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Abstract: To overcome the deficiencies in segmenting hot spots from thermal infrared images, such
as difficulty extracting the edge features, lowaccuracy, and a highmisseddetection rate, an improved
MaskR‑CNNphotovoltaic hot spot thermal image segmentation algorithmhas been proposed in this
paper. Firstly, the edge image features of hot spotswere extracted based on residual neural networks.
Secondly, by combining the feature pyramid structure, an edge‑guided feature pyramid structure
was designed, and the hot spot edge features were injected into a Mask R‑CNN network. Thirdly,
an infrared spatial attention module was introduced into the Mask R‑CNN network when feature
extraction and the infrared features of the detected hot spots were enhanced. Fourthly, the size ratio
of the candidate frames was adjusted self‑adaptively according to the structural characteristics of
the aspect ratio of the hot spots. Finally, the validation experiments were conducted, and the results
demonstrated that the hot spot contours of thermal infrared images were enhanced through the
algorithm proposed in this paper, and the segmentation accuracy was significantly improved.

Keywords: photovoltaic hot spot; image segmentation; deep learning; edge guidance

1. Introduction
With the deterioration of the environment and the reduction of fossil fuels, solar en‑

ergy as a renewable energy source has receivedmore andmore attention. According to the
development of the photovoltaic industry, it is expected that China’s installed PV capacity
will be stabilized at 403 GW in 2025 [1].

During the operation of the solar power station, when a cell in the photovoltaic mod‑
ule appears to be obstructed by hidden cracks, bubbles, delamination, dirt, or internal
connection failure, the product of the corresponding branch current and voltage increases,
becoming the load impedance of the series branch and consuming the electrical energy
generated by the normal string to generate heat. This increases the local temperature cor‑
responding to the series branch and forms bright spots in thermal infrared imaging. The
phenomenon is called the hot spot effect [2,3].

It can be seen from the generation process that the hot spot effect of photovoltaic
panels not only affects the photoelectric conversion efficiency of the power generation sys‑
tem and the service life of PV modules but also causes permanent damage to the battery
and even triggers fire and other safety hazards, resulting in serious economic losses [4,5].
Therefore, effective photovoltaic hot spot segmentation to achieve rapid diagnosis and lo‑
calization of photovoltaic panel faults is of great practical significance for improving the
intelligent operation and maintenance level of solar power plants.

However, in the actual process, the impact of damaged surfaces on spontaneous in‑
frared radiation leads to poor quality and high noise in the generated infrared images. On
the other hand, the current infrared imaging is mainly based on the surface temperature
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distribution of the target. The energy of spontaneous radiation is low, and background ra‑
diation is easy to produce a large interference with the measurement results, which causes
the low resolution of the hot spot image and fuzzy boundaries caused by thermal cross,
limiting the improvement of hot spot detection accuracy.

To solve the above problems, scholars around the world have proposed a series of
processing algorithms that have been applied to photovoltaic hot spot image segmenta‑
tion and achieved good results. Tsanakas et al. [6] proposed a fault diagnosis method that
used ROI, contour lines, and histograms to analyze the applicability of thermal image pro‑
cessing and edge detection for defective photovoltaic modules, which provided promising
detection results for the hotspot formations in specific defective cells in an observed mod‑
ule. Similar to Tsanakas,MoathAlsafasfeh et al. [7] also segment anddetect internal defects
and hot spots caused by external shading in PV models using morphological transforma‑
tions and Canny edge detector algorithms. A. K. Vidal de Oliveira et al. [8] proposed an
algorithm combining digital image processing with convolutional neural networks to au‑
tomatically detect and classify photovoltaic faults. Firstly, the images were filtered using a
Gaussian filter, the edgeswere highlighted through Laplacian operators, and then the fault
area of the preprocessed image was segmented with a preset threshold. Finally, a dataset
for training convolutional neural networks for fault classification was established with the
segmented fault images, and validation experiments were conducted. The experimental
results showed that the proposed method is very effective in automatic fault detection and
classification of hot spots. Jiang Lin et al. [9] proposed a hot spot detection method based
on grayscale histogram curve fitting to address the problems of high random noise and
non‑uniform clutter in thermal images caused by complex environments and emissivity
uncertainty, in which the least squares fitting technique was used to fit some points where
hot spots can be separated from photovoltaic modules. The separated points were utilized
as thresholds to segment the hot spots from the background. Applying the method to de‑
tect hot spots in outdoor PV modules, the results show that hotspots can be effectively
detected in the obtained images where the noise generated during the image acquisition
process is suppressed. To efficiently visualize the heat generated by different sediments
on the surface of solar panels, AS Chaudhary et al. [10] proposed a watershed transform
image segmentation technique based on marking the heated area of the observed thermal
image pseudo‑colors. The heated area can be effectively segmented, and the hot spots
were presented in a clear view. By extracting features from the visualized heated area, the
severity of the heated part affecting the segmented binary image was demonstrated, and
the visual effects were enhanced. In order to automatically identify the defects forming hot
spots in solar photovoltaic systems, Ngo et al. [11] proposed amachine learning technique,
combining K‑Means color quantization and DBSCAN processing, to detect and separate
the hot spot areas from the observed PVmodule infrared images under outdoor conditions.
Applied to hot spot datasets, it was concluded by the proposed method that the hot spot
area is related to the decrease in photovoltaic module efficiency.

