
Citation: Hung, C.-W.; Jiang, G.-Y.

Application of External Torque

Observer and Virtual Force Sensor for

a 6-DOF Robot. Appl. Sci. 2023, 13,

10917. https://doi.org/10.3390/

app131910917

Academic Editors: Renato Vidoni,

Andrea Giusti and Lorenzo Scalera

Received: 9 September 2023

Revised: 27 September 2023

Accepted: 28 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Application of External Torque Observer and Virtual Force
Sensor for a 6-DOF Robot
Chung-Wen Hung * and Guan-Yu Jiang

Department of Electrical Engineering, National Yunlin University of Science and Technology, 123 University
Road, Section 3, Yunlin 64002, Taiwan; m11012045@yuntech.edu.tw
* Correspondence: wenhung@yuntech.edu.tw

Abstract: A personal-computer-based and a Raspberry Pi single-board computer-based virtual force
sensor with EtherCAT communication for a six-axis robotic arm are proposed in this paper. Both
traditional mathematical modeling and machine learning techniques are used in the establishment
of the dynamic model of the robotic arm. Thanks to the high updating rate of EtherCAT, the
machine learning-based dynamic model on a personal computer achieved an average correlation
coefficient between the estimated torque and the actual torque feedback from the motor driver of
about 0.99. The dynamic model created using traditional mathematical modeling and the Raspberry
Pi single-board computer demonstrates an approximate correlation coefficient of 0.988 between the
estimated torque and the actual torque. The external torque observer is established by calculating the
difference between the actual torque and the estimated torque, and the virtual force sensor converts
the externally applied torques calculated for each axis to the end effector of the robotic arm. When
detecting external forces applied to the end effector, the virtual force sensor demonstrates a correlation
coefficient of 0.75 and a Root Mean Square Error of 12.93 N, proving its fundamental competence
for force measurement. In this paper, both the external torque observer and the virtual force control
are applied to applications related to sensing external forces of the robotic arm. The external torque
observer is utilized in the safety collision detection mechanism. Based on experimental results, the
system can halt the motion of the robotic arm using the minimum external force that the human
body can endure, thereby ensuring the operator’s safety. The virtual force control is utilized to
implement a position and force hybrid controller. The experimental results demonstrate that, under
identical control conditions, the position and force hybrid controller established by the Raspberry Pi
single-board computer achieves superior control outcomes in a constant force control scenario with
a pressure of 40 N. The average absolute error is 9.62 N, and the root mean square error is 11.16 N
when compared to the target pressure. From the analysis of the results, it can be concluded that the
Raspberry Pi system implemented in this paper can achieve a higher control command update rate
compared to personal computers. As a result, it can provide greater control benefits in position and
force hybrid control.

Keywords: robotic arm; Raspberry Pi; machine learning; safety collision detection; hybrid
position/force control; EtherCAT

1. Introduction

With the rise of the automation industry and Industry 4.0, robotic arms have become
widely utilized in highly repetitive, dangerous, and high-precision tasks. They not only
reduce labor costs but also improve production efficiency and maintain product processing
quality. With the advancement of the automation industry, the introduction of tactile
sensing into industrial robots will become one of the key developments after machine
vision. Applications of tactile sensing include safety collision detection mechanisms during
human–robot collaboration and the control of external forces applied to workpieces by
equipment to improve processing accuracy.

Appl. Sci. 2023, 13, 10917. https://doi.org/10.3390/app131910917 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910917
https://doi.org/10.3390/app131910917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1051-545X
https://doi.org/10.3390/app131910917
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910917?type=check_update&version=1

Appl. Sci. 2023, 13, 10917 2 of 20

Research and applications of robotic arms mostly revolve around utilizing external
attachments such as cameras, pressure sensors, or force sensors to make judgments and
decisions, perform object recognition and gripping, plan processing procedures, assemble
processing components, and polish processed parts. Industrial computers are typically
used to control robotic arms by sending control commands to motor drivers and receiving
current information from the motors. The current position and speed of the arm can be
determined through feedback from the motors. Manufacturers typically use current meters
to measure the torque of each axis of the arm. However, the precise external contact force
cannot be directly measured. For measuring the contact force of the end effector of a robotic
arm, six-axis force sensors are commonly used. However, the price of six-axis force sensors
is usually 30% to 50% of the price of the robotic arm. Additionally, industrial computers
are generally more expensive than computers used by the general public. As a result,
the overall cost becomes a significant burden. It is important to reduce the higher costs
associated with industrial computers.

