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Abstract: The uranium required for power plants is mainly extracted by two methods in roughly
equal amounts: quarries (underground and open pit) and in situ leaching (ISL). Uranium mining
by in situ leaching is extremely attractive because it is economical and has a minimal impact on
the region’s ecology. The effective use of ISL requires, among other things, the accurate assessment
of the host rocks’ filtration characteristics. An accurate assessment of the filtration properties of
the host rocks allows optimizing the mining process and improving the quality of the ore reserve
prediction. At the same time, in Kazakhstan, this calculation is still based on methods that were
developed more than 50 years ago and, in some cases, produce inaccurate results. According to our
estimates, this method provides a prediction of filtration properties with a determination coefficient
R2 = 0.32. This paper describes a method of calculating the filtration coefficient of ore-bearing rocks
using machine learning methods. The proposed approach was based on nonlinear regression models
providing a 20–75% increase in the accuracy of the filtration coefficient assessment compared with
the current methodology. The work used different types of machine learning algorithms based on
the gradient boosting technique, bagging technique, feed-forward neural networks, support vector
machines, etc. The results of logging, core sampling, and hydrogeological studies obtained during the
exploration stage of the Inkai deposit were used as the initial data. All used machine learning models
demonstrated significantly better results than the old method. This resulted in improved results
compared with previous studies. The LightGBM regressor demonstrated the best result (R2 = 0.710).

Keywords: uranium mining; machine learning; regression model; filtration characteristics; boosting;
bagging

1. Introduction

Intensive development of nuclear energy can be considered one of the means to
combat global warming. For example, nuclear power plants in Europe annually avoid
the emission of 700 million tons of CO2. Uranium mining is carried out in more than
20 countries, but the main uranium reserves are concentrated in Australia, Kazakhstan,
and Canada [1]. According to the World Nuclear Association, in 2018, the largest uranium
mining companies produced 86% of the world’s total uranium production [2], of which
NAC Kazatomprom JSC accounted for 21%. There are two main extraction methods used:
open pit (underground and open-pit) and in situ leaching (ISL). Open pit (accounting for
45.9% of production) is used with a sufficiently high uranium content, ILS (accounting for
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48.3% of production) is used with a fairly low uranium content, and the reserves must be
located in highly permeable rocks (most often sands). Approximately 5.8% of uranium is
mined as a by-product, such as in gold mining [3] (Figure 1).
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ISL is a method of developing of sandstone-type uranium deposits without raising ore
to the surface by selectively transferring uranium ions into a productive solution directly
in the subsurface using a network of injection and extraction wells. Uranium-bearing ore
remains underground, unlike traditional mining methods (mines and quarries). ISL is the
most economical and environmentally friendly mining method, widely used in Kazakhstan,
Uzbekistan, Canada, and Australia. However, to successfully apply the ISL method, it is
necessary to solve the following problems:

• Accurate determination of the lithological composition of the host rocks and the depth
of permeable and impermeable strata using geophysical methods;

• Assessment of filtration properties of host rocks, for the correct assessment of recover-
able reserves and production planning.

Inaccuracies in solving these problems not only prevent the organization of an optimal
production process but often lead to serious financial losses. For example, economic losses
from incorrect lithological classification in the deposits of Kazakhstan can be estimated to
be approximately USD 1 to 4 million per year [4].

Inaccuracies in assessing the filtration properties of host rocks are caused both by
inaccuracies in electrical logging and, to a large extent, by the methodology for determining
the lithological composition and filtration properties of rocks. When determining the
filtration properties of host rocks in a field, the key point is to determine the relationship
between the filtration coefficient Kf, determined as a result of hydrogeological studies
at the exploratory drilling stage, and electrical logging data, which are subsequently
used to calculate the filtration properties of technological wells. However, the accepted
methodology, based on analytical methods, has not changed since the end of the last
century [5]. At the same time, the correct determination of Kf is necessary for calculating
recoverable reserves, predicting production dynamics, and calculating the optimal number
of wells and the distance between them (the diameter of a hexagonal cell or the distance
between rows of wells).

One of the promising ways to improve the quality of the filtration properties assess-
ment is the use of artificial intelligence [6], more specifically, machine learning methods [7].
Machine learning is used in problems of stratigraphy [8], geological mapping [9], assess-
ment of the prospects of tungsten deposits [10], composition of iron ore deposits [11], and
lithology [12–15]. The application of ML for lithological classification is considered in [16].

The purpose of the study was to evaluate the possibilities of using machine learning
models for Kf calculation based on well log data in sandstone-type uranium deposits.
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This study considered the application of machine learning methods to estimate the
filtration characteristics of ore-bearing rocks. The method was based on the use of nonlinear
regression models and has shown results 20–75% better than calculations using the existing
methodology used in Kazakhstan. The proposed method concerns approximately half of
the mined uranium in the world.

The work consists of the following sections. The first section briefly provides general
information about uranium and its mining methods and the application of machine learning
methods in geophysical research.

In the second section, we provide an overview of the current state of research in the
field of determining the permeability of geological formations using machine learning.

In the third section, we describe the research method.
In the fourth, we describe the initial data and the results obtained.
In conclusion, the limitations of the method and directions for further research

are discussed.

2. Related Works

The permeability of rocks is an important factor influencing the percentage of hy-
drocarbon recovery, reservoir management, and carbon dioxide sequestration during oil
production. During in situ leaching of uranium, rock permeability is the most important
factor in deciding whether to install downhole filters and predicting ore recovery.

To solve the problems of permeability predicting, porosity, and other petrophysical
properties of rocks in mining, regression models are often used [11], which allow developing
more accurate and robust models than traditional empirical, statistical models [17]. Such
models have been studied since the 1990s. For example, in Ref. [18], probably for the first
time, a multilayer neural network was used to estimate the porosity of rocks. To assess the
permeability of rocks, a hybrid algorithm using neural networks (ANNs) was proposed
in [19]. An ANN-based regression analysis was used to obtain a set of relationships between
the permeability, porosity, and pore size in [20]. ANNs as a non-linear regression method is
used to estimate the porosity and permeability of an oil reservoir based on log data [21,22].
A similar problem is considered in [23], where the authors compared ANN, SVM, and
fuzzy neural network models. The authors concluded that ANNs can be used to estimate
the permeability of a heterogamous carbonate reservoir based on three parameters: the
bulk density, the neutron porosity, and a mobility index introduced by the authors with
a mean square error of 0.28. In this paper, the authors also used ANNs to estimate the
permeability of an oil-bearing reservoir in the Persian Gulf of Egypt and obtained very
high values of the coefficient of determination R2 = 96.5%.

In Ref. [24], the porosity of oil reservoirs was studied using ANNs based on seismic
sounding data. It was possible to study the petrophysical properties in the interwell space
and identify zones of bypass sand channels and leaks that were not visible on the structural
maps and attribute slices. The high result of the estimation of the porosity of the oil
reservoir based on the SVM model was described in [25], where the correlations between
the model estimates and real data exceeded 0.96. The authors of the paper stated that
machine learning models worked more accurately than traditional estimation methods [26],
reaching RMSE = 0.38 and R2 = 97% for the SVM-based model when processing log data
from carbonate reservoirs of southwestern Iran.

Well logs can be considered as a type of images that can be analyzed using deep
learning models when there are enough data. For example, to estimate the permeability
in the process of oil production in [27], convolutional neural networks (CNNs) were used,
which showed an advantage over ANNs. The use of CNNs to predict the properties of
subsurface rocks in the process of drilling wells in real time is discussed in [28]. The authors
show that the model is able to distinguish between different rock types such as cemented
sandstone, unconsolidated sands, and shales. A CNN-based model was proposed in [29] to
accompany the technological process of well construction, namely, to assess the integrity of
cement in cased wells.
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The deep learning model was used to identify the similarity of geological interlayers,
and thus, with higher accuracy, allows estimating cross-well correlation [30]. New Zealand
and Norway open datasets were used to tune the model. The accuracy of the model was
0.926, which was significantly higher than the base models based on gradient boosting. A
similar problem of estimating the interwell space of an oil and gas reservoir is considered
in [31], where a three-dimensional CNN is used, which shows better results compared
with ANNs.

