3. Depth Estimation Using Deep Learning

Nowadays, to achieve depth estimation using a monocular camera, neural networks
are commonly used. Eigen et al. [23] proposed one of the typical solutions that presented a
solution to measure depth relations by employing two deep network stacks: one that makes
a coarse global prediction based on the entire image, and another that refines the prediction
locally. By applying the raw datasets (NYU Depth and KITTI) as large sources of training
data, the method matches detailed depth boundaries without the need for superpixelation.

Another solution that can overcome the weakness of using CNN for depth estimation
is that vast amounts of data need to be manually labeled before training [24]. A CNN for
single-view depth estimation that can be trained end-to-end, unsupervised, using data cap-
tured by a stereo camera without requiring a pre-training stage or annotated ground-truth
depths. To achieve that, an inverse warp of the target image is generated using the predicted
depth and known inter-view displacement to reconstruct the source image; the photomet-
ric error in the reconstruction is the reconstruction loss for the encoder. Zhou et al. [25]
also presented an unsupervised learning framework for the task of monocular depth and
camera motion estimation from unstructured video sequences. The system is trained on
unlabeled videos and yet performs comparably with approaches that require ground-truth
depth or pose for training. As a whole, Table 1 highlights the various deep-learning-based
approaches to depth estimation.

While deep learning technology has showcased its proficiency in depth perception
and measurement, certain challenges persist: (i) Specialized Equipment: Generating media
data with depth information necessitates specialized equipment like Kinect cameras, ToF
cameras, or LiDAR sensors to create training datasets. Without such equipment, the labori-
ous task of manually labeling each object with ground truth distance becomes inevitable.
(ii) Unsupervised Framework: Unsupervised monocular camera depth estimation typically
relies on stereo video sequences as input. It leverages geometric disparities, photometric
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errors, or feature discrepancies between adjacent frames as self-supervised signals for
model training.

Table 1. Comparison between NFD and existing solutions.

Existing Solution Technique/Model Hardware Target Object Advantages Disadvantages

Ye and Qian [26] 3D point cloud 3D ToF camera &
tablet

Structural Object
(e.g., doorway,
hallway, stairway,
ground, and wall)

Highly accurate
and possible
to combine with
SLAM/wayfinding
solutions

High computing
resources required
and indoor only

Kayukawa et al.
[27] YOLOv3-tiny

Smartphone (built-
in RGB camera and
infrared depth cam-
era)

Human
High mobility and
off-the-shelf device
required

Very specific appli-
cation and short
distance

Ying et al. [28] YOLOv3
Stereo webcam &
NVIDIA Jetson
TX2

Indoor furniture
(e.g., chair and
table)

Low cost but small
dataset required

Low mobility
and accuracy in
distance estimation

Shelton and Ogun-
funmi [29] AlexNet Webcam & laptop Indoor objects and

outdoor buildings

Text-to-speech
function involved,
available in both in-
door and outdoor

Only workable in
the authors’ cam-
pus and low mobil-
ity

Ryan et al. [30] MobileNet-SSDv2

Micro-controllers,
Raspberry PiCam
& webcam, ultra-
sonic & infrared
ToF Sensor

General objects
(VOC and COCO
dataset)

High mobility,
available in low
power, and low
cost

Additional sensors
for distance estima-
tion required. Im-
plemented with the
existing navigation
tool

Sohl-Dickstein et al.
[31]

Ultrasonic echolo-
cation

Speaker & ultra-
sonic microphones

Any object in short
distance

Work without vis-
ible light, provide
3D spatial informa-
tion

Short distance and
could not recog-
nize objects

In this study, we propose a novel integration approach for navigation that merges
computer vision and deep learning in object detection and distance estimation. This
approach is user-friendly, easily maintainable, and cost-effective. Importantly, it demands
fewer computational resources, making it suitable for implementation on smartphones and
similar devices.