From the above‑mentioned review, it can be seen that the traditional hot spot seg‑
mentation algorithm methods are time‑consuming and inefficient, though the detection
accuracy can reach a certain extent by image feature extraction with human involvement.
In recent years, with the continuous development of deep learning, the neural network
algorithms for automatic segmentation of hot spots have been investigated by many more
scholars around the world. Wang Xing et al. [12] proposed a novel PV panel condition
monitoring and fault diagnosis technique in which a well‑trained U‑Net neural network
and decision tree were combined and the infrared thermal images of the PV panel were
intelligently analyzed. The research results show that PV panel faults can be diagnosed
with 99.8% accuracy using the proposed method. Roberto Pierdicca et al. [13] developed
a deep learning artificial intelligence system based on the Mask R‑CNN [14] architecture
for detecting faults from photovoltaic thermal images. The Mask R‑CNN architecture can
be simultaneously used for object detection and instance segmentation and is beneficial
for accomplishing intended detection tasks automatically. The developed method was
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trained and evaluated with a photovoltaic thermal image dataset, and the experimental re‑
sults demonstrated that photovoltaic powermodules can be diagnosed effectively through
thermal imaging. To improve the power generation efficiency of PV systems and ensure
power stations’ safe and stable operation, Tianyi Sun et al. [15] proposed a novel method
for detecting hot spots of PV panels based on improved anchors and prediction heads
of the YOLOv5 (AP‑YOLOv5) network, by which the mean average precision (mAP) can
achieve 87.8%, the average recall rate and the F1 score can reach 89.0% and 88.9%, respec‑
tively. Michiel Vlaminck et al. [16] proposed a novel system for improved PV diagnostics
using a region‑based convolutional neural network (CNN) based on drone‑based imagery,
in which a true positive rate or recall of more than 90% for a false positive rate of around
2% to 3% was achieved on a dataset containing nearly 9000 solar panels.

Recently, the networks used for image segmentation have been mainly divided into
two types. One is the SegNet andU‑Net semantic segmentationmethods obtained from the
evolution of FCN, and the other is the Mask R‑CNN instance segmentation algorithm ob‑
tained from the improvement of R‑CNN. Both SegNet and U‑Net are an encoder‑decoder
network structurewhose several down‑sampling and up‑sampling structural results in the
loss of edge information when performing hot spots segmentation. Mask R‑CNN is a deep
learning framework for segmenting and recognizingmultiple targets simultaneously with
high accuracy by using labeled images for training. Especially in recent years, different
researchers have improved and optimized the Mask R‑CNN algorithm according to their
needs, and the improvedMask R‑CNNhas performedwell in distribution power lines [17],
composite insulator strings [18], medicine [19], construction [20], etc.

After the above analysis, the network Mask R‑CNN plays an important role in target
segmentation with powerful segmentation and recognition capabilities and low hardware
requirements. When applied to PV region segmentation, it can not only separate the hot
spot area and generate bounding boxes to contain hot spots but also return to the exact
location of the hot spot in the observed thermal image. Although the characteristics of
natural images are different from thermal infrared, considering the effectiveness of Mask
R‑CNN in generic target instance segmentation, this paper proposes an optimizedMask R‑
CNNmodel to segment and recognize PV hotspots more accurately. First, an edge‑guided
pyramid structure was designed to introduce the extracted edge features of hot spots into
the network. Furthermore, an infrared spatial attention module was embedded into the
network to optimize the extracted infrared features. Next, the anchor box size was self‑
adapted according to the length‑width ratio of the box with the K‑means clustering algo‑
rithm. Last, the proposed method was validated by the experiments.

2. Basic Framework of Mask R‑CNN
The main process of Mask R‑CNN can be divided into four steps, and its structure is

shown in Figure 1. The first step is to extract feature maps. Mask R‑CNN uses Residual
Neural Network (ResNet) [21] as the backbone network to perform feature extraction at
different scales on the input images after a series of convolution and pooling operations to
obtain C1‑1 to C1‑5 layer features. The Feature Pyramid Network (FPN) is utilized to ex‑
tract and fusemulti‑scale features to obtain C3‑2 to C3‑6 featuremaps of the input image at
different levels. In the second step, the Region Proposal Network (RPN) is used to obtain
the region proposal, where the effective feature layer sets candidate boxes of different pro‑
portions and sizes according to the size of different perceptual fields to obtain candidate
regions that may contain targets. A Softmax classifier is used to determine whether the
candidate targets belong to the foreground or the background. Afterwards, the candidate
regions with a lower probability of hot spots and those with a higher overlap rate are fil‑
tered by non‑maximum suppression (NMS). In the third step, ROI Align, a more accurate
pooling method, is used to transform all the regions corresponding to the boxes generated
and filtered by the RPN into fixed‑size feature maps that align the candidate boxes. In the
fourth step, the feature maps of the candidate regions are used for classification and seg‑
mentation. These feature maps are passed through two branches: one branch is used for



Appl. Sci. 2023, 13, 11031 4 of 16

classification and box regression through a series of fully connected layers, and the other
branch is used to produce a mask that is consistent with the size and shape of the hot spot
to segment the hot spot image by a segmentation mask‑generating network consisting of
a Full Convolution Network (FCN).
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Among them, focusing on the feature extraction stage, we use ResNet50 combined
with FPN as the backbone network for feature extraction of PV hot spot images. Among
them, ResNet50 is a convolutional neural network with a total of 50 convolutions, which
can sequentially extract the low‑level features (edges, etc.) and high‑level features (hot
spots, PV panels, etc.) to form five layers of feature maps with different sizes and dimen‑
sions. If only the feature map of the last layer of the residual network is used as the output
of the feature extraction network, it is easy to ignore relatively small hot spots. Therefore,
the FPN network is used to fuse the feature map from the bottom to the top layer so as to
fully utilize the features extracted by ResNet50 at each stage. Specifically, each layer from
C1‑1 to C1‑5 is convolved by 1 × 1 to obtain the same number of channels as the previous
layer. The upper feature layer obtains feature layers with the same length and width as
the feature layer of the next layer by up‑sampling. Two feature layers are added together
to obtain a fused new feature layer. After fusion, a 3 × 3 convolution is used for process‑
ing, with the aim of eliminating the aliasing effect of up‑sampling to obtain C3‑2 to C3‑5
feature layers. The C3‑6 feature layer is obtained by maximizing the pooling of the C3‑5
feature layer.

Although the traditional Mask R‑CNN network has powerful functions and can ef‑
fectively realize hot spot detection and segmentation, there are still some problems when
applied to thermal infrared images. For example, thermal infrared images have problems
such as low resolution and unclear hot spot edges, which require more edge features, but
it is difficult to enhance the edge features. There is a significant difference in the size of
hot spots, which cannot adaptively extract regions of interest, resulting in the loss of the
target. This paper focuses on researching these problems.