As shown above, the use of machine learning methods is very popular in the assess-
ment of permeability, porosity, and interwell space in oil fields, where such methods in
many cases show good results. However, the situation is different for uranium deposits.

According to the authors, such studies of rock permeability assessment for sandstone-
type uranium deposits have not been previously carried out, with the exception of [6].
Meanwhile, uranium mining at such deposits is carried out by the method of in situ
leaching, in which the filtration properties of rocks are critically important. The use of
regression models to assess the filtration coefficients is a way to improve the accuracy of
the calculation of recoverable ore reserves and optimize the mining process.

The range of regression models is quite large. They, like other machine learning
models, can be roughly divided into classical and modern ones [6].

Although deep learning provides excellent results in many cases [32], its application is
possible, as a rule, in the presence of a large amount of data or in the presence of pre-trained
models, using the transfer learning technique [7]. According to the authors, there are no
such datasets in the public domain. In this regard, for a comparative assessment of the
possibilities of solving the problem of predicting the filtration properties of rocks based on
logging data by models of different types, it was decided to use several types of regression
models based on support vector algorithms, boosting, bagging, and neural networks.

3. Proposed Method

The methodological scheme of the study included the following steps (Figure 2):

• Feature selection and dataset generation;
• Training and tuning machine learning models;
• Evaluation of results using standard quality metrics.
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3.1. Data Preparation

The methodology currently used provides for the establishment of a relationship
between the filtration properties of host rocks and the apparent resistivity measured at
the exploration stage. To do this, resistivity logging data are compared with the results of
hydrogeological studies of wells and results of granulometric studies [33] (Figure 3).

As a result, a correspondence table is compiled, intermediate values are obtained
by interpolation. The disadvantages of the adopted methodology include the fact that it
uses data from only one logging method and cannot be used if the recording quality is
insufficient, as well as the fact that it uses the average resistivity value within the selected
interval, which cannot be accurately determined for intervals with thickness less than
1.5–2 m, since the distance between the measuring electrodes during logging is 1 m. Given
the shortcomings of the existing Kf estimation methodology, we proposed a machine
learning model that received basic logging data as the input and generated filtration
coefficients as the output. Such a model could be trained on data from exploratory wells
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that have actual Kfpo (pumped out). The trained model could then be used to calculate Kf
of the technological wells.
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To form a dataset for training regression models, we used the information collected
from the results of research at the exploration stage, shown in Figure 3. Figure 3 shows
the boundaries of the well intervals (Start dept, End dept), within which the values of the
filtration properties (Kf column) are known; for the same intervals, the granulometric study
data, the proportion of clay fraction, and the geochemical (color) and lithological (Lito code)
codes are given. In total, there were 3558 intervals in the collected dataset, with a thickness
of 0.5 to 2.2 m. However, to build regression models that will be used on production wells,
one can use only logging data, as well as the lithological code of rocks, because the rest of
the parameters are obtained in the course of laboratory studies and are not available for
production wells. For exploratory wells, the standard set of logs included AR (apparent
resistivity), SP (spontaneous polarization potential), GL (gamma logging), and inclinometry
(determines the angle of inclination of the well). AR and SP were the main methods for
lithological classification, with impermeable rocks (clays) corresponding to low AR and
high SP values, while highly permeable rocks, vice versa, had high AR and low SP values.
The GL and inclinometry were in no way related to the filtration properties; therefore, to
build regression models, we chose sections of the AR and SP curves with a length of 0.5 m,
as well as the lithological code of the rock, as input parameters.

3.2. Machine Learning Models

As mentioned above, the application of deep learning models could produce a good
result. However, the generated dataset is relatively small. The authors also do not know
of similar sets of initial data of a significant volume or pre-trained models of deep neural
networks that solve the problem of calculating the permeability of rocks in uranium
deposits, which would allow using the transfer learning technique to tune them. Therefore,
the use of deep learning models was considered inappropriate. In the process of the
computational experiments, the authors used several types of models: models based on
gradient boosting [34] and bagging technique, feed-forward neural networks [16], support
vector machines, and, as a reference point (baseline) for comparative analysis, classical
regression algorithms (Table 1).
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Table 1. Machine learning models.

Regression Model Abbreviation Method References

XGBoost XGB Ensemble learning method based on
the gradient boosted trees algorithm. [35]

LightGBM LGBM Ensemble learning method based on
the gradient boosted trees algorithm. [36–38]

Random forest RF Ensemble learning method based on
bagging technique. [39]

Support vector machines SVM Method is based on the kernel trick. [40]

Artificial neural network ANN Feed forward neural network. [41,42]

Linear regression LR
Modeling impact of independent

variables to target variable based on
linear approach.

[43]

Lasso regression Lasso

Based on the use of such a
regularization mechanism that not only
helps in reducing over-fitting but can

help in feature selection.

[44]

Ridge regression Ridge A regularization mechanism is used to
prevent over-fitting. [45]

Elastic net elasticnet Hybrid of ridge regression and lasso
regularization. [46]

The variety of algorithm types provides a broad search for the appropriate type of
models. Looking ahead, we note that the ensemble learning methods, and more precisely
the gradient boosting models, generally showed the best result.

To assess the quality of regression models, the following accuracy indicators were
used [47]:

Coefficient of determination (R2);
Mean square error (mean squared error—MSE);
Mean absolute error (mean absolute error—MAE);
Correlation coefficient (R).
The quality measures used to evaluate the regression models are listed in Table 2.
To perform computational experiments, a software system was developed in Python

using the numpy, sklearn, matplotlib, cv2, alive_progress, pickle, and tensorflow libraries,
which enable the reading and preparing of the initial data, forming a data frame, and
applying machine learning models. The computational experiments were performed on a
Dell XPS 15 9500 computer equipped with 32 GB of RAM, an Intel(R) Core(TM) i7-10750H
processor, and an Nvidia GeForce GTX 1650 Ti discrete graphics card. All equipment is
manufactured in China.

Table 2. Evaluation metrics of regression models.

Evaluation Index Equation Explanation

Mean absolute error MAE =
∑n

i=1 (y
(i)−h(i)

)
n

where n is the sample size; y(i) is the
actual value of the target variable for the
i-th sample; h(i) is the estimated value

for the i-th sample.

Mean squared error MSE =
∑n

i=1 (y
(i)−h(i)

)
n

2
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Table 2. Cont.

Evaluation Index Equation Explanation

Determination coefficient

R2 = 1 − SSres
SStot

SSres =
n
∑

i=1

(
y(i) − h(i))2

SStot =
n
∑

i=1

(
y(i) − _

y)2 ,
_
y = 1

n

n
∑

i=1
y(i)

Linear correlation coefficient (or Pearson
correlation coefficient) R(y, h) =

∑n
i=1

(
hi−

_
h
)
(yi−

_
y)

∑n
i=1 (yi−

_
y)2∑n

i=1

(
hi−

_
h
)2 , where

_
h = 1

n ∑n
i=1 hi .

4. Data and Results

In total, there were 3558 intervals in the collected dataset, with a thickness of 0.5
to 2.2 m. As input parameters, sections of the AR and SP curves with a thickness of
0.5 m, recorded with a step of 0.1 m, as well as the lithological code of the rock, de-
termined by the experts, were used. During the experiments, nine regression models
were tested: XGB, RF, Lasso, Linear regression, Elastic Net, LGBM, Ridge, SVM, and
ANN (hidden_layer_size = 91) on all combinations of input parameters (AR, SP, AR + SP,
AR + lithocode, SP + lithocode, and AR + SP + lithocode). The XGB, RF, and LGBM models
did not require data normalization (more precisely, normalization of input parameters can
degrade the performance of these models), while other models worked better with normal-
ized data. The normalization was performed using the standard function MinMaxScaler()
included in the sklearn package. The results of the experiments are shown in Table 3.

Table 3. Assessments of the performance of the models trained on the exploration wells.

Input Data Regressor_Name MAE MSE R2 R Duration

AR XGB 3.432 21.94 0.562 0.759 0.557

RF 3.519 22.96 0.541 0.739 0.320

Lasso 4.666 28.84 0.423 0.723 0.000

LR 3.786 23.18 0.537 0.733 0.016

elasticnet 6.289 50.75 −0.014 0.000 0.000

LGBM 3.397 19.81 0.604 0.780 0.157

Ridge 3.488 21.57 0.569 0.760 0.010

SVM 3.613 25.68 0.487 0.193 0.000

MLP 3.999 23.88 0.523 0.736 0.495

SP XGB 6.4580 63.01 0.259 0.172 0.731

RF 6.5580 75.65 −0.312 0.036 0.357

Lasso 6.2890 50.75 0.386 0.000 0.000

LR 6.2570 49.30 0.415 0.277 0.000
elasticnet 6.2890 50.75 0.386 0.000 0.000

LGBM 6.2600 50.60 0.389 0.118 0.151

Ridge 6.4590 55.56 0.289 0.104 0.010

SVM 6.9040 81.00 −0.419 0.171 0.000

MLP 7.5120 80.91 −0.217 −0.229 0.569
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Table 3. Cont.

Input Data Regressor_Name MAE MSE R2 R Duration

AR + SP XGB 3,780 25.86 0.509 0.715 0.406

RF 4.449 33.01 0.373 0.724 0.490

Lasso 5.305 38.06 0.277 0.757 0.000

LR 4.627 33.40 0.365 0.770 0.000

elasticnet 6.809 60.94 −0.158 0.000 0.000

LGBM 4.420 30.97 0.412 0.738 0.160

Ridge 5,770 80.78 −0.535 0.490 0.020

SVM 6.554 58.63 −0.114 0.178 0.000

MLP 4,870 34.74 0.340 0.708 0.547

AR + lito
code

XGB 2.976 15.93 0.682 0.829 0.709

RF 2.964 15.77 0.665 0.829 0.344

Lasso 4.666 28.84 0.423 0.723 0.000

LR 3.385 18.48 0.631 0.799 0.000

elasticnet 6.289 50.75 −0.014 0.000 0.000

LGBM 2.875 14.52 0.710 0.845 0.149

Ridge 3.196 25.24 0.495 0.728 0.010

SVM 3.593 23.48 0.531 0.254 0.000

MLP 3,250 18.12 0.638 0.800 0.559

SP + lito
code

XGB 4,801 36.85 0.300 0.551 0.425

RF 5.013 41.81 0.206 0.535 0.320

Lasso 6.918 63.00 −0.197 −0.033 0.000

LR 5.208 39.53 0.249 0.587 0.000

elasticnet 6.809 60.94 −0.158 0.000 0.000

LGBM 4,880 36.26 0.311 0.601 0.175

Ridge 5,883 119.05 −1.262 0.229 0.010

SVM 6.140 60.65 −0.152 0.235 0.000

MLP 6.380 62.02 −0.178 −0.271 0.573

AR+SP+ lito
code

XGB 3.538 22.084 0.580 0.764 0.453

RF 4.032 27.889 0.470 0.754 0.496

Lasso 5.305 38.055 0.277 0.757 0.016

LR 4.188 26.522 0.496 0.806 0.000

elasticnet 6.809 60.940 −0.158 0.000 0.000

LGBM 3.856 25.013 0.525 0.781 0.165

Ridge 5.637 96.590 −0.835 0.439 0.020

SVM 6.366 55.389 −0.052 0.154 0.000

MLP 4.538 31.637 0.399 0.726 0.569

Current method 13.89 192.93 0.32 0.584

In the last row, for comparison, the results of the calculations according to the currently
accepted method are given. It can be seen that the best set of input data was the combination
of AR + lithocode, while the use of SP significantly worsened the accuracy of the models.
This was probably due to the low quality of the PS curve recording. Since the recorded
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potential depended on the difference between the salinity of groundwater and the drilling
fluid, for contrast and differentiable recording of SP, it was necessary to strictly adhere to
the requirements for the preparation of the drilling fluid, which was often not observed in
practice. Because the size of the dataset was small, the training time for all algorithms was
less than 1 s.

The LGBM regressor showed the best results when using (AR, Litho code) as the input
parameters (R2 = 0.710). At the same time, when we could use only a part of the input
parameters, other regression models could also be used. For example, a linear regression
model performed well when we could only use SP, and we did not know the lithological
code (R2 = 0.415). In cases where we could only use the AR values, the best result again
showed LGBM (R2 = 0.604). In addition, linear regression (LR) showed a stable good
result. The currently used methodology showed significantly worse results compared with
machine learning models (R2 = 0.32). A comparison of the data calculated with accepted
methodology with actual data showed that the RMSE was 13.89 and the linear correlation
value was 0.584. This low accuracy was probably due to the fact that 0.5 m intervals were
used for comparison, while the accepted methodology was designed for intervals with
thickness more than 2 m.

5. Conclusions

For efficient and safe uranium mining using the ISL method, it was necessary to
determine as accurately as possible the lithological composition of the host rocks and
the depth of permeable and impermeable strata, as well as the filtration properties of
the host rocks. The necessary dependencies could be determined by comparing data
from hydrogeological studies carried out at the exploration stage with logging data. In
Kazakhstan, a method for determining the filtration properties was used, developed more
than 50 years ago, which often produced incorrect results. Inaccuracies in the assessment
of the filtration properties of host rocks led to the incorrect assessment of recoverable
reserves and poor production planning. The currently accepted technique was based on
the dependence of Kf on the average value of the AR within the boundaries of the selected
lithological layer and had the following disadvantages:

• Only the AR curve data were used; if the AR data were poorly recorded, the results
would be unreliable.

• When interpreting data from acidified blocks, where the properties of rocks were
distorted by the action of acid, the values of the AR turned out to be underestimated,
and therefore, the calculation of the filtration properties was not correct.

• Since a downhole tool with a distance between electrodes of 1 m was used to record
AR logs in the fields of Kazakhstan, it was possible to reliably measure the average re-
sistivity value only for lithological layers with a thickness of more than 2 m. Therefore,
the adopted technique was not suitable for thin intervals (<2 m).

To overcome the shortcomings of the existing approach, we proposed a method
for calculating the filtration coefficient based on the use of regression models [48]. The
proposed model received electric logging data as an input and the calculated filtration
coefficient as an output.

Thanks to a wider range of regression models, it was possible to improve the previously
obtained result.

The LGBM regression model with AR and LC as the input variables demonstrated the
best results (R2 = 0.710, R = 0.845).

At the same time, the proposed method had the following limitations:

• It was not applicable to fields where exploration had been carried out for a long time,
and not all the necessary data were available.

• The learning process depended on the lithological code set by the expert, which could
be wrong, especially in the case of acidified blocks.

In this regard, directions for further research are the following:



Appl. Sci. 2023, 13, 10958 10 of 12

• Exploring the possibility of transferring the trained model to similar fields for which
there are no data required for training;

• Improving the reliability of determining the lithological code of the rock during
lithological classification;

• Automatic identification of zones of technological acidification by the characteristic
distortion of the AR curve.

Also, as one of the future research directions, it is suggested to use the construction of
a forecasting model based on Fuzzy Decision Trees [49].
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