3. Methodology

In this work, NFD for estimating near-front distance using a monocular camera on
public objects is proposed. The solution can be utilized as a navigation aid for visually
impaired people. Figure 1 depicts the architecture of NFD, which is a three-tier cloud
solution that consists of a smartphone with a built-in monocular camera, a computer for
image processing, and a cloud computing platform for model training. Images are first
captured by the smartphone and transferred to the computer for the creation of the dataset.
Once the dataset is ready, it is sent to the cloud computing platform for neural network
training and inference. After training, a model will be outputted for distance estimation.
Training, calibration, and testing are the three processes that compose NFD specifically.
The specifics are as follows:

Training. In the first stage, NFD establishes a deep learning model for training to detect
public objects (e.g., fences in the street), which is detailed in [15]. During the training,
a certain amount of street view images of public objects were taken by smartphone
cameras at random poses. Those images were imported into a computer for the dataset
pre-processing, which includes image selection, format converting, and resizing by
image editing software. An annotation software, LabelImg v1.8.6 [32], was then
used for labeling the positions and classes of target objects manually. The exported
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annotation files were grouped with the pre-processed images and uploaded to the
GPU-enabled cloud computing platform, Google Colaboratory [33], for the training
process. The Darknet [34], an open-source neural network framework specialized for
YOLO [35], was set up on the cloud and different versions of YOLO were executed
on it for training the model. Finally, trained weights files were outputted and saved
on the network drive. Multiple sessions of training were performed to seek the most
suitable configurations and the best weights before the testing.
Calibration. In the second stage, when a new camera is used, calibration must be
performed to acquire the camera’s intrinsic parameters. During the calibration stage,
the camera was set up at fixed poses with known heights and pitch angles. After going
through the calibration procedures (detailed in Section 4.1), the intrinsic parameters
(e.g., the vertical and horizontal field of view, and the focal length of the camera) are
determined and utilized for the next stage.
Testing. In the final stage, testing is the experimental implementation of NFD for
detecting objects and estimating their distances from the visual content. Testing images,
in which the objects’ distances were measured, and demo videos were uploaded to the
cloud computing platform for detection. In the smartphone application, the trained
deep learning model is assumed to download to a smartphone to perform the tasks.
Once the target objects were detected and framed by bounding boxes, NFD combined
computer vision techniques and the parameters of the camera to estimate the distances
of near-front public objects based on the distance estimation model.

Testing

The NFD modeling procedure

Figure 1. The overall architecture of NFD. The NFD modeling procedure calibrates the device camera
to obtain the ground truth of the object distance and estimate the FOV on the bounding boxes image
after YOLOv4 detection.

3.1. Distance Estimation Using Position Information

A pinhole camera’s geometry can be used to calculate object distances because a
monocular lacks the ability to detect depth information. A distance estimate is often done
in one of two ways: based on positional information or size information. Referring to
the findings of the research by Taylor et al. [36], if an object is on the same plane as the
camera, the position of the object in pixel coordinates can be converted to the real-world
coordinates. The distance between the object and the camera can be estimated by a single
image from a monocular camera, of which the FOV is known. FOV is the maximum area
of a sample that a camera can image. It is related to the focal length of the lens and the
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sensor size [37]. The implementation of the FOV model can be divided into two scenarios:
(1) horizontal camera axis, and (2) arbitrary pitch angle.

3.1.1. Horizontal Camera Axis

As can be seen in Figure 2a, the camera is held or set up horizontally, in which the
optical axis of the camera is parallel to the ground and the pitch angle is 0°. In the diagram,
h is the height of the camera, b is the length of the blind area, d is the distance from the
edge of the blind area to the bottom of the target object and w is the one-half width of the
captured target object surface in real-world coordinates. α indicates one-half of the vertical
FOV and γ is one-half of the horizontal FOV of the camera.

(a) (b)

Figure 2. Camera positioning. (a) Scenario of holding the camera horizontally. (b) Scenario of camera
setup at an arbitrary pitch angle.

The remain factors in Figure 2a can be further derived from Equations (1)–(3).

tan β =
b
h

(1)

α + β = 90◦ (2)

tan γ =
w

d + b
(3)

where β is the viewing angle of the blind area. Assuming the image resolution is m by n
in pixel, for a point in pixel coordinate P(u, v), which ranges from 0 to (m− 1) and 0 to
(n− 1), respectively, the distance along the x- and y-axis in real-world coordinates can be
determined by the following Equations (4) and (5).

y = h tan
[

β + 2α

(
n− 1− v

n− 1

)]
(4)
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x = y tan
[

γ

(
2u−m + 1

m− 1

)]
(5)

Above, Figure 3 illustrates the distance estimation of Equations (4) and (5). It assumes
that there exists a point P1 lying on the y-axis and its projection in pixel coordinate is P1

′
. The

intersection angle of the projection line P1 P1
′

and z-axis (θ) is β plus a portion of vertical
FOV and the portion can be determined by the pixel coordinate v of the image, which
is 2α

(
n−1−v

n−1

)
. Thus, y = h tan θ = h tan

[
β + 2α

(
n−1−v

n−1

)]
is obtained and Equation (4)

is derived. For Equation (5), assuming there is a point P2, which is P1 shifting along
the x-axis and the projection of P2 in pixel coordinate is P2

′
. The intersection angle of

the projection line P2 P2
′

and y-axis (ϕ) is a portion of horizontal FOV and the potion
can be determined by the pixel coordinate u of the image, which is γ

(
2u−m+1

m−1

)
. Hence,

x = y tanϕ = y tan
[
γ
(

2u−m+1
m−1

)]
is obtained based on the triangular relationship.