3. Proposed Algorithm
Mask R‑CNN itself has excellent segmentation performance, but it is mainly used to

deal with visible light images. However, it is not ideal enough for thermal infrared image
processing. In order to improve the accuracy of the network for hot spot segmentation of
thermal infrared images, it mainly contains the following three aspects: Firstly, in thermal
infrared images, there is the problemof low resolution and unclear target edges, which can‑
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not obtain satisfactory segmentation results. Secondly, during the feature extraction pro‑
cess, the network does not pay special attention to the effective information in the thermal
infrared image. Finally, the anchor box is the benchmark used by the algorithm to predict
the boundary box. There is a significant difference between the shape of the original algo‑
rithm’s training and testing targets and the numerical values of the hot spot data, making
it difficult to obtain satisfactory accuracy by directly using the initial anchor box values.

Therefore, based on theMaskR‑CNNnetwork, the following improvements aremade
to address the above three problems in this paper: Firstly, the target edge features are ex‑
tracted using an edge‑aware module, and then the edge‑guided feature pyramid structure
proposed is used to fuse the extracted edge features with the main features to enhance
the boundary representation of the features. Secondly, this paper introduces an infrared
spatial attention module into the feature extraction network to optimize the extracted in‑
frared image features andmake the segmentation attention focus on the informative pixels
in the infrared image. Finally, in the region of interest network, the size of the anchor box
is adaptively adjusted by analyzing the aspect ratio of the self‑made hot spot datasets via
the K‑Means algorithm to reduce the probability of missing detection of small targets.

3.1. Edge Feature Enhancement
In order to solve the edge‑blurred problem of hot spots in thermal infrared images,

which leads to poor performance of hot spot edge segmentation, this paper intends to add
edge information as prior information to the network to guide it in better feature extraction.
An edge‑aware module is introduced to extract edge features related to the target. After‑
wards, the edge guidance pyramid structure is proposed to fuse the edge features with the
features of each layer guiding the feature extraction network to pay more attention to the
edge details of the target and improve the segmentation accuracy. The edge‑awaremodule
was proposed by Yujia Sun et al. [22], which integrates low‑level features and high‑level
features, aiming at mining the edge semantic information of the target.

In this paper, the module is combined with the Mask R‑CNN algorithm, and its struc‑
ture is shown in Figure 2, which is manifested as follows: First, the network extracts the
features of each stage from C1‑1 to C1‑5 of the input image through ResNet50. We select
the low‑level feature C1‑2 containing local edge information of the image and the high‑
level feature C1‑5 containing global semantic information as input of the edge‑aware mod‑
ule and use two 1 × 1 convolution layers to change the channel number of channels for
low‑level and high‑level features. Moreover, the low‑level features and the up‑sampled
high‑level features are integrated through the concatenation operation. Finally, the edge
features of the target are obtained by using two 3 × 3 convolution layers, one 1 × 1 convo‑
lution layer, and the sigmoid function.
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As we all know, the expressive ability of features at different levels of feature maps
is different. Low‑level features mainly reflect details such as light and shade, edges, etc.,
while high‑level features mainly reflect a richer overall structure. Therefore, we need to
consider the information interaction and exchange of features at different layers to achieve
the purpose of detecting targets at different scales. On the other hand, if the edge features
are only fusedwith a certain layer, such as high‑level or low‑level features, without consid‑
ering the information interaction between the features of other layers and edge features, it
will be difficult for the network to adapt to changes in the size and scale of hot spots. The
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information interaction between different scale features and the fusion of multi‑scale fea‑
tures with edge features are both important, not only taking into account details and the
whole, but also improving the adaptability of the network to the scale change of hot spots.