Using contact force sensors will increase production costs, while establishing a virtual
force sensor based on feedback from the robotic arm. It is a cost-effective method. However,
precise mechanical structure parameters are required, such as the weight, center of gravity,
rotational inertia, and friction coefficient of each axis. However, suppliers of robotic
arms often cannot or are unwilling to provide accurate parameters. Therefore, this paper
proposes the use of machine learning to estimate torque and create a virtual force sensor.
By comparing it with a virtual force sensor established using parameters provided by
manufacturers, experiments were designed to verify the feasibility of safety collision
detection and hybrid position/force control using the virtual force sensor.

The price of industrial computers is generally higher than that of computers used by
the general public, which can impose a significant financial burden. In order to reduce the
high cost of industrial computers, this paper proposes the use of a Raspberry Pi as an upper-
level controller, in addition to utilizing personal computers with Windows systems. The
Raspberry Pi has advantages such as improved compatibility and a lower price. Therefore,
this paper chooses to implement a Real-Time Kernel on the Raspberry Pi. This approach
not only fulfills the requirements of EtherCAT motion control for the upper-level controller,
but also effectively reduces the cost of the upper-level controller.

2. Related Research

This paper aims to establish a position and force hybrid controller for the arm. To
achieve this, an accurate dynamic model of the mechanical arm needs to be established.
Traditional dynamic models are established using Lagrangian Mechanics or Newton–Euler
Equations [1–6]. The accuracy of identifying unknown parameters is ensured through the
design of excitation trajectories. Among the many parameter identification methods, the
weighted least squares method and the extended Kalman filtering method are two com-
monly used methods. Ref. [1] compares these two methods and states that the parameter
estimation of the two methods is very similar. However, the extended Kalman filtering algo-
rithm has a longer convergence time and is highly sensitive to initial conditions. Refs. [2,3]
propose parameterization and optimization criteria for excitation trajectories, which ensure
the average nature of time-domain data and effectively measure noise. Ref. [4] introduces
the artificial bee colony algorithm for estimating unknown parameters and verifies the
dynamic model’s ability to estimate the torque of the mechanical arm. The results show
that the correlation coefficient between the predicted torque of the first axis and the actual
torque is 0.9272. Ref. [5] obtains the best approximate solution using the newly established
unknown parameter approximation method and compares it with the least squares method.
The results show that it is superior to the least squares estimation method. Ref. [6] im-
proves the cuckoo search algorithm for parameter identification by incorporating chaotic
operators and emotional operators, which help the algorithm escape from local optimal
solutions. Through the literature mentioned above, it has been confirmed that it is possible

Appl. Sci. 2023, 13, 10917 3 of 20

to establish a traditional dynamic mathematical model by estimating unknown parameters
using algorithms.

In addition to the traditional method of establishing dynamic models using mathe-
matical equations, mentioned above, there has been a recent trend in establishing inverse
dynamic models through machine learning with the advancement of artificial intelligence.
It is stated that both traditional mathematical equations and machine learning can be used
to establish inverse dynamics and achieve a certain degree of torque prediction. Compared
to the traditional mathematical method, establishing a dynamic model requires a significant
amount of knowledge, whereas machine learning relies on a sufficient amount of relevant
information for modeling [7]. The proposal suggests utilizing physics simulation and
deep learning techniques for the dynamic control of a robotic arm. This method does not
require deriving the aforementioned traditional dynamic mathematical equations. The
numerical data simulated by the physics engine are utilized as training data. It has been
experimentally demonstrated that neural networks can accurately predict the torque of
each joint, with a dynamic error controlled within 10% [8]. This meets the requirements
for basic robotic arm dynamic control. XGBoost is a machine learning algorithm that has
been developed in recent years. It is a framework based on decision trees. XGBoost is
characterized by its fast speed, ability to handle large amounts of data, high flexibility, and
support for regression functions. It is commonly used in data analysis and other situa-
tions [9]. This paper will use the aforementioned XGBoost to establish an inverse dynamic
model of a six-axis robotic arm. Through machine learning, the goal is to analyze the non-
linear terms that cannot be solved by traditional mathematical methods when calculating
inverse dynamics. This analysis aims to improve the accuracy of torque prediction. It will
also compare the prediction results of the machine learning methods and the traditional
mathematical methods mentioned above.

In recent years, there has been a shift in the application of robotic arm control to-
wards emphasizing human–machine interaction and collaboration. Alongside simple
position control, force control has gradually emerged as a prominent trend in robotic arm
research [10–12]. Force sensors are used to measure the contact force at the end of the arm,
and they are also utilized to compensate for and fine-tune the position commands. For tra-
jectory tracking, another method is proposed in [13] to adjust the parameters of the internal
position control loop based on sensing the force at the end of contact. The experimental
results demonstrate that this method can ensure a stable device response. The virtual force
sensor utilizes the inverse dynamics equation of the robotic arm to calculate the torque
caused by external forces on each axis. It then converts this torque into the end contact force
and torque of the arm in Cartesian coordinates using the Jacobian matrix. Using a Kalman
filter to reduce torque noise from the driver is advantageous for estimating the external
interference torque of each axis. This directly impacts the accuracy of the virtual force
sensor [14–16]. Ref. [17] proposes that temperature influences frictional force. Experimental
results demonstrate that the frictional torque produced by a preheated arm is reduced by
approximately 33% during high-speed motion [18]. Taking into account the temperature
effect mentioned earlier, a temperature effect model is incorporated into the friction term in
the inverse dynamics to establish the virtual force sensor. When implementing polishing
force control, the root mean square error of the external contact force is reduced from
around 27.4 N to 21.4 N. After reviewing the relevant literature on force control and the
virtual force sensor mentioned earlier, this paper will employ both traditional mathematical
methods and machine learning techniques to compute the external disturbance torque
derived from the inverse dynamics model in order to establish a virtual force sensor. This
will be used to estimate the external contact force and perform position and force hybrid
control. Additionally, the differences between the two methods will be compared.

To achieve real-time control of the robot, the EtherCAT system is used with its trans-
mission rate of 100 Mbps to enable the real-time control of the robotic arm [19,20]. The
experimental results show that using EtherCAT as the robot control system can provide a
data exchange sampling rate of 10 kHz and a motion control position command control

Appl. Sci. 2023, 13, 10917 4 of 20

frequency of 1 kHz [21]. Using the EtherCAT control software TwinCAT developed by
Beckhoff and ESC as the master controller, and the PIC24H developed by Microchip as the
application controller, we verified the feasibility of CANopen over EtherCAT (CoE) and
the experimental results demonstrate that CoE is suitable for data collection and motion
control [22]. Using the EtherCAT master module IgH, based on the Linux system, to im-
plement the EtherCAT distributed clock can lead to resource preemption problems due
to the real-time nature of EtherCAT tasks. As a solution, the Linux system is equipped
with a real-time patch to enable the real-time processing of EtherCAT interrupt events. The
experimental results show that the synchronization time of the Linux real-time operating
system is more accurate than that of the Windows platform, with a standard deviation of
approximately 0.236 ns [23]. In the experiment, the real-time performance of the Linux
system with RTAI and Xenomai was compared. The results showed that both were superior
to using the Linux system alone. It was also found that Xenomai had slightly lower per-
formance than RTAI, but it had a superior architecture, better platform compatibility, and
was more conducive to system portability [24]. Therefore, this paper will use EtherCAT
for controlling a six-axis robotic arm. TwinCAT will be used on the personal computer,
while Xenomai with IgH will be installed on the Raspberry Pi 4B Linux system as the main
control platform.

3. Materials and Methods
3.1. System Architecture
3.1.1. Personal-Computer-Based

Figure 1 is the overall system architecture of using a personal computer with the
Windows operating system as the computing platform. The communication of peripheral
equipment, calculation of kinematics, establishment of the virtual force sensor, and the
motion control are calculated on the platform. Robotics are responsible for calculating
the posture of the robotic arm. The trajectory planning algorithm can generate smooth
movement trajectories based on target points. The dynamic model calculation is performed
using Python for machine learning. The dynamic model can calculate the ideal torque for
each axis in the current posture based on the feedback of the arm’s position and velocity.
The results calculated through the dynamic model can be differentiated from the feedback
motor torque of each axis to obtain the external torque of each axis. The external torque
value can be converted into a virtual force value on the operating surface of the arm’s
end through the virtual force sensor algorithm. Finally, applications related to force can
be performed based on the calculation results. The communication component utilizes
EtherCAT to transmit commands and data for each axis of the six-axis robotic arm. In this
architecture, the communication cycle is set to 2 ms due to the limitations of the Windows
system’s underlying clock.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

Figure 1. Architecture of the personal-computer-based system.

3.1.2. Raspberry Pi-Based
The system architecture which utilizes Raspberry Pi as the computing platform,

based on the Linux system environment, is depicted in Figure 2. The user interface was
created using the PyQt5 library in Python, while the algorithm program was implemented
using the C programming language. Different functions of the program are assigned to
independent cores, and data sharing is performed through Shared Memory, as shown in
Figure 2. This reduces resource contention issues and improves the performance of real-
time tasks. The commands and data transmission of the six-axis robotic arm are completed
through IgH EtherCAT. Compared to the Windows system, the Linux system has a more
precise system clock, allowing the motion control command update rate to be set at 4 kHz.
Considering the computational complexity of the dynamic algorithm, the computation
cycle needs to be approximately 0.8ms. Therefore, the communication cycle is set to 1ms,
which corresponds to a command update rate of 1 kHz.

Figure 2. Architecture of Raspberry Pi-based system.

3.2. Machine Learning-Based Robot Dynamic Model
3.2.1. Robot Dynamic Model

The dynamic equations primarily calculate the torque exerted on the motor driver
based on dynamic parameters, such as the position, velocity, and acceleration of the ro-
botic arm. The commonly used methods for derivation are the Euler–Lagrange equation
and the Newton–Euler equation. This paper utilizes Lagrange’s equation of motion to
solve the dynamics, as depicted in Equation (1). In this equation, 𝜏 is the calculated ideal

Figure 1. Architecture of the personal-computer-based system.

Appl. Sci. 2023, 13, 10917 5 of 20

3.1.2. Raspberry Pi-Based

The system architecture which utilizes Raspberry Pi as the computing platform, based
on the Linux system environment, is depicted in Figure 2. The user interface was created
using the PyQt5 library in Python, while the algorithm program was implemented using the
C programming language. Different functions of the program are assigned to independent
cores, and data sharing is performed through Shared Memory, as shown in Figure 2. This
reduces resource contention issues and improves the performance of real-time tasks. The
commands and data transmission of the six-axis robotic arm are completed through IgH
EtherCAT. Compared to the Windows system, the Linux system has a more precise system
clock, allowing the motion control command update rate to be set at 4 kHz. Considering
the computational complexity of the dynamic algorithm, the computation cycle needs to be
approximately 0.8 ms. Therefore, the communication cycle is set to 1ms, which corresponds
to a command update rate of 1 kHz.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

Figure 1. Architecture of the personal-computer-based system.

3.1.2. Raspberry Pi-Based
The system architecture which utilizes Raspberry Pi as the computing platform,

based on the Linux system environment, is depicted in Figure 2. The user interface was
created using the PyQt5 library in Python, while the algorithm program was implemented
using the C programming language. Different functions of the program are assigned to
independent cores, and data sharing is performed through Shared Memory, as shown in
Figure 2. This reduces resource contention issues and improves the performance of real-
time tasks. The commands and data transmission of the six-axis robotic arm are completed
through IgH EtherCAT. Compared to the Windows system, the Linux system has a more
precise system clock, allowing the motion control command update rate to be set at 4 kHz.
Considering the computational complexity of the dynamic algorithm, the computation
cycle needs to be approximately 0.8ms. Therefore, the communication cycle is set to 1ms,
which corresponds to a command update rate of 1 kHz.

Figure 2. Architecture of Raspberry Pi-based system.

3.2. Machine Learning-Based Robot Dynamic Model
3.2.1. Robot Dynamic Model

The dynamic equations primarily calculate the torque exerted on the motor driver
based on dynamic parameters, such as the position, velocity, and acceleration of the ro-
botic arm. The commonly used methods for derivation are the Euler–Lagrange equation
and the Newton–Euler equation. This paper utilizes Lagrange’s equation of motion to
solve the dynamics, as depicted in Equation (1). In this equation, 𝜏 is the calculated ideal

Figure 2. Architecture of Raspberry Pi-based system.

3.2. Machine Learning-Based Robot Dynamic Model
3.2.1. Robot Dynamic Model

The dynamic equations primarily calculate the torque exerted on the motor driver
based on dynamic parameters, such as the position, velocity, and acceleration of the robotic
arm. The commonly used methods for derivation are the Euler–Lagrange equation and the
Newton–Euler equation. This paper utilizes Lagrange’s equation of motion to solve the
dynamics, as depicted in Equation (1). In this equation, τ is the calculated ideal torque, q is
the angle of each axis of the motor,

.
q is the angular velocity,

..
q is the angular acceleration,

M represents the inertia matrix of the robotic arm, C represents the torque vector due to
Coriolis force, G represents the torque vector due to gravity force, and F represents the
torque vector due to friction force.

τ = M(q)
..
q + C

(
q,

.
q
)
+ G(q) + F(q) (1)

Building a mathematical model for dynamics requires several internal parameters of
the robotic arm, including the mass of each axis, the position of the center of mass relative
to each axis coordinate system, and the inertia tensor matrix. Most of the information
mentioned above consists of parameters considered confidential by the manufacturer.
Therefore, regression analysis is commonly used in the literature for system identification.
By designing various stimulation trajectories, it aims to analyze unknown parameters,
which necessitates intricate calculations and results in low accuracy. The robotic arm used
in this paper has internal parameters provided by the manufacturer that are relevant to
the study. Therefore, both the dynamics equation and machine learning techniques can
be employed to establish the dynamic model of the robotic arm. A comparison will be
conducted between the two approaches.

Appl. Sci. 2023, 13, 10917 6 of 20

3.2.2. Robot Friction Model

Through the mathematical equations of dynamics, the ideal torque of the arm can be
calculated based on its current posture and velocity. However, friction is an inevitable factor
in real environments. Therefore, an additional mathematical equation for friction needs
to be established in order to accurately estimate the torque of each axis. The method for
establishing the friction equation is to collect the actual torque of each axis during constant
velocity motion and calculate it with the estimated values calculated by the dynamic model.
Then, based on the calculated friction, a trend chart related to velocity can be drawn, such
as in Figure 3. According to the trend chart, there is a correlation between the velocity
of each axis and the friction value. By analyzing the relationship between the velocity
and friction of each axis motor in both the forward and reverse directions, it is possible to
deduce the linear equation for the friction of each axis motor. It was found that the friction
levels in the forward and reverse directions of the motor were not equal.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20

torque, 𝑞 is the angle of each axis of the motor, 𝑞ሶ is the angular velocity, 𝑞ሷ is the angular
acceleration, M represents the inertia matrix of the robotic arm, C represents the torque
vector due to Coriolis force, G represents the torque vector due to gravity force, and F
represents the torque vector due to friction force. 𝜏 = 𝑀ሺ𝑞ሻ𝑞ሷ + 𝐶ሺ𝑞, 𝑞ሶ ሻ + 𝐺ሺ𝑞ሻ + 𝐹(𝑞) (1)

Building a mathematical model for dynamics requires several internal parameters of
the robotic arm, including the mass of each axis, the position of the center of mass relative
to each axis coordinate system, and the inertia tensor matrix. Most of the information
mentioned above consists of parameters considered confidential by the manufacturer.
Therefore, regression analysis is commonly used in the literature for system identification.
By designing various stimulation trajectories, it aims to analyze unknown parameters,
which necessitates intricate calculations and results in low accuracy. The robotic arm used
in this paper has internal parameters provided by the manufacturer that are relevant to
the study. Therefore, both the dynamics equation and machine learning techniques can be
employed to establish the dynamic model of the robotic arm. A comparison will be con-
ducted between the two approaches.

3.2.2. Robot Friction Model
Through the mathematical equations of dynamics, the ideal torque of the arm can be

calculated based on its current posture and velocity. However, friction is an inevitable
factor in real environments. Therefore, an additional mathematical equation for friction
needs to be established in order to accurately estimate the torque of each axis. The method
for establishing the friction equation is to collect the actual torque of each axis during
constant velocity motion and calculate it with the estimated values calculated by the dy-
namic model. Then, based on the calculated friction, a trend chart related to velocity can
be drawn, such as in Figure 3. According to the trend chart, there is a correlation between
the velocity of each axis and the friction value. By analyzing the relationship between the
velocity and friction of each axis motor in both the forward and reverse directions, it is
possible to deduce the linear equation for the friction of each axis motor. It was found that
the friction levels in the forward and reverse directions of the motor were not equal.

Figure 3. Illustration of the frictional force regression curve.

This paper aims to convert the approximate straight lines obtained from Figure 3 into
mathematical formulas. These formulas will then be used as transformation formulas for
calculating friction force and velocity. By combining them with the dynamics equation, it
is possible to estimate the torque on each axis, including the friction force.

Figure 3. Illustration of the frictional force regression curve.

This paper aims to convert the approximate straight lines obtained from Figure 3 into
mathematical formulas. These formulas will then be used as transformation formulas for
calculating friction force and velocity. By combining them with the dynamics equation, it is
possible to estimate the torque on each axis, including the friction force.

3.2.3. Machine Learning Model

In addition to traditional mathematical methods, machine learning is another option
for obtaining the complete parameters of the arm, especially when the internal parameters
are known. Due to the poor accuracy of estimating internal parameters through parameter
identification, there has been a gradual emergence in the domestic and foreign literature
of the use of machine learning methods to address the issue of nonlinear terms in inverse
dynamics, which traditional mathematical methods struggle to solve. It is hoped that by
using a large amount of training data, the model can produce better results. This paper
will utilize Extreme Gradient Boosting (XGBoost) to develop inverse dynamics models and
compare the time consumption and accuracy of torque estimation.

XGBoost is a model based on the improvement of Gradient Boosting Decision Tree
(GBDT) [9]. Both XGBoost and GBDT belong to the ensemble learning algorithm known as
Boosting. It utilizes multiple classifiers to make predictions on the dataset and combines
the results of these classifiers through iterative calculations to obtain the final output. As
both are boosting models, XGBoost inherits the advantages of GBDT. GBDT finds the
optimal solution in the previous training and continues to split new trees based on this,
thereby improving the overall accuracy of the model. The difference between XGBoost
and GBDT is that GBDT uses the negative gradient of the loss function to construct the
tree for the current round, while XGBoost utilizes the second-order approximation of the
loss function to expedite the descent of the loss function and achieve a faster iteration

Appl. Sci. 2023, 13, 10917 7 of 20

speed. XGBoost also organizes all features before training and stores each feature point
in separate memory blocks. This allows for the simultaneous traversal of leaf nodes and
data features for splitting points when building a new tree. As a result, parallelization is
achieved, leading to improved training speed.

Due to the multi-link nature of the six-axis robotic arm, the torque output of each
motor in the arm’s axes is influenced by the angle and angular velocity of any given axis.
Therefore, the dynamic model established in this paper, as shown in Figure 4, consists of
six independent models for each axis, with 12 inputs and 1 output. The inputs for the
robotic arm are the angles and angular velocities of each axis’ motors, while the output is
the corresponding torque of the motor for each axis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20

3.2.3. Machine Learning Model
In addition to traditional mathematical methods, machine learning is another option

for obtaining the complete parameters of the arm, especially when the internal parameters
are known. Due to the poor accuracy of estimating internal parameters through parameter
identification, there has been a gradual emergence in the domestic and foreign literature
of the use of machine learning methods to address the issue of nonlinear terms in inverse
dynamics, which traditional mathematical methods struggle to solve. It is hoped that by
using a large amount of training data, the model can produce better results. This paper
will utilize Extreme Gradient Boosting (XGBoost) to develop inverse dynamics models
and compare the time consumption and accuracy of torque estimation.

XGBoost is a model based on the improvement of Gradient Boosting Decision Tree
(GBDT) [9]. Both XGBoost and GBDT belong to the ensemble learning algorithm known
as Boosting. It utilizes multiple classifiers to make predictions on the dataset and combines
the results of these classifiers through iterative calculations to obtain the final output. As
both are boosting models, XGBoost inherits the advantages of GBDT. GBDT finds the op-
timal solution in the previous training and continues to split new trees based on this,
thereby improving the overall accuracy of the model. The difference between XGBoost
and GBDT is that GBDT uses the negative gradient of the loss function to construct the
tree for the current round, while XGBoost utilizes the second-order approximation of the
loss function to expedite the descent of the loss function and achieve a faster iteration
speed. XGBoost also organizes all features before training and stores each feature point in
separate memory blocks. This allows for the simultaneous traversal of leaf nodes and data
features for splitting points when building a new tree. As a result, parallelization is
achieved, leading to improved training speed.

Due to the multi-link nature of the six-axis robotic arm, the torque output of each
motor in the arm’s axes is influenced by the angle and angular velocity of any given axis.
Therefore, the dynamic model established in this paper, as shown in Figure 4, consists of
six independent models for each axis, with 12 inputs and 1 output. The inputs for the
robotic arm are the angles and angular velocities of each axis’ motors, while the output is
the corresponding torque of the motor for each axis.

Figure 4. Architecture of the dynamic model based on machine learning.

3.2.4. Dataset Collection
From the inverse dynamics equation described in the previous section, it can be seen

that the torques of the six-axis robotic arm are interdependent. Therefore, in order to es-
tablish a machine learning model, it is necessary to collect the dynamic information of
each axis, including the position, angular velocity, angular acceleration, and motor output
torque of the arm during trajectory motion. The angular acceleration is not directly ob-
tainable data and needs to be obtained by differentiating the angular velocity. In order to
incorporate diversity in the training data of trajectories, this paper will utilize a random
trajectory generation algorithm to enable random arm movements within the workspace.
By adjusting the trajectory movement time to increase velocity and acceleration changes,
the training data will become more varied. Finally, the high data exchange rate feature of

Figure 4. Architecture of the dynamic model based on machine learning.

3.2.4. Dataset Collection

From the inverse dynamics equation described in the previous section, it can be seen
that the torques of the six-axis robotic arm are interdependent. Therefore, in order to
establish a machine learning model, it is necessary to collect the dynamic information
of each axis, including the position, angular velocity, angular acceleration, and motor
output torque of the arm during trajectory motion. The angular acceleration is not directly
obtainable data and needs to be obtained by differentiating the angular velocity. In order to
incorporate diversity in the training data of trajectories, this paper will utilize a random
trajectory generation algorithm to enable random arm movements within the workspace.
By adjusting the trajectory movement time to increase velocity and acceleration changes,
the training data will become more varied. Finally, the high data exchange rate feature of
the EtherCAT communication protocol can be utilized to extract the dynamic parameters
of each axis.

The algorithm will generