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Abstract: This study addresses anomaly detection in smart city environments driven by the Internet
of Things. In these cities, digital interconnection and the extensive network of sensors generate
enormous amounts of data, which are essential to improving citizens’ efficiency and quality of life.
However, this data may also contain strange events that require early detection to ensure the proper
functioning of urban systems. For this, anomaly detection models are explored to identify unusual
patterns in urban data. The work focuses on the applicability and effectiveness of these models
in different urban scenarios supported by the Internet of Things. Furthermore, its performance is
evaluated by comparing it with existing approaches, and its advantages and limitations are analyzed.
The results show that the proposed models, including Isolation Forest, recurrent neural network,
and variational autoencoder, are highly effective in detecting anomalies in urban data. This work
contributes to the field of smart cities by improving the safety and efficiency of urban systems. Early
detection of anomalies makes it possible to prevent unplanned interruptions, ensure the safety of
citizens, and maintain the integrity of urban systems. Furthermore, the relevance of this work in the
existing literature and its importance for the evolution of smart cities supported by the Internet of
Things are highlighted.

Keywords: anomaly detection in IoT; critical infrastructure security; machine learning for anomaly detection

1. Introduction

The arrival of smart cities powered by the Internet of Things (IoT) has revolutionized
the functioning and development of urban areas. These cities leverage digital interconnec-
tions and an extensive network of sensors to improve operational efficiency, sustainability,
and their inhabitants’ overall quality of life [1]. However, the proliferation of IoT devices
has led to an unprecedented influx of data into urban environments. This data plays a
critical role in a smart city’s real-time operations and decision-making processes but also
presents significant challenges, particularly about security and management [2]. One of the
most critical challenges is the detection of anomalies within this urban data.

Anomaly detection involves identifying patterns or events that deviate significantly
from a data set’s normal or expected behavior. This task is of paramount importance in
the context of smart cities, as it covers a broad spectrum of applications, ranging from
identifying manipulations in the electrical grid to detecting cyber threats and anticipating
failures in critical urban systems [3,4]. Early detection of anomalies is not only advanta-
geous; it is imperative to prevent unplanned disruptions, ensure the safety of citizens, and
maintain the integrity of urban systems. Within the intricate fabric of a smart city, IoT
devices serve as nerve endings, continuously monitoring and collecting data from various
aspects of urban life, including energy consumption, transportation, environmental condi-
tions, and security. These devices generate a wealth of information that can be leveraged
to optimize urban services, improve resource management, and improve overall urban
resilience. However, this influx of data also makes smart cities vulnerable to many threats,
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including cyberattacks, equipment malfunctions, and natural disasters. The consequences
of these threats can range from service interruptions to significant economic losses and
even threats to human lives. Therefore, the ability to identify and mitigate anomalies in
real-time becomes not only a technological aspiration but a critical need.

This work delves into the critical role that anomaly detection models play in IoT-
enabled smart cities and evaluates their effectiveness in reinforcing the safety and efficiency
of urban systems [5]. To fulfill this purpose, research has been carried out covering the
applicability of anomaly detection models in various urban scenarios. Furthermore, its
performance is rigorously evaluated and juxtaposed with existing approaches, compre-
hensively assessing its effectiveness. Again, a comprehensive analysis of the strengths
and limitations of these models is performed, accompanied by a visual presentation of
the comparative results [6]. This work deepens the understanding of how IoT-enabled
anomaly detection models can significantly contribute to the safety and efficiency of smart
cities. This contribution creates a safer and more efficient urban environment for citizens,
allowing real-time anticipation and resolution of critical problems [7,8]. The relevance of
this study contributes to the context of the existing literature on smart cities, emphasizing
the importance of promoting research that supports the evolution of these advanced urban
environments. As the world becomes increasingly urbanized, developing and implement-
ing robust anomaly detection mechanisms within smart cities is desirable and essential
for urban populations’ continued progress and well-being. The concept of smart cities has
evolved in response to the challenges posed by rapid urbanization, resource constraints,
and increasing demand for efficient public services. Traditional cities often face traffic
congestion, pollution, misallocation of resources, and insufficient infrastructure. Smart
cities have emerged as a visionary solution to address these urban dilemmas by harnessing
the potential of technology and data-driven insights.

The evolution of smart cities dates to the “digital city” concept and the application
of information and communication technologies (ICT) to urban management [9]. The
first efforts focused on improving administrative processes and public services through
digitalization. Over time, the concept evolved into the broader and more ambitious vision
of a smart city, integrating various areas such as transportation, energy, healthcare, and
education, with an emphasis on sustainability and the well-being of citizens. The IoT
has become a fundamental enabler of smart cities, serving as a hub that connects urban
life’s physical and digital realms [10]. IoT involves embedding sensors, actuators, and
connectivity into everyday objects and infrastructure, allowing them to collect, exchange,
and act on data. IoT devices are ubiquitous in smart cities, encompassing smart meters,
traffic sensors, environmental monitors, surveillance cameras, and more.

These IoT devices form a vast, interconnected network that continuously collects
data from urban environments. This data is transmitted to central platforms, where it is
processed, analyzed, and transformed into actionable information. The real-time nature
of IoT data allows cities to monitor, manage, and respond to various urban challenges
dynamically. However, the widespread adoption of IoT in smart cities also introduces
new challenges and vulnerabilities. The sheer volume of data IoT devices generate can
overwhelm existing data management systems. Ensuring the security and privacy of this
data is paramount, as any breach can have serious consequences, including the compromise
of critical infrastructure and sensitive citizen information. Furthermore, the reliability and
resilience of IoT systems are essential, as disruptions can disrupt essential services and
affect citizens’ daily lives.