Inspired by the FPN structure in Mask R‑CNN and literature [22,23], we propose
an edge‑guided pyramid structure, which combines edge features with the features of
each layer to guide the network in learning the target edge, and its structure is shown
in Figure 3. Firstly, feature maps of different scales are extracted by using ResNet50 (as
shown in Figures C1‑1 toC1‑5) and transformed into a unified number of channels by using
1 × 1 convolution (as shown in Figures C2‑2 to C2‑5). Secondly, the multi‑scale features
and edge features are multiplied at the element level with additional jump connections to
obtain the initial fusion features. Thirdly, we add and fuse the upper‑level feature maps
obtained by up‑samplingwith each corresponding element in the lower‑level featuremaps
to form new feature maps. Finally, a 3× 3 convolution is used to smooth the fused feature
maps to eliminate the aliasing effect of up‑sampling and obtain more fully fused feature
maps (as shown in Figures C3‑2 to C3‑5). The C3‑6 feature layer is obtained bymaximizing
the pooling of the C3‑5 feature layer.
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3.2. Spatial Attention Module
In recent years, attention enhancement mechanisms have been widely applied to en‑

hance the features of images extracted by feature extraction networks. The original Mask
R‑CNN segmentation algorithm aimed to segment targets in visible light environments,
while for the thermal infrared image inputted in this paper, attention should be focused
on the information of pixels in the infrared image. Therefore, this paper introduces an
Infrared Spatial Attention Module [24] (ISAM). The infrared spatial attention module was
proposed by Yi Shi et al. The introduction of this module can not only optimize the in‑
frared image features extracted by the network but also suppress the noise in the infrared
image, resulting in more accurate segmentation results.

The structure of the infrared spatial attention module is shown in Figure 4. Its princi‑
ple is to first strengthen the input infrared feature vector on the space path, then multiply
the enhanced component with the input infrared feature component at the element level,
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and then attach the enhanced infrared feature component with jump connections, which
can be expressed as follows [24]:

FE = F+M(F)⊗ F (1)

where F represents the input infrared feature vector, ⊗ is the multiplication of element
levels, M(F) is the infrared spatial attention enhancement vector, and FE is the output en‑
hanced infrared feature vector.
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The right path in the figure is a branch of attention enhancement in the infrared space,
consisting of a convolution layer with a 1 × 1 convolution kernel, two hybrid dilated con‑
volution layers, a convolution layer with a 1× 1 convolution kernel, a batch normalization
layer, and the sigmoid function. The calculation of the infrared spatial attention enhance‑
ment vector M(F) is shown in Equation (2) [24]:

M(F) = σ(BN(f1(fhd(fhd(f1(F)))))) (2)

where BN is a batch standardized operation, f1 is a 1 × 1 convolution operation, and fhd
is a 3 × 3 mixed cavity convolution operation.

3.3. Adaptive Adjustment of RPN Size
Anchor box optimization is the benchmarkused by the algorithm topredict the bound‑

ary box. Selecting the most suitable box size can reduce the difficulty of training. Due to
various natural factors such as building shading, leaves, bird droppings, and dust accumu‑
lation, the formation of hot spot defects varies greatly in size, resulting in a more diverse
aspect ratio. There is a significant difference between the shape of the test object selected
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during Mask R‑CNN training and the initial value of the hot spot data on the solar panel.
Therefore, it is difficult to obtain satisfactory accuracy by directly using the initial anchor
frame value. The K‑means clustering algorithm is used to analyze the self‑made infrared
datasets and conduct in‑depth analysis on the aspect ratio of the target. Based on the sam‑
ple situation obtained from K‑means clustering, the size ratio of the anchor box is adjusted
to better fit the Mask R‑CNN network for hot spot segmentation.

In the K‑means clustering algorithm, the value of K directly affects the clustering re‑
sults. The RPN part of the Mask R‑CNN algorithm generates 5 × 3 candidate boxes for
each pixel; the first five represent five regions, and the last three represent the aspect ratio
of candidate boxes in the same region. In this paper, k = 3 is chosen to adjust the aspect
ratio [25]. After the k value is determined, K‑means clustering experiments are carried out
on the aspect ratio data of the self‑made infrared datasets. From the experimental results, it
can be seen that the aspect ratio distribution of the target sample is mainly in three regions,
whose center points are [0.74, 1.28, 3.0]. According to the K‑means clustering results, the
ratio of RPN_ANCHOR is changed to [0.74, 1.28, 3.0] in this paper, so that the generated
suggestion box is more suitable for the ratio of datasets during the training of the network.

3.4. Improved Mask R‑CNN
To sumup, the overall framework of this paper is shown in Figure 5, with correspond‑

ing improvements based on the network of Mask R‑CNN. Firstly, thermal infrared images
containing hot spots are fed into the feature extraction network to obtain features of differ‑
ent scales. Secondly, we input low‑level and high‑level features into the edge‑aware mod‑
ule to obtain the target edge features. Moreover, through the edge‑guided feature pyramid
proposed, we fuse the edge features with the multi‑scale regional features enhanced by
the infrared spatial attention module to make up for the lost target edge information in the
backbone network and obtain the enhanced edge features. Thirdly, an adaptive region of
interest extraction network is used to reduce missed detection caused by size differences.
Finally, a segmented image with categories and masks is obtained through two branches.
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4. Experiment and Result Analysis
4.1. Data Preparation

The infrared images of photovoltaic hot spots used in this paper are partly from open‑
source datasets and partly from an experimental collection of mono‑crystalline silicon and
poly‑crystalline silicon photovoltaic modules. An image information collection platform
is built using the FLUKE Ti200 infrared thermal image. A total of 221 images are selected,
and 180 and 41 are used as training and testing sets, respectively. Each image is labeled by
Labelme 5.0.1 labeling software.

The training of the model in this paper is completed on the Win10 operating system,
with the processor selected as an AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz.
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The model framework is built using the open‑source PyTorch deep learning library. Dur‑
ing training, the initial learning rate is set to 0.002, the batch size is set to 2, and 100 epochs
are trained.

4.2. Evaluation Index
The performance of the model is evaluated by precision, recall, and mean average

precision (mAP). The average precision AP is calculated from the PR curve composed of
accuracy and recall, and the formula for each metric is as follows [26]:

precision =
TP

TP+ FP
; recall =

TP
TP+ FN

(3)

AP =
∫ 1

0
PdR; mAP =

1
N∑N

i=1 APi (4)

where TP (true positive) represents the detection of a correct pixel with a hot spot, FP (false
positive) represents the detection of a pixel with a hot spot that is actually a pixel with a
hot spot background, and FN (false negative) represents the detection of a pixel with a hot
spot background that is actually a pixel with a hot spot.

4.3. Ablation Experiments
In order to analyze the impact of each module better and more comprehensively on

performance in the segmentation model constructed in this paper and verify the effective‑
ness of each module structure, ablation experiments are designed and trained. The ex‑
perimental results are shown in Table 1. Improvement point 1 introduces edge informa‑
tion; improvement point 2 adds an infrared spatial attention module; and improvement
point 3 adaptively adjusts the size of the anchor box. The results indicate that the modules
and improved methods introduced in this paper can effectively improve the accuracy of
the model.

Table 1. Statistical results of ablation experiments.

Algorithm Points 1 Points 2 Points 3 mAP@0.5(%)

Mask R‑CNN × × × 71.64
Improved Point 1

√
× × 73.75

Improved Point 2 ×
√

× 78.90
Improved Point 3 × ×

√
76.60

Improved Point 4
√ √ √

82.45

The multi‑scale feature map between the Mask R‑CNN model and the improved
model is shown in Figure 6b,c. It can be seen from the figure that, through the edge‑aware
module and the edge‑guided feature pyramid structure, edge information is introduced
into the network. The edge contour of the hot spot in the feature map is clearer, and the
model captures better information about the hot spot boundary at various scales than the
original model. The introduction of infrared spatial attention modules can also suppress
irrelevant information such as background, and the contrast between hot spots and back‑
ground in feature maps is significantly improved, proving the effectiveness of introducing
edge information and attention mechanisms.
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4.4. Analysis of Segmentation Experiment Results
The network training loss values of the hot spot segmentation model are shown in

Figure 7. The blue loss curve in the figure represents the original Mask R‑CNN algorithm,
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and the red curve represents the improved Mask R‑CNN algorithm. It can be seen that
the improved Mask R‑CNN model has a faster convergence speed in the training process,
which proves that the network training effect is good, and the improved loss function is
lower than the original model, with better robustness.
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In this paper, P, R, andmAPare used as evaluation indicators to compare performance
with the originalMask R‑CNN, and comparison results are shown in Table 2, and the trend
comparison of mAP@0.5(%) (i.e., AP50) is shown in Figure 8. From Table 2, it can be seen
that indicators of the improvedMask R‑CNNmodel proposed by this paper are improved,
with precision, recall, and mAP being 13.4%, 7.9%, and 10.81% higher than the original
model, respectively. The results indicate that the segmentation algorithm that introduces
edge information and adds an infrared attentionmodule can effectively aggregate the edge
information of hot spots and improve the accuracy of hot spot segmentation.

Table 2. Performance comparison results of models.

Algorithms P% R% mAP@0.5(%)

Mask R‑CNN 61.64 89.5 71.64
Proposed 75.04 97.4 82.45
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Randomly select images for testing, and the segmentation results are shown in
Figure 9. Among them, Figure 9a shows the original infrared image; Figure 9b shows
the segmentation results of the Mask R‑CNN model; Figure 9c–e shows the segmentation
results of improved points 1, 2, and 3; and Figure 9f shows the segmentation results of im‑
provedMask R‑CNN. Comparing the various figures, it can be seen that the Mask R‑CNN
model has a lot of missed segmentation problems when segmenting hot spots. Improve‑
ment points 2 and 3 include the addition of an infrared spatial attention module and an
adaptive anchor frame, which can effectively solve the problem of partial missed segmen‑
tation. However, there are also issues with multi‑segmentation detection in some areas,
and areas with blurry edges cannot be completely segmented, resulting in insufficient seg‑
mentation accuracy. However, improvement point 1, which introduces edge information,
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can make the segmentation more accurate. Improving theMask R‑CNNmodel has shown
a certain degree of improvement in segmentation performance.
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We then randomly select three infrared hot spot images and apply the trained U‑
Net and improved Mask R‑CNN segmentation model to predict and get the mask image;
the results are shown in Figure 10. Among them, Figure 10a shows the infrared images;
Figure 10b shows the real mask images; Figure 10c shows the mask images predicted by
the U‑Net network; and Figure 10d shows the mask images predicted by the trained and
improved Mask R‑CNN. It can be seen that the mask images predicted by the trained U‑
Net network are not fully completed. Furthermore, some of them are not predicted, while
the improved Mask R‑CNN network can extract the relevant features in the images that
contain hot spots. It can be seen that the improved Mask R‑CNN algorithm proposed in
this paper is reliable, and the trained network has high accuracy in image segmentation.

In summary, improvements based on the Mask R‑CNN model have been made to
thermal infrared images by introducing target edge information, adding an infrared spa‑
tial attention module, and adaptively adjusting anchor frame size, which can effectively
improve the performance of the model.
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5. Conclusions
In a real engineering site, the infrared images of hot spots taken by a thermal imaging

system are inevitably influenced by the surrounding environment and the imagery itself;
the target edges are usually blurred, and the resolution is reduced accordingly, whichmay
result in some difficulties in hot spot segmentation. To address the issues, an improved
automatic hot spot segmentation algorithm based on Mask R‑CNN has been proposed in
this paper. The edge information of the target is first extracted by an edge‑aware mod‑
ule, and then an edge feature pyramid structure is designed to fuse the edge features into
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those exacted by the main network. In the meantime, an infrared spatial attention module
is added to the improved network to help the network focus on enriching infrared infor‑
mation, and the noise can be suppressed during training. The experimental results on the
self‑made datasets show that the proposed model in this paper has been improved com‑
pared to the original one, ensuring the effectiveness of introducing edge information and
attention mechanisms.

As it should be, the improved algorithm proposed also has some limitations: (1) Only
a serial number of modules was added to the original Mask R‑CNN in the paper, and
the segmentation accuracy can be improved for a hot spot infrared image from a solar
panel. However, the model became slightly complex, and the training speed as well as
the segmentation speed were not enhanced. In future work, the structure of the model
proposed in the paper will be further explored and optimized. (2) The performance was
validated mainly by the laboratory experiments. However, there are many factors in a real
engineering site that affect the segmentation result for a hot spot, so the deep learning‑
based hot spot segmentation algorithm proposed in this paper still needs to be further
verified and improved through the evaluation of field data.
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