(a)

(b)

Figure 3. Distance estimation using triangulation relationship. (a) A point (P1) on the y-axis in real
coordinate and its projection in pixel coordinate (P

′
1). (b) A point (P2) shifting along the x-axis and its

projection in pixel coordinate (P
′
2).

Since the camera is held horizontally, the object placed sufficiently far away will
eventually appear in the horizontal centerline of the image, then α comes to 0◦, and y
becomes infinity. x can be positive or negative from the equations. The positive value of x
indicates that the object is at the front-right and the negative indicates that the object is at
the front-left. According to Equations (4) and (5), x and y only rely on known parameters
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including h (the height of the camera), α, β, γ (the FOV of the camera, which can be acquired
from calibration), m and n is the resolution of images. Once the pixel coordinate (u, v) of
any object is known, its corresponding location in real-world coordinate (x, y, 0) can be
converted as the object is assumed to be lying on the ground. Hence, the distance from the
user’s feet to the object’s bottom along the ground surface is described in Equation (6):

D =
√

x2 + y2 (6)

3.1.2. Arbitrary Pitch Angle

The proposed FOV model can also be extended such that the camera is held at an
arbitrary pitch angle. Assuming the pitch angle is δ, w becomes one-half the width of the
captured centerline surface in real coordinates. The top and side views of the model at an
arbitrary pitch angle are illustrated in Figures 3–6. In terms of the arbitrary pitch angle,
Equations (1)–(3) can be expressed as Equations (7)–(9), respectively.

α + β + δ = 90◦ (7)

tan β =
b
h

(8)

tan(α + β) =
b + d

h
(9)

tan γ =
w

d + b
(10)

For a point in pixel coordinate P
′
(u, v), the relationship of the distance along the x-

and y-axis in real-world coordinate remains as Equations (4) and (5). In such a case, β
becomes a parameter depending on the pitch angle δ.

Figure 4. Image view of POI and bounding box. (a) an object is perpendicular to the camera axis and
located in the left half of the image; (b) an object is oblique to the camera axis and located in the left half
of the image; (c) an object is perpendicular to the camera axis and locates across the centerline of the
image. It is difficult to determine the closest point of the object from the information of the bounding
box.
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(f) d = 1.04 m

(a) h = 0.79 m

(g) d = 1.27 m

(b) h = 0.96 m

(h) d = 1.50 m

(c) h = 1.08 m

(i) d = 1.74 m

(d) h = 1.17 m

(j) d = 1.97 m

(e) h = 1.25 m

Figure 5. Experiments for acquiring the camera’s vertical and horizontal FOV.

(a) The height of camera = 0.9 m, 
the distance = 3.0 m

(b) The height of camera = 0.9 m, 
the distance = 3.5 m

(c) The height of camera = 0.9 m, 
the distance = 4.0 m

(d) The height of camera = 1.1 m, 
the distance = 3.0 m

(e) The height of camera = 1.1 m, 
the distance = 3.5 m

(f) The height of camera = 1.1 m, 
the distance = 4.0 m

(g) The height of camera = 1.3 m, 
the distance = 3.0 m

(h) The height of camera = 1.3 m, 
the distance = 3.5 m

(i) The height of camera = 1.3 m, 
the distance = 4.0 m

Figure 6. Experiments for acquiring the camera’s focal length.

There are various methods to acquire the pitch angle δ. For example, (1) measures
the blind area b to derive δ from α and β. It is infeasible as the user needs to measure the
blind area from time to time. (2) Detect the vanishing point of the image to derive the
pitch angle. It is difficult in the city area as lots of buildings and crowds may block the
discovery of vanishing points. (3) Using an inertial measurement unit or gyroscope for
continuously measuring the pitch angle for updating the rotation matrix of the camera in
order to eliminate the estimated error caused by the vibration from movement [38]. It can
also be used to deal with the roll angle changes when moving. However, the acquisition of
the pitch angle is beyond the scope of this work so the latter sections will remain on the
scenario of the horizontal camera axis.
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3.2. Distance Estimation Using Size Information

Stein et al. [19] utilized the size information (the height or width) of a car for estimat-
ing the distance using perspective. Since the width of an unknown vehicle could vary
differently, the accuracy of estimation using size information was only about 30% in their
research. The estimation from the size information could only be used as a sanity check.
The technique of object detection is implemented so NFD can identify the class of the
object in the image. Because the size of the public object in each class is standard, distance
estimation using size information is now feasible. The solution prefers to use the height of
the target object instead of the width since the projection width of the object in the image
varies along with the oblique angle to the camera axis. Meanwhile, the height is nearly
unchanged assuming that the lens distortion is negligible. Let h be the height of the target
object in the image in pixel and H is the height of the target object in real-world coordinates.
When the target object is at distance D, D can be estimated by the Equation (11).

D =
f H
h

(11)

where f is the focal length of the camera (pixel/meter) and depends on the camera’s
hardware.

3.3. Point of Interest of Target Objects

Since NFD detects objects by YOLO, the result shows the positions of bounding boxes,
classes of objects, and their confidence only. The posture of the target objects would not be
clearly shown and they may be almost or partially blocked. It was difficult to determine
the closest point of the detected object based on the limited information (in Figure 4). There
are methods for identifying the posture of objects such as adding another neural network
for detecting the pose or labeling the orientation information in the dataset at the very
beginning. However, it would increase the complexity of NFD so it is proposed to be
handled in future work. To simplify the model, the concept of Point of Interest (POI) was
introduced. Instead of determining the exact closest point of the object, the middle bottom
of the bound box was selected as the POI. The distance estimated in the model was the
distance between the camera and the POI.

The simplification would introduce errors into the solution. The error varied depend-
ing on the pose of the object and the maximum error was half of the width of the detected
object, which is shown in Section 4.1. In this work, the largest target object is a long fence
that has a width of 1.42 m. Assume that a user is wearing a camera at 1.2 m height and
standing at 2.5 m from the object (the blind area is around 2.4 m in that case). The maximum
error introduced by the simplification is calculated by Equation (12), which introduces the
maximum of 4% error on the actual distance.

εmax =

√
(h/2)2 + d2 − d

d
=

√
(1.42/2)2 + 2.52 − 2.5

2.5
= 4% (12)

4. Results

This section may be divided by subheadings. Providing a concise and precise descrip-
tion of the experimental results, their interpretation as well as the experimental conclusions
that can be drawn.

4.1. Calibration of Camera

When a new camera is applied in the experiment, calibration is necessary for acquiring
the camera’s FOV or focal length, which targets for the position-based estimation or size-
based estimation. There are various methods to acquire the FOV. The calibration procedure
in this experiment was as follows: (1) set up a camera on a tripod with the camera axis
parallel to the ground; (2) place reference markings at particular locations according to
the live view of the camera; (3) measure the location of reference markings in real-world
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coordinates; and (4) calculate the FOV of the camera from Equations (1)–(3). To acquire the
vertical FOV of the camera, a tape measure was laid on the ground and extended from the
bottom of the tripod along with the centerline of the camera. A distinguishable object was
placed close to the edge in pixel coordinates (Figure 5a–e). Read from the tape measure to
record the length of the blind area in real-world coordinates. Repeat the measurement at
different heights to find the average.

Once the height of camera h and the length of bind area b were measured, β and α
could be calculated by Equation (1). Hence, the average of vertical FOV of the camera used
in the experiment is shown in Table 2.

Table 2. Readings of vertical FOV experiments.

h (m) b (m) β α Vertical FOV

(a) 0.794 1.56 63.03° 26.97° 53.95°
(b) 0.959 1.88 62.97° 27.03° 54.05°
(c) 1.079 2.15 63.35° 26.65° 53.30°
(d) 1.167 2.39 63.97° 26.03° 52.05°
(e) 1.254 2.57 63.99° 26.01° 52.02°

Average: 63.46° 26.54° 53.07°

For the horizontal FOV, similar steps were performed, but two objects were placed
at the left and right edge in the pixel coordinate (Figure 5f–j). The camera was set up
at a certain pitch angle, otherwise the width w would be too far away and close to the
vanishing point if we set up the camera horizontally. The height of camera h was measured
for calculating the actual distance d

′
=
√
(d2 + h2) from the camera to the plane of w when

the camera was hoisted at h. The horizontal FOV could be calculated by Equation (3). The
average horizontal FOV of the camera in the experiment is shown in Table 3, where the
height is fixed to 1.183 m.

Table 3. Readings of horizontal FOV experiments.

d (m) w (m) γ Horizontal FOV

(f) 1.040 1.375 23.58° 47.16°
(g) 1.270 1.596 24.69° 49.38°
(h) 1.500 1.782 25.00° 50.01°
(i) 1.735 1.982 25.26° 50.53°
(j) 1.965 2.187 25.49° 50.98°

Average: 24.81° 49.61°

To acquire the focal length of the camera, take several pictures that contain the target
objects at different distances (Figure 6). As long as the size of the objects and the distances
are known, the focal length can be calculated by the following Equation (13).

f =
hD
H

(13)

where the height of the object in pixel h can be measured by photo editing software.
Tables 4 and 5 show a mean camera’s focal length of 424.52 by experiment.
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Table 4. Readings of focal length experiment on long fence height.

Camera Height (m) Distance (m) Height (Pixel) Focal Length
(Pixel/m)

(a) 0.9 3.0 120 418.60
(b) 0.9 3.5 103 419.19
(c) 0.9 4.0 89 413.95
(d) 1.1 3.0 123 429.07
(e) 1.1 3.5 105 427.33
(f) 1.1 4.0 92 427.91
(g) 1.3 3.0 122 425.58
(h) 1.3 3.5 103 419.19
(i) 1.3 4.0 92 427.91

Table 5. Readings of focal length experiment on short fence height.

Camera Height (m) Distance (m) Height (Pixel) Focal Length
(Pixel/m)

(a) 0.9 3.0 121 422.09
(b) 0.9 3.5 104 423.26
(c) 0.9 4.0 90 418.6
(d) 1.1 3.0 125 436.05
(e) 1.1 3.5 103 419.19
(f) 1.1 4.0 92 427.91
(g) 1.3 3.0 122 425.58
(h) 1.3 3.5 105 427.33
(i) 1.3 4.0 93 432.56

4.2. Effective Distance

The error introduced by the pixel shift grows with the tangent function in the proposed
model. For example, in our case a 416 × 416 image with a horizontal FOV of 63.46◦ and
the camera height h = 1.2 m. Assuming the detection shifts 1 pixel at D = 2.4 m (y = 0 in
image coordinate),

yerr = 1.2× tan(63.46 +
2× 26.54× 1

416
)− 1.2× tan(63.46) = 0.013 m (14)

yerr = y156 − y155 = 0.196 m (15)

In Equation ( 14), the error is 0.013 m, which is 0.56% of the distance. However, if
1-pixel shifting occurs at D = 10 m (y = 155 in image coordinate), the error becomes
0.196 m, which is 1.94% of the distance. Figure 7 illustrates the relationship between the
object distance and the error introduced by the pixel shifting. For the object at 10 m, 2 to 3
pixels shifting made by the detection will introduce a 3.96% to 6.05% error. It is unignorable
and it is necessary to define the effective distance for the proposed model.

According to Sørensen and Dederichs [39] and Bala et al. [40], the mean walking speed
of pedestrians is 1.69 m/s, 1.43 m/s, and 0.792 to 1.53 m/s for younger individuals, older
individuals, and visually impaired people, respectively. Therefore, assuming there is an
object located 10 m away, it takes 6.5 s (1.53 m/s) for the user to reach it. Assuming the
system needs 0.5 s to manipulate, there are 6 seconds left for the users to respond and adjust
their route. On the other hand, if a user is wearing a camera at 1.2 m height (average chest
height of a human), the blind area is around 2.4 m. It means that the object closer than 2.4
m could not be or could only be partially detected. Since the position-based model is only
effective for the object of which the bottom is completely captured, the partial detection will
introduce error to the system (Figure 8). Hence, the effective distance of NFD is assumed
to be 2.4 m to 10 m. For the estimation of the distance of objects shorter than the effective
distance, it is suggested to use the previous frames of images for the determination.
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Figure 7. Relationship of object distance and error by pixel shift (h = 1.2 m).

(a) (b)
Figure 8. Example of partially out-of-view objects. (a) Only the upper part of the pillar was detected.
The system could not estimate its distance; (b) only half of the fence was detected. The POI indicated
by the bounding box is far from the closest point of the object. Both cases introduce errors into
the system.

4.3. Distance Estimation

In Tables 6 and 7, all detected objects were classified into the correct class in the
demonstration, thus the precision was 100%. The recall was up to 94.12% (YOLOv4-tiny)
and 97.06% (YOLOv4) within the effective distance (<10 m). The mean absolute percent-
age error (MAPE) of distance estimation results within an effective distance was 6.18%
(YOLOv4-tiny) and 6.24% (YOLOv4), respectively. The error of estimation out of effective
distance (>10 m) was relatively large. The MAPE of all detections increased to 14.03%
(YOLOv4-tiny) and 16.08% (YOLOv4). Some far objects (around 12 m) were estimated twice
the distance to the ground truth due to pixel error. It proved that the proposed FOV model
was not compatible with estimating far distance. The result was acceptable to a prototyping
solution manipulating low-resolution images with the assumption of no distortion error.
Based on the analysis, the errors were caused by two factors. (1) POI error, which could
contribute to a maximum of 4% error; (2) bounding box error: since the average IoU of the
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model was 74.42% (YOLOv4-tiny) and 75.19% (YOLOv4). If a bounding box framed an
object inner (or outer) its actual contour, the model would misjudge that the object was
located farther (or closer) than its actual location, which is introduced by pixel shift.

Table 6. Estimated distance in the demonstration.

Test Obj Ground Truth (m)
YOLOv4-Tiny YOLO-v4

Class Estimated Distance (m) Error Class Estimated Distance (m) Error

1

1 4.53 0 4.50 −0.66% 0 4.50 −0.66%
2 5.13 1 5.20 1.36% 1 5.15 0.39%
3 7.21 0 7.40 2.64% 0 7.28 0.97%
4 7.80 1 7.93 1.67% 1 8.01 2.69%
5 9.00 0 9.03 0.33% 0 8.95 −0.56%
6 10.05 N - - 2 10.22 1.69%
7 10.49 N - - 2 11.06 5.43%

2 1 3.03 0 3.11 2.64% 0 3.10 2.31%
2 3.15 1 3.35 6.35% 1 3.40 7.94%

3
1 4.14 0 4.02 −2.90% 0 4.00 −3.38%
2 4.71 1 4.66 −1.06% 1 4.55 −3.40%
3 6.71 0 6.03 −10.13% 0 6.02 −10.28%

4
1 4.30 0 4.57 6.28% 0 4.45 3.49%
2 4.38 1 4.56 4.11% 1 4.51 2.97%
3 4.48 0 4.67 4.24% 0 4.80 7.14%

5

1 3.63 0 3.72 2.48% 0 3.74 3.03%
2 4.19 1 4.36 4.06% 1 4.39 4.77%
3 5.55 0 6.08 9.55% 0 6.03 8.65%
4 7.39 0 8.26 11.77% 0 8.34 12.86%
5 8.03 1 9.48 18.06% 1 9.18 14.32%
6 9.38 N - - N - -

6

1 4.51 0 4.67 3.55% 0 4.74 5.10%
2 4.33 2 4.65 7.39% 2 4.68 8.08%
3 4.72 2 5.24 11.02% 2 5.26 11.44%
4 11.89 0 20.59 73.17% 0 19.43 63.41%
5 11.82 0 18.09 53.05% 0 18.12 53.30%
6 11.76 N - - 2 18.50 57.31%
7 11.88 N - - 2 20.15 69.61%
8 12.15 0 23.59 94.16% 0 22.53 85.43%
9 12.28 1 25.72 109.45 1 27.86 126.87%

7

1 3.88 0 3.86 −0.52% 0 3.84 −1.03%
2 4.45 1 4.59 3.15% 1 4.50 1.12%
3 5.80 0 6.28 8.28% 0 6.26 7.93%
4 7.58 0 8.46 11.61% 0 8.33 9.89%
5 8.15 1 9.33 14.48% 1 9.23 13.25%
6 9.64 N - - 0 11.28 17.01%
7 11.56 N - - N - -
8 12.21 N - - 1 14.50 18.76%

8

1 3.73 1 3.50 −6.17% 1 3.78 1.34%
2 3.82 0 3.71 −2.88% 0 3.80 −0.52%
3 4.71 2 5.06 7.43% 2 5.06 7.43%
4 5.34 2 5.81 8.80% 2 5.77 8.05%
5 13.33 N - - 2 16.97 27.31%
6 12.85 N - - 2 16.36 27.32%
7 12.67 N - - 2 15.78 24.55%
8 12.72 N - - 2 15.66 23.11%
9 13.86 0 17.18 23.95% 0 16.52 19.19%

10 14.53 N - - 1 17.99 23.81%
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Table 6. Cont.

Test Obj Ground Truth (m)
YOLOv4-Tiny YOLO-v4

Class Estimated Distance (m) Error Class Estimated Distance (m) Error

9

1 3.68 2 3.29 −10.60% 2 3.28 −10.87%
2 3.75 2 3.32 −11.47% 2 3.26 −13.07%
3 11.11 N - - 2 10.67 −3.96%
4 11.13 N - - 2 10.37 −6.83%
5 11.33 0 10.61 −6.35% 0 10.81 −4.59%
6 11.28 0 11.31 0.27% 0 10.87 −3.63%
7 12.10 0 11.72 −3.14% 0 12.05 −0.41%

“N” denotes the absence of detected objects. The blue highlights indicate objects beyond the effective range, while
the red highlights represent false negatives within the effective distance.

Table 7. Estimated distance by the different models.

Test Obj Ground Truth (m) Class
Position-Based Size-Based

Estimated Distance (m) Error Estimated Distance (m) Error

1

1 4.53 0 4.50 −0.66% 4.06 −10.38%
2 5.13 1 5.20 1.36% 4.51 −12.09%
3 7.21 0 7.40 2.64% 7.02 −2.64%
4 7.80 1 7.93 1.67% 7.30 −6.41%
5 9.00 0 9.03 0.33% 8.69 −3.44%
6 10.05 N - - - -
7 10.49 N - - - -

2 1 3.03 0 3.11 2.64% 2.94 −2.97%
2 3.15 1 3.35 6.35% 3.09 −1.90%

3
1 4.14 0 4.02 −2.90% 3.69 −10.87%
2 4.71 1 4.66 −1.06% 4.2 −10.83%
3 6.71 0 6.03 −10.13% 5.79 −13.71%

4
1 4.30 0 4.57 6.28% 4.4 2.33%
2 4.38 1 4.56 4.11% 4.56 4.11%
3 4.48 0 4.67 4.24% 4.35 −2.90%

5

1 3.63 0 3.72 2.48% 3.26 −10.19%
2 4.19 1 4.36 4.06% 3.72 −11.22%
3 5.55 0 6.08 9.55% 5.53 −0.36%
4 7.39 0 8.26 11.77% 7.45 0.81%
5 8.03 1 9.48 18.06% 8.69 8.22%
6 9.38 N - - - -

6

1 4.51 0 4.67 3.55% 3.92 −13.08%
2 4.33 2 4.65 7.39% 4.35 0.46%
3 4.72 2 5.24 11.02% 4.4 −6.78%
4 11.89 0 20.59 73.17% 12.17 2.35%
5 11.82 0 18.09 53.05% 11.06 −6.43%
6 11.76 N - - - -
7 11.88 N - - - -
8 12.15 0 23.59 94.16% 11.77 −3.13%
9 12.28 1 25.72 109.45 11.77 −4.15%

7

1 3.88 0 3.86 −0.52% 3.38 −12.89%
2 4.45 1 4.59 3.15% 3.88 −12.81%
3 5.80 0 6.28 8.28% 5.7 −1.72%
4 7.58 0 8.46 11.61% 7.6 0.26%
5 8.15 1 9.33 14.48% 7.94 −2.58%
6 9.64 N - - - -
7 11.56 N - - - -
8 12.21 N - - - -
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Table 7. Cont.

Test Obj Ground Truth (m) Class
Position-Based Size-Based

Estimated Distance (m) Error Estimated Distance (m) Error

8

1 3.73 1 3.50 −6.17% 3.07 −17.69%
2 3.82 0 3.71 −2.88% 3.26 −14.66%
3 4.71 2 5.06 7.43% 4.8 1.91%
4 5.34 2 5.81 8.80% 5.07 -5.06%
5 13.33 N - - - -
6 12.85 N - - - -
7 12.67 N - - - -
8 12.72 N - - - -
9 13.86 0 17.18 23.95% 14.04 1.30%

10 14.53 N - - - -

9

1 3.68 2 3.29 −10.60% 3.76 2.17%
2 3.75 2 3.32 −11.47% 3.88 3.47%
3 11.11 N - - - -
4 11.13 N - - - -
5 11.33 0 10.61 −6.35% 11.06 −2.38%
6 11.28 0 11.31 0.27% 11.06 −1.95%
7 12.10 0 11.72 −3.14% 11.41 −5.70%

“N” denotes the absence of detected objects. The blue highlights indicate objects beyond the effective range, while
the red highlights represent false negatives within the effective distance.

To compare the performance between different distance estimation models, the trained
deep learning model (80:20 split ratio, labeling method 2, and YOLOv4-tiny) was applied
in the position-based (relying on the bottom of the object) and the size-based (relying on
the height of the object) models, respectively. Table 8 summarizes the estimation results
of the two models. The overall performance is shown in Table 9, in which the position-
based model in short distances is better as the MAPE (within the effective distance) of the
position-based model was 6.18%, but the size-based model was 6.59%. However, when
taking the objects out of the effective distance into account, the size-based model gives a
much better result. The MAPE of the size-based model was only 5.96% whereas the size-
based model climbed to 14.03%. The size-based model shows the capability of estimating
distance in dynamic range. Another advantage of the size-based model is that it is free from
the assumption of the POI since it refers to the height of the detected objects. One of the
limitations of the size-based model is that the detected object has to be completely detected.
The misunderstanding of the sizes of occluded and partially out-of-view objects by the
deep learning model will lead to a relatively large error. Therefore, a labeling method that
ignores the incomplete target object is more suitable for the size-based distance estimation
model.

Table 8. Performance on object detection models.

Methods
MAPE (within

Effective
Distance)

MAPE Precision
Recall (within

Effective
Distance)

Recall

YOLOv4-tiny 6.18% 14.03% 100% 94.12% 72.72%
YOLO-v4 6.24% 16.08% 100% 97.06% 96.36%

Table 9. Performance on distance estimation models.

Models MAPE (within Effective
Distance) MAPE

Position-based 6.18% 14.03%
Size-based 6.59% 5.96%
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4.4. Discussion and Future Work

The experiment shows that NFD provides a satisfying result in detecting selected near-
front objects and estimating their distance from the user. It provides a relatively affordable
solution for visually impaired people with the concept of ‘grab, wear, and go’. NFD utilized
YOLOv4-tiny for object detection. It provides competitive performance in terms of accuracy
among the other solutions for object detection. The training and inference speed outperform
other solutions. However, the accuracy of distance estimation of NFD is not better than
those with depth sensors, such as ToF cameras and LiDAR. However, inference output can
directly locate detected objects in front at comparatively fewer resources (without going
through the point cloud). On the other hand, using public objects, NFD can generally work
in the entire city, whereas most of the existing solutions could only be utilized for indoor
environments or particular areas. However, it can only recognize two types of outdoor
public objects currently, implying that it can only work outdoors. Also, moving objects,
such as humans and cars, are not detectable yet. To extend it, enhancing the dataset of
the trained model for the improvement of the solution is needed in the future. The more
high-quality data included in the dataset, the more accurate the prediction it can make
using deep learning.

One of the improvements suggested to NFD is the dataset, which includes the image
depth information from ToF or RGBD camera. Training images in the dataset can improve
the accuracy of prediction, as bias from the lens model and camera posture can be ignored.
Additionally, to enhance the robustness of NFD, other common public objects such as fire
hydrants, street name signposts, traffic signs, streetlights, and especially humans and cars
should be included in the object detection. Such an improved solution will be helpful to
the vision-impaired people to fully understand the environment, locate themselves in the
street, and avoid static and moving obstacles.

5. Conclusions

This study describes a novel distance estimate method that has undergone time-
consuming, costly development, exact calibration, and thorough testing. This unique
technique significantly lessens the computing load on edge application devices by utilizing
mathematical models to produce reliable estimations. Our method represents a substantial
development in the field since it incorporates modern object detection models. The testing
results have shown that NFD estimate is accurate within the practical distance range. Based
on the findings obtained from our experimental analysis, it is evident that the position-
based model achieved a satisfactory mean absolute percentage error (MAPE) of 6.18%,
whereas the size-based model yielded a slightly higher MAPE of 6.59%. Notably, both
models exhibited commendable precision of 100% and a recall rate of 94.12% within a
specified effective distance range of 2.4 to 10 m.

In ideal circumstances, where elements, including the camera’s alignment with the
ground’s surface, minimum lens distortion, a well-defined effective distance, and exact POI
are guaranteed, NFD emerges as a very effective navigation tool. It is also important to
note that our suggested approach for distance estimate holds significant promise outside of
its intended use cases. It has enormous promise for autopilot applications for electric cars
and drone racing navigation, which advances computer vision and autonomous systems
by offering insightful information on distance estimation in a dynamic 3D environment.

These promising findings imply that with further refinement, NFD can be embedded
into a wearable device that provides real-time navigation support to those with visual
impairments. This advancement allows visually impaired people to move and engage
with their environment with greater independence and mobility. We are getting closer to
achieving the full potential of this technology and changing the navigation help the market
as we continue to refine it.
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