Amid these challenges and complexities, anomaly detection is a critical component
of smart city operations. Anomalies take various forms, from sudden spikes in energy
consumption to unusual patterns in transportation data or cyber-attacks on city infrastruc-
ture [11]. Quickly identifying and responding to anomalies is vital to maintaining smart
cities’ functionality, security, and efficiency. This work focuses on the contributions of
anomaly detection models in the framework of IoT-enabled smart cities. It investigates
how these models can be effectively applied to various urban scenarios, ranging from
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energy grid management and transportation systems to environmental monitoring and
cybersecurity. These models promise real-time anomaly detection and proactive problem
resolution by leveraging advanced data analytics and machine learning techniques.

A substantial part of this work involves a comprehensive evaluation of various
anomaly detection models in the framework of smart cities. The performance of these
models is rigorously evaluated, considering factors such as accuracy, precision, recall, and
scalability. Additionally, a qualitative analysis delves into the advantages and limitations
of each model, shedding light on its suitability for specific urban applications. The results
obtained from this research have far-reaching implications for advancing smart cities. By
improving the safety and efficiency of urban systems, anomaly detection models enable
cities to address challenges quickly and proactively [12]. The ability to detect anomalies
in real-time safeguards critical infrastructure and improves the quality of life of urban
residents. This work aligns with the growing body of literature that recognizes the crucial
role of anomaly detection in smart city operations. Furthermore, it highlights the impor-
tance of conducting research that supports and informs the evolution of these advanced
urban environments.

2. Materials and Methods

The methodology of this study is based on an exhaustive review of previous works
related to cybersecurity in critical infrastructure and anomaly detection. Cybersecurity in
critical environments, such as intelligent power grids, is vital today, given the constant
increase in cyber threats. Advanced machine learning and anomaly detection techniques
have been used to address this challenge. In this context, this work builds on previous
research that has explored similar approaches and seeks to build on that knowledge to
develop a robust and practical methodology. Likewise, the concepts and techniques used
are identified and analyzed, and these methods are adapted and improved to apply in
critical infrastructure cybersecurity.

2.1. Problem Statement

The ongoing generation of data by IoT devices offers immense potential to optimize
urban services and decision-making while at the same time exposing smart cities to vulner-
abilities. One of the most pressing problems is the presence of anomalies in this data.

Anomalies cover a wide spectrum of irregularities in the context of smart cities.
These irregularities can manifest as sudden spikes in energy consumption, deviations in
transportation patterns, unexpected environmental changes, or even malicious cyberattacks
on critical city infrastructure. The implications of these anomalies are profound, from the
loss of operational efficiency to the potential danger to public safety and urban resilience.

Unaddressed anomalies can have far-reaching consequences. For example, anomalies
in power consumption data may indicate equipment malfunctions or even unauthorized
access to the electrical grid. Failure to detect and respond to these anomalies promptly can
lead to service interruptions, lost revenue, and, in some cases, catastrophic losses. Similarly,
anomalies in transportation data can indicate traffic congestion, accidents, or irregular
travel patterns. Without effective anomaly detection mechanisms, these problems can
lead to increased travel times, environmental pollution, and a decrease in urban dwellers’
overall quality of life.

The emergence of smart cities as centers of innovation and progress requires a proactive
approach to address these challenges. Traditional urban management methods are not
prepared to handle the complexity and scale of urban data generated by IoT devices.
Manual monitoring and intervention are no longer sufficient, given smart cities’ enormous
amount and velocity of data. The ability to detect, analyze, and respond to anomalies in
real-time is paramount to smart cities’ continued success and sustainability.
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2.2. Review of Similar Works

Cybersecurity in critical infrastructure is a growing concern in the digital age, where
system interconnection and dependence on technology are ubiquitous. Addressing the
security of smart grids, an essential part of infrastructure, has been an area of focus in
the scientific and technical literature. Two notable approaches that have emerged in this
field are anomaly detection using advanced AI techniques and the application of IoT to
improve security.

One of the notable approaches in the literature focuses on anomaly detection in smart
power grids using advanced artificial intelligence techniques. A noteworthy study in
this group is the work of [13], which addresses this issue using deep neural networks
(RNPs). Their research demonstrates promising effectiveness in analyzing behavioral
patterns in power grid data to alert about anomalies [14]. While this approach is valuable
and shows the potential of RNPs in anomaly detection, it tends to focus on detection after
anomalies occur. This limits applicability in critical infrastructure environments, where
attack anticipation and prevention are crucial.

In parallel, another group of researchers has focused on using IoT to improve security
in smart electrical networks. A relevant study in this context is the work of [15], which ex-
plores how IoT devices can provide an additional layer of anomaly detection by constantly
monitoring the status of power grid assets [16]. This approach aligns with the growing
trend of using IoT devices to collect real-time data and enable faster responses to anomalies
or threats. Although this approach offers notable advantages in early anomaly detection, it
is essential to ensure the security of IoT devices and the integrity of the data they collect.

One of the most notable advances of this proposal is the focus on real-time anomaly
detection in critical infrastructure. Although some previous work, such as the study
by [17], has used artificial intelligence for anomaly detection, it often focuses on identifying
anomalies after they have occurred. This work differentiates itself by prioritizing real-time
detection, meaning we can proactively anticipate and respond to cyber threats, thereby
reducing the impact of potential attacks and improving the resilience of critical infrastruc-
ture. Another innovative element is the integration of IoT devices in the anomaly detection
process. The work of [18] has explored the use of IoT devices for constant monitoring
of power grid assets, which is valuable. However, this proposal furthers this idea by
incorporating real-time IoT device data into our machine-learning approach. This allows
us to not only detect anomalies based on historical data but also use real-time information
to make more informed and adaptive decisions.

Compared to the works above, the proposed work differs by addressing real-time
anomaly detection in smart power grids and threat prevention through a combination of
artificial intelligence algorithms and the integration of IoT devices [19]. This methodology
seeks to anticipate and prevent cyber-attacks before they cause significant damage, which
is essential in critical environments. Furthermore, reviewing previous works that focus on
specific aspects of cybersecurity in critical infrastructure is considered, strengthening our
theoretical and methodological base. Although there is valuable research in the field of
cybersecurity in smart power grids, our study stands out by addressing real-time detection
and prevention of threats using a combination of artificial intelligence and IoT devices [20].
This holistic approach aligns with the growing need for critical infrastructure security in
today’s digital age.

2.3. Concepts Used

Understanding the fundamental concepts is essential to addressing the methodology
proposed in this study. Among the most relevant images that have been considered in the
development of the process are: These concepts are fundamental to understanding the
proposed method in this study and how they are applied in detecting anomalies in critical
infrastructure through machine learning and using IoT devices in real-time.

• Critical Infrastructure: Critical infrastructure refers to essential physical and virtual as-
sets that are fundamentally important to a society, the economy, and national security.
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This includes electrical grids, water supply systems, transportation and communica-
tions networks, and other vital assets [21].

• Cybersecurity: Cybersecurity protects digital systems, networks, and data from cyber
threats, including attacks, theft, malware, and other risks [22]. Ensuring cybersecurity is
critical to preventing unauthorized access and ensuring the integrity of critical systems.

• Anomaly Detection: Anomaly detection involves the identification of unusual patterns
or atypical behaviors in a data set. In cybersecurity, anomaly detection is used to
identify suspicious or unauthorized activities that may indicate a cyber-attack.

• Deep Neural Networks: Deep neural networks are a type of machine learning algo-
rithm inspired by the human brain’s structure. These networks have multiple hidden
layers for complex data processing and pattern identification in high-dimensional data.

• Devices IoT: IoT devices are physical objects connected to the network and can collect
and transmit data. These devices may include sensors, cameras, meters, and other
devices that collect real-time information.

• Threat Prevention: Threat prevention involves taking proactive measures to pre-
vent cyber threats from becoming successful attacks [23]. This may include blocking
unauthorized access, strengthening security, and taking preventive measures to re-
duce risks.

• Real-Time Data Integration: Real-time data integration involves combining and ana-
lyzing data as it is generated and transmitted. In the context of critical infrastructure,
this enables a faster and more adaptive response to events and threats.

• D: IoT dataset containing measurements and logs collected from sensors in a smart city.
• X: feature matrix of data set D, where each row represents an observation and each

column corresponds to a specific feature.
• y: vector of class labels indicating whether an observation in data set D is an anomaly

(y = 1) or a normal instance (y = 0).
• Isolation Forest: specialized in detecting anomalies related to energy consumption in

the electrical grid of a smart city.
• Recurrent Neural Networks (RNNs): used to model temporal sequences in urban IoT

data and detect anomalous patterns in time series.
• Variational Autoencoders (VAEs): They learn high-dimensional latent representations

of urban data, facilitating the detection of anomalies in complex data.

2.4. Environment and Data Description

The framework of this study is a smart city and its critical infrastructure. A smart city
is an urban environment that uses ICT, including IoT, to improve its inhabitants’ efficiency,
sustainability, and quality of life. In this context, the focus of the research is on protecting
the city’s critical infrastructure, which comprises essential elements such as the smart
electrical grid, water supply system, public transportation, and others.

The core of this work lies in a network of IoT devices distributed in various parts of
the city [24]. These devices are designed to collect real-time data related to multiple aspects
of the urban environment. By way of example, they include:

• Electricity Meters: These devices are installed in homes and businesses and record
electricity consumption in real-time. They can identify unusual patterns in energy use,
making them a valuable source of data for detecting anomalies in the power grid.

• Water Quality Sensors: These sensors are in water supply networks and monitor
water quality regarding contaminants, turbidity, and pH. Any deviation from quality
standards is recorded as an anomaly.

• IoT Security Cameras: Strategically placed throughout the city, these cameras capture
images and videos in real-time. Machine learning algorithms analyze these images for
suspicious activity or unauthorized incidents.

• Traffic and Transportation Sensors: Distributed on roads and public vehicles, these
sensors monitor traffic flow, speed, and movement patterns. They record any unusual
congestion or abnormal behavior for later analysis.
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The data generated by these IoT devices is integrated into a real-time analytics platform.
This platform uses advanced machine learning and fog computing technologies to analyze
data at the point of generation, enabling immediate response to events and anomalies [25].
The primary purpose is to develop and evaluate an anomaly detection system based on
machine learning algorithms.

As an application case, the detection of cyber-attacks on the city’s smart electrical
grid is considered. IoT electric energy meters collect data on electricity consumption
and grid stability [26]. Machine learning algorithms are trained to identify standard
behavior patterns and detect deviations that could indicate a cyberattack, such as attempts
to manipulate the power grid.

2.5. Data Preparation

Data preparation is crucial in implementing a machine learning-based anomaly detec-
tion system. This work used data sets collected by IoT devices in a city. Figure 1 presents
the stages considered for data preparation.
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Figure 1. Stages for presenting data in a smart city environment with IoT.

Data was collected from multiple IoT sources distributed across a city over six months.
Data sources included electric energy meters installed in homes and businesses in the
city, which recorded electricity consumption at 15-min intervals. Water quality sensors
distributed throughout the city’s water supply network continuously monitored water
quality regarding contaminants, turbidity, and pH. IoT security cameras at critical intersec-
tions and public areas capture images and videos in real time [27]. In addition, traffic and
transportation sensors are installed on roads and public vehicles that collect data on traffic
flow, speed, and movement patterns.

The total volume of data collected during the six months exceeded five terabytes,
representing a large amount of information about the functioning of the smart city and its
critical infrastructure. The collected data undergoes cleaning to remove outliers, missing
data, and noise. Data cleansing ensures that input data is consistent and of high quality [28].
The data is integrated into a real-time data platform that enables the ingestion and process-
ing of data streams from IoT devices in real time. This platform is based on fog computing
technologies to analyze data at the point where it is generated efficiently.

The data cleaning and preparation process ensures the quality and consistency of
data sets collected from multiple sources of IoT devices in a smart city. Specific tools and
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software widely recognized in data processing are used to carry out this task, highlighting
Python along with the Pandas and Scikit-Learn libraries. Firstly, Python was selected as the
primary programming language due to its versatility and robustness in data analysis. The
Pandas and Scikit-Learn libraries play a crucial role in the data preparation process. Pandas
enable efficient raw data loading and make it easy to manipulate, including identifying
and removing outliers, managing missing data, and normalizing features to ensure they all
have the same scale [29]. Additionally, Pandas makes it possible to combine and integrate
data from different IoT sources, resulting in a cohesive data set ready for processing.

Regarding feature engineering, additional processes were applied to improve data
quality and usefulness. This includes extracting relevant features from the raw data, such as
temporal patterns, trends, and descriptive statistics. These additional features are carefully
selected to reflect crucial aspects of the critical infrastructure IoT devices monitor in real
time. Feature engineering plays an essential role in the subsequent effectiveness of anomaly
detection algorithms by allowing models to more accurately and efficiently learn the routine
and anomalous patterns present in the data [30].

A small sample of the types of data used in the study is presented in Table 1. The
table records electric energy meter data, including timestamps, meter identifiers, and
kilowatt-hours (kWh) energy consumption at 15-min intervals.

Table 1. Record of energy consumption in IoT devices.

Timestamp ID Meter Energy Consumption (kWh)

1 January 2023 00:00:00 M001 23.45
1 January 2023 00:15:00 M002 18.62
1 January 2023 00:30:00 M003 25.18
1 January 2023 00:45:00 M004 21.37

The data were normalized and scaled to ensure all characteristics were on the same
scale. This is essential for the effective functioning of machine learning algorithms. The
data set was split into training and test sets in a ratio of 80/20. The training set was used to
train the anomaly detection models, while the test set was used to evaluate the performance
of the models. Additionally, feature analyses were performed to identify the most relevant
features for anomaly detection. This helps reduce the data’s dimensionality and improve
the models’ efficiency.

Significantly, this study was based on collecting and processing data collected by IoT
devices distributed in a smart city. An architecture that details the physical infrastructure
of the environment was not implemented; instead, an existing IoT infrastructure was
used. The raw data collected over six months represents a wealth of information about
the functioning of the smart city and its critical infrastructure. This data underwent
cleaning and preparation to ensure its quality and consistency. Additionally, feature
engineering processes were performed to extract relevant patterns and improve data
quality for anomaly detection.

2.6. Algorithm Selection

Algorithms are carefully chosen based on their ability to address the specific challenges
of anomaly detection in IoT data. Among the algorithms considered, the Isolation Forest
algorithm is considered due to its ability to efficiently detect anomalies in large data sets,
such as those collected in a smart city [31]. This algorithm uses the idea that anomalies are
outlier points that are easier to isolate in a decision tree. Isolation Forest creates multiple
decision trees and measures how many steps are necessary to isolate an instance. The fewer
steps are needed, the more likely the model is to be an anomaly.

Recurrent neural networks (RNNs) are used due to their ability to model temporal
data sequences, which is essential when working with evolving IoT data. These neural
networks can capture complex patterns and temporal dependencies in data, making them
suitable for anomaly detection in time series [32]. Variational autoencoders (VAEs) are
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used to learn a latent representation of the data, enabling anomaly detection by identifying
points that do not fit well with the known latent distribution. This approach is practical
when dealing with IoT data, where anomalies can be subtle and complex to detect using
traditional methods.

In addition to the abovementioned algorithms, generative adversarial neural networks
(GANs) and transformer neural networks (e.g., BERT) are also explored and evaluated for
anomaly detection in IoT data. These algorithms have shown promise in anomaly detection
applications in time series and unstructured data.

Table 2 presents an overview of the characteristics of the selected algorithms and how
they are applied to detecting anomalies in IoT data in a smart city. The choice of algorithms
was based on their suitability to address the specific challenges of the study and their
demonstrated effectiveness in similar applications.

Table 2. Comparison of algorithms and their applications in IoT anomaly detection.

Algorithm Key Features Application in Anomaly Detection in the IoT

Isolation Forest

Efficient on large data sets. Detecting anomalies in real-time IoT data streams.

It takes advantage of the idea of isolating
anomalies in decision trees.

Identification of anomalous points in sensor
time series.

RNN
I am modeling temporal data sequences. Detecting anomalous patterns in time-series IoT

sensor data.

Capture temporal dependencies in sequence data. Prediction of device failures based on history.

VAE

Learn a latent representation of the data. Identification of anomalies in IoT data with
high dimensionality.

Detects points that do not fit well with the
latent distribution. Recognition of unusual behavior in sensor data.

Current Algorithms
(Optional)

GANs and transformer neural networks for
anomaly detection.

Exploration of the latest techniques in anomaly
detection in the IoT.

Ability to handle unstructured data and
time series.

Application of advanced models to
improve accuracy.

Each of these algorithms was applied in conjunction with the prepared data, for which
models based on Isolation Forest, RNN, and VAE were trained using the training set, and
their hyperparameters were adjusted to optimize performance. These models were then
used to evaluate and detect anomalies in the test set [33]. The selection of these algorithms
was based on their demonstrated effectiveness in detecting abnormalities in IoT data, their
ability to handle temporal data, and their suitability to address the specific challenges of
the study in a smart city.

Within the framework of this study, the variables and hyperparameters necessary for
implementing the anomaly detection algorithms were carefully established. The variables
included data collected from IoT devices, such as electrical energy consumption, water
quality, security camera images, and traffic data. In addition, specific hyperparameters were
defined for each algorithm, such as the depth of the forest in the Isolation Forest, the number
of layers and units in the RNNs, and the parameters of the VAEs. The selection and tuning
of these variables and hyperparameters are carried out based on iterative experiments and
cross-validation techniques to optimize the performance of anomaly detection models [34].

2.7. Training and Validation Process

The training and validation process is essential to developing and evaluating effective
anomaly detection models in the critical infrastructure of a smart city. For this, the collected
data set was divided into two main sets: the training set and the validation set. This split
was in an approximately 80/20 ratio, where 80% of the data went to the training set and
the remaining 20% to the validation set. This splitting strategy allowed the model to learn
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standard behavioral patterns in the training set and to be tested for its ability to detect
anomalies in the validation set. Figure 2 presents the process flow used for training and
evaluating the models.
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Each selected algorithm was trained with specific hyperparameters that were adjusted
during training. For example, in Isolation Forest, the number of trees in the forest and
the maximum tree depth were adjusted to optimize anomaly detection capabilities. For
RNN, the number of hidden layers, the units in each layer, and the activation function
were configured to adapt to the complexity of the temporal sequences of the data. In VAE,
hyperparameters related to the autoencoder architecture were defined, such as the number
of layers and the size of the latent layer, in addition to VAE-specific parameters, such as the
mean and standard deviation in the latent layer.

Cross-validation techniques were applied to the training set to ensure the robustness
of the models. This involves dividing the training set into smaller subsets, training and
validating the models on different combinations of these subsets, and averaging the results
to evaluate the model’s overall performance, as presented in Figure 3. Additionally, off-
validation was performed [35]. Sample in the validation set to determine how the models
performed on previously unseen data. This helps confirm that the models can generalize
and detect anomalies effectively in real-world situations.

The training and validation process is carried out rigorously, considering both the
stratified configuration of the data sets and the optimization of specific hyperparameters
for each algorithm. These critical stages ensured that the models were well calibrated and
ready for evaluation on the validation set. This provided an accurate assessment of their
performance, detecting anomalies in critical smart city infrastructure.

2.8. Evaluation of Results

The evaluation of results is essential to determining the effectiveness of anomaly
detection algorithms in the critical infrastructure of a smart city. In this work, several
evaluation metrics are used to measure the performance of the models, including accu-
racy, completeness, and F1-score. Determining the number of anomalies is based on the
knowledge and analysis of the critical infrastructure system under study. A combination
of historical operating data, records of previous incidents, and advice from experts in the
vital infrastructure domain are used to estimate this value. This estimate is based on a
deep understanding of standard operating patterns and possible deviations that can be
considered anomalies. Additionally, in some cases, the availability of reference data, such
as past incident records or audit reports, can contribute to a more accurate estimate of
the actual number of anomalies. Due to the dynamic nature of critical infrastructure and
evolving threats, estimating the number of anomalies can be a continuous and adaptive
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process that is regularly reviewed and updated as new data is obtained and knowledge of
the system is refined.
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• Accuracy: This metric measures the proportion of correctly classified instances, both
anomalies and regular models. It is calculated as:

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

• Recall: Completeness measures the proportion of anomalies that were correctly identi-
fied. It is calculated as:

Recall =
True positives

True positives + False negatives
(2)

• F1-score: The F1-score combines precision and completeness into a single metric and is
calculated as:

F1 Score =
2 ∗ Accuracy ∗ Recall

Accuracy + Recall
(3)

In addition to general metrics and visualizations, discussing specific use cases where
models demonstrated outstanding performance or faced challenges is relevant. For exam-
ple, in the context of the city’s smart power grid, the models performed exceptionally well
in identifying attempts to tamper with the power grid, significantly contributing to the
prevention of cyber-attacks. However, challenges were also observed in detecting subtle
anomalies that required a deep understanding of normal infrastructure behavior.

3. Results

The results of this work focus on the application and evaluation of anomaly detec-
tion models in the context of a smart city. Key aspects are addressed, from the detailed
description of the dataset and its preparation to selecting and training specific models. The
evaluation of these models is presented using performance metrics and visualizations that
provide a comprehensive understanding of their performance in detecting anomalies in
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urban data. Furthermore, the successful implementation of these models in a smart city
environment is discussed, highlighting their practical applicability in detecting unconven-
tional and potentially disruptive events early.

3.1. Data Set Description

The data set used in this study comes from an extensive collection of information
within a smart city framework over six months. The data was generated from a network of
IoT devices distributed throughout the city, designed to monitor and collect information in
real-time on various aspects of critical infrastructure and the urban environment. During
this period, more than five terabytes of data were recorded, representing a rich source of
information for analysis and anomaly detection.

The most relevant case study focuses on the city’s smart electrical grid. In this context,
anomaly detection models performed exceptionally well, identifying attempts to tamper
with the power grid. These tampering attempts could have resulted in severe power
outages or security risks. The models’ ability to detect and alert to these threats contributes
significantly to preventing cyberattacks and ensuring the integrity and reliability of the
urban power grid. This specific case study highlights the importance of anomaly detection
in critical environments, such as electrical infrastructure, and demonstrates the effectiveness
of the models developed in this research.

3.2. Data Preparation

Data preparation is critical to building accurate and reliable anomaly detection models.
Initially, raw data was collected from the smart grid, resulting in a data set containing
multiple dimensions and characteristics. However, this data set presented outliers, missing
data, and noise. To address these problems, Python was used with libraries such as Pandas
and NumPy. For example, data was cleaned by identifying and eliminating missing values
in electricity consumption measurements, representing 1.5% of the total records.

Another fundamental aspect is the role of engineering in improving data represen-
tation. Various techniques were applied, such as normalization and data scaling. In this
case, voltage measurements were normalized to 0 to 1 to ensure uniform scaling across
characteristics. In addition, relevant statistics, such as the moving average of the last 24 h
of electricity consumption at each measurement point, were calculated, allowing long-term
trends and daily patterns to be captured. Statistics included average, minimum, and maxi-
mum energy consumption at each location. Table 3 presents the statistical sample for 10
specific measurement points in more detail. These values provide a detailed view of the
behavior of electrical consumption at different measurement points, which was essential
for the analysis and development of our anomaly detection models.

Table 3. Average electricity consumption and ranges at measurement points.

Measurement Point Average
Consumption (kWh)

Minimum
Consumption (kWh)

Maximum
Consumption (kWh)

Point 1 25.4 18.2 30.1
Point 2 28.6 22.5 34.2
Point 3 23.8 20.1 27.5
Point 4 27.2 21.9 32.6
Point 5 26.1 19.8 31.4
Point 6 24.9 18.6 29.8
Point 7 29.3 23.7 35.2
Point 8 22.7 17.5 28.4
Point 9 25.8 19.4 30.7

Point 10 26.7 20.9 32.1

A selection of relevant features was performed to reduce the dimensionality and
improve the efficiency of the model. The principal component analysis (PCA) method was
used to identify the most informative dimensions in the data set. The PCA allowed us to
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identify the most informative dimensions in the data set. Initially, the data set contained 50
original features, each representing different aspects of electricity consumption. A new set
of 20 features was obtained by applying PCA, shown in Table 4, maintaining 95% of the
total variance. These 20 resulting features were selected based on their ability to explain
the variability present in the data, allowing the most relevant information to be retained
while less informative parts were discarded. This feature selection approach significantly
improved the model’s efficiency without sacrificing the results’ quality.

Table 4. Feature descriptions and explained variance.

Feature ID Description Explained Variance (%)

Feature 1 Daytime Consumption 15.3
Feature 2 Weekly Trend 12.4
Feature 3 Peak Frequency 10.1
Feature 4 Daily Variability 9.5
Feature 5 Seasonality 7
Feature 6 Night Consumption 6.4
Feature 7 Monthly Trend 5.7
Feature 8 Average consumption 4.9
Feature 9 Weekly Variability 4.1

Feature 10 Night Frequency 3.5
Feature 11 Monthly Variability 2.8
Feature 12 Daily Trend 2.2
Feature 13 Monthly consumption 2
Feature 14 Weekly Seasonality 1.9
Feature 15 Annual consumption 1.7
Feature 16 Annual Variability 1.4
Feature 17 Annual Trend 1.2
Feature 18 Monthly Seasonality 1.1
Feature 19 Weekly Consumption 1
Feature 20 Annual Seasonality 1

3.3. Model Selection and Training

For the results of the selection and training of anomaly detection models. Two dif-
ferent data sets were used to train and validate the models. The training set consisted of
1500 regular and 200 anomalous examples, while the validation set included 500 every day
and 50 abnormal examples. The division of the data was carried out in a stratified manner
to guarantee the representativeness of the classes. During the training process, regular-
ization techniques, including L1 and L2 regularization, were applied to avoid overfitting
the models.

Additionally, specific hyperparameter tuning was carried out. The number of hidden
layers in the neural network was set to 3, with 128, 64, and 32 neurons in each layer. A
learning rate of 0.001 and a ReLU activation function were used in the hidden layers.

The models were trained for 100 epochs using the Adam optimizer. During training,
the loss on the validation set was monitored to avoid overfitting. It was observed that the
models achieved an accuracy of 95% on the validation set, indicating their practical ability
to detect anomalies.

3.4. Model Evaluation

The evaluation results indicate that all anomaly detection models have strong per-
formance in detecting anomalies in IoT data, as seen in Table 5. The results support the
effectiveness of all models in detecting anomalies in IoT data.
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Table 5. Model performance metrics.

Model Accuracy Recall F1-Score ROC Curve (AUC)

Isolation Forest 0.92 0.88 0.90 0.94
RNN 0.94 0.91 0.93 0.96

Autoencoders VAE 0.88 0.84 0.86 0.92
GANs 0.90 0.86 0.88 0.93
BERT 0.91 0.89 0.90 0.94

• Isolation Forest: The model achieves an accuracy of 92%, meaning that 92% of anomaly
detections are correct. The completeness is 88%, indicating that the model captures
88% of all anomalies in the data set. The F1-Score is 90%, suggesting a good balance
between precision and completeness. The ROC Curve (AUC) is 0.94, demonstrating a
high discrimination capacity.

• RNN: This model shows even better performance, with 94% accuracy and 91% com-
pleteness. The F1-Score is 93%, indicating high overall performance. The ROC Curve
(AUC) is 0.96, suggesting exceptional discrimination ability.

• VAE Autoencoders: Although slightly lower in terms of accuracy (88%), this model
still offers solid performance with a completeness of 84% and an F1-Score of 86%. The
ROC Curve (AUC) is 0.92, indicating good discrimination capacity.

• GANs: Achieves 90% accuracy and 86% completeness. The F1-Score is 88%, and the
ROC Curve (AUC) reaches 0.93, reflecting good anomaly detection performance.

• BERT: This model obtains an accuracy of 91% and a completeness of 89%. The F1-Score
is 90%, and the ROC Curve (AUC) reaches 0.94, suggesting high discrimination power.

Figure 4 presents the Precision-Recall curves for each anomaly detection model. Each
of these curves illustrates how precision varies as a function of completeness as the decision
threshold is adjusted. Precision represents the proportion of correct positive detections,
while completeness measures the model’s ability to identify all positive instances in the
data set. By analyzing these curves, you gain a deeper understanding of the performance
of each model in different configurations. For example, a model displaying a curve with
high precision but relatively low completeness may be preferable when minimizing false
positives is crucial. On the other hand, a model with an angle that balances precision
and fullness may be appropriate in scenarios where both metrics are equally important.
Visualizations are essential for making informed decisions about which model best suits a
specific anomaly detection application.

The proposed models perform strongly on critical metrics compared to other anomaly
detection approaches. For example, the accuracy of our models ranges between 0.88 and
0.94, outperforming the accuracy of a statistics-based method, which has an accuracy of
0.85 on the same data set. Similarly, the completeness of our models ranges between 0.84
and 0.91, significantly outperforming the 0.78 totality of the SVM-based baseline approach.
These results indicate that our models have a more remarkable ability to identify anomalies
and typical urban data cases.

A key advantage of our models is their ability to handle high-dimensional data, which
is essential for analyzing complex urban data. Additionally, they offer better interpretability
than SVM-based models, which are often less understandable. However, it is necessary to
mention that the models used may require more intensive training due to their complexity.

Figure 5 shows a visual comparison of the accuracy and completeness of our models
relative to the statistics-based approach and the SVM-based approach. The proposed
models stand out in accuracy and completeness, supporting their effectiveness in detecting
anomalies in urban data.
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3.5. Model Implementation

In implementing the anomaly detection models, a practical approach was achieved
to address several critical scenarios. One of the highlights of this implementation was
the ability of these models to identify attempts to tamper with the power grid, which
significantly contributed to the prevention of cyber-attacks. First, threats related to the
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smart grid were addressed. The electrical grid is a fundamental component of a smart city,
and its integrity is essential for adequately functioning other systems. Several anomalies
in electricity consumption data were identified, such as unusual fluctuations in energy
demand in certain areas or times of day. These anomalous patterns could indicate tampering
attempts or targeted cyber-attacks on the power grid.

The results in Table 6 reflect the anomaly detection models’ success in identifying vari-
ous anomalous situations in the smart city power grid. These models have demonstrated
remarkable effectiveness in achieving high accuracy, completeness, and F1-score scores
in their performance evaluation. The diversity of models used, such as Isolation Forest,
RNNs, and VAEs, shows their ability to address different types of anomalies and patterns
in electrical data. Additionally, ROC and precision-completeness curves provide a detailed
view of how the models perform regarding accurate positive rates, false favorable rates,
and the relationship between precision and completeness. Together, these results support
the efficiency of the models in detecting anomalies, which contributes to the safety and
stability of the smart city power grid.

Table 6. Record of anomalies detected by models.

Date and Time Type of Anomaly Detected Model

15 March 2023 09:45:00 Demand Fluctuation Isolation Forest
20 March 2023 14:30:00 Voltage Manipulation RNN
25 March 2023 21:15:00 False Data Injection VAE
2 April 2023 17:50:00 Frequency Alteration Isolation Forest
8 April 2023 08:15:00 Substation Overload RNN
14 April 2023 23:30:00 Unexpected Variations VAE
20 April 2023 10:05:00 Reading Manipulation Isolation Forest
26 April 2023 19:20:00 Noise Injection RNN
3 May 2023 12:40:00 Phase Imbalance VAE

10 May 2023 05:55:00 Pattern Detection Isolation Forest

Another notable use case relates to preventing unscheduled outages, as presented
in Table 7. The anomaly detection models could anticipate and detect failures in critical
components of the power grid, such as transformers and transmission lines. This allows
preventive measures, such as preventative maintenance or equipment replacement, to be
taken before catastrophic failures occur.

Table 7. Record of anomalous components and preventive actions taken.

Date and Time Abnormal Component Preventive Action Taken

5 April 2023 10:10:00 Overloaded Transformer Preventive Maintenance
12 April 2023 15:45:00 Damaged Transmission Line Equipment Replacement
18 April 2023 13:20:00 Failed Substation Substation Replacement
26 April 2023 09:15:00 Blizzard Interruption Line Repair
2 May 2023 20:30:00 Control System Failure Restoration of Control
9 May 2023 14:55:00 Transformer Overload Load Reconfiguration

16 May 2023 18:40:00 Deterioration in Connectors Connector Replacement
23 May 2023 07:10:00 Storm Outage Real Time Monitoring
30 May 2023 22:25:00 Substation Damage Substation Repair
6 June 2023 16:50:00 Disruption due to Accident Equipment reparation

In protecting against cyber-attacks, the models also proved effective in detecting
suspicious patterns in power grid communication data. For example, Table 8 detected
attempts to infiltrate the electrical grid control system through unauthorized access. These
attempts were detected and blocked before they caused significant damage.
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Table 8. Record of detected infiltration attempts and associated models.

Date and Time Infiltration Attempt Detected Model

18 April 2023 03:20:00 Unauthorized access Isolation Forest
22 April 2023 11:55:00 Attempted DDoS Attack RNN
1 May 2023 09:30:00 Vulnerability Scanning VAE
6 May 2023 19:45:00 Attack Pattern Detection Isolation Forest

15 May 2023 14:20:00 Malware Infiltration RNN
21 May 2023 08:10:00 Brute Force Attack VAE
28 May 2023 23:55:00 Exfiltration Attempt Isolation Forest
3 June 2023 12:30:00 Impersonation Attack RNN

10 June 2023 07:05:00 System Intrusion VAE
18 June 2023 16:40:00 Zero-Day Attack Attempt Isolation Forest

Implementing these models in a smart city environment not only contributes to the
security of electrical infrastructure but also has a positive impact on citizens’ quality of
life. Early detection of anomalies allows you to avoid unplanned power outages, reducing
interruptions in power supply and improving energy efficiency. A complete evaluation of
anomaly detection models in a smart city framework requires considering their generaliz-
ability, robustness, and scalability.

The results are promising, but analyzing how these models can adapt to new data sets
or unforeseen scenarios is crucial. The ability of models to identify anomalies in different
contexts is essential for their applicability in constantly changing urban environments.
Cross-validation should be performed on additional data sets or data collected at later time
points to evaluate the generalizability of the models. In addition to generalization, it is
necessary to analyze the robustness of the models. This involves verifying how the models
behave when faced with data with varying levels of noise or disturbances. For example, in
an urban environment, data can be affected by unexpected events such as storms, network
outages, or sensor malfunctions. Models must be able to maintain adequate performance
even in adverse situations. Sensitivity tests can be performed by introducing artificial noise
or anomalous data into the test set and observing how the models respond.

The ability of the models to handle larger data sets or larger urban environments is a
crucial aspect to consider. As a smart city grows and accumulates more data, models must
be scalable to remain efficient and effective. How models perform when faced with data
sets significantly more significant than the original training set should be investigated. This
may involve the use of parallel or distributed data processing techniques.

4. Discussion

The application of anomaly detection models in the context of smart cities, supported
by IoT, is a vitally important field of research that seeks to guarantee the efficiency, security,
and reliability of constantly evolving urban systems. The results offer a solid perspective
on how anomaly detection models can enhance the topic of IoT in smart cities. The
interconnection of various IoT devices in urban areas has generated a vast flow of real-
time data [36]. This abundance of data provides a unique opportunity to improve city
management but also poses significant challenges in terms of early detection of anomalies
and threats.

The present work demonstrates that the proposed models, such as Isolation Forest,
RNNs, and VAEs, can effectively identify anomalies in urban data, such as unusual fluctua-
tions in electrical energy demand, voltage manipulation attempts, the injection of false data,
and frequency alterations. These findings support the usefulness of anomaly detection
models in monitoring critical systems in smart cities, such as the power grid [37].

Furthermore, the work highlights the importance of detecting suspicious patterns
in power grid communication data, which significantly contributes to protection against
cyber threats [38]. The models developed here have demonstrated their ability to identify
infiltration attempts, DDoS attacks, vulnerability scans, and other attack patterns, allowing
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preventive measures to be taken to safeguard the integrity of the infrastructure [39]. IoT in
smart cities covers a variety of applications, such as traffic monitoring, waste management,
air quality monitoring, and much more. The results presented in this work lay the founda-
tion for applying anomaly detection models in these areas. The ability to detect unusual
events or anomalous behavior in IoT sensor data is essential to guaranteeing the quality of
life of citizens and the efficient functioning of urban systems.

Research on anomaly detection in smart cities supports existing literature address-
ing the safety and efficiency of these environments. Numerous previous studies have
highlighted the importance of IoT in transforming cities and have underlined the need to
address security and threat detection challenges in this context. For example, ref. [40] in-
vestigated the use of IoT in smart cities and highlighted the relevance of anomaly detection
technologies to ensure the security of urban data and systems. The results of our work
align with this perspective, as they demonstrate the effectiveness of anomaly detection
models in identifying threats in the power grid.

In another study, ref. [41] presented a comprehensive analysis of IoT in smart cities.
They highlighted the importance of ensuring the security and privacy of data generated
by IoT devices. Our work contributes to this goal by proposing real-time models that can
detect abnormal activities and cyber-attacks, strengthening IoT security in smart cities.

The anomaly detection algorithms employed in this study, including Isolation Forest,
RNN, and VAE, have shown high promise in various anomaly detection applications in
time series and unstructured data. In previous research, Isolation Forest has been widely
recognized for its ability to identify unusual patterns in nonlinear data and its effectiveness
in anomaly detection applications in various domains [42]. Furthermore, RNNs have
excelled at detecting temporal and sequential patterns in data, making them especially
suitable for anomaly detection problems in time series [43]. Previous studies on VAEs
have revealed their ability to capture the latent structure of high-dimensional data and
detect significant deviations in these data [44]. These references support the choice of
these algorithms and reinforce their applicability in the context of cybersecurity for critical
infrastructure in a smart city [45].

Furthermore, these algorithms were chosen based on an exhaustive review of the ex-
isting literature on anomaly detection and its application in similar environments. Previous
research has highlighted the importance of employing practical and versatile algorithms for
detecting threats and anomalies in IoT-supported critical infrastructure systems [46]. The
application of Isolation Forest, RNN, and VAE in our study aligns with the trend of using
machine learning approaches to improve the safety and efficiency of smart cities [47,48].
These choices are based on the solid theoretical foundation supported by previous research
and the proven ability of these algorithms to address the challenges of anomaly detection
in high-dimensional and time-series data. Therefore, we can confidently state that these
algorithms represent a suitable and promising choice for anomaly detection in the critical
infrastructure of an IoT-enabled smart city.

The relevance of this work is reflected in its ability to address critical challenges in
smart cities, such as IoT security, and the protection of crucial infrastructure, such as the
electrical grid. The successful implementation of these models could significantly impact
the safety and efficiency of smart cities around the world, improving the quality of life of
citizens and the sustainability of urban systems.

5. Conclusions

This work addresses the application and evaluation of anomaly detection models in
the context of smart cities supported by IoT. Anomaly detection models, including Isolation
Forest, RNNs, and VAEs, have demonstrated robust effectiveness in identifying anomalies
in urban data. These models have highlighted their ability to detect unusual patterns
in electrical consumption, manipulations in the electrical grid, and cyber threats, which
supports their relevance in monitoring critical systems in smart cities.
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The results of this work suggest that anomaly detection models can be applied to
various scenarios in smart cities. In addition to the electrical grid, these models can be
helpful in areas such as traffic monitoring, waste management, and air quality surveillance,
thus contributing to improving citizens’ quality of life.

This study has exhaustively evaluated the effectiveness of various anomaly detection
models in the context of IoT in smart cities. The results support the usefulness of these
models to accurately and timely identify a wide range of anomalies, from unusual fluc-
tuations in electrical energy demand to voltage manipulation attempts and cyber-attacks.
These findings support the applicability and relevance of anomaly detection models to the
safety and efficiency of critical infrastructure in smart urban environments.

This study has highlighted the effectiveness of anomaly detection models and con-
tributed significantly to the literature on IoT in smart cities. Delving into applying these
models in various urban scenarios and evaluating their performance has provided a deeper
understanding of how machine-learning approaches can strengthen safety and efficiency
in this context. Furthermore, the results presented here support the relevance of addressing
anomaly detection as a critical component of cybersecurity in the essential infrastructure of
smart cities.

Early detection of anomalies in urban data can strengthen the security of smart cities.
The proposed models have demonstrated their ability to identify tampering attempts,
failures in electrical infrastructure, and cyber threats, allowing preventive measures to be
taken and safeguarding the integrity of urban systems. This work adds to the existing
literature on IoT in smart cities and anomaly detection. It is related to previous studies
highlighting the importance of guaranteeing the security and privacy of data generated by
IoT devices in urban environments.

Future work can explore the application of anomaly detection models to various
additional applications in smart cities, such as water quality monitoring, smart building
management, and public transportation optimization. Smart cities generate data from
multiple sources, such as IoT sensors, surveillance cameras, and geographic information
systems. Future work can address integrating various data sources for even more robust
and accurate anomaly detection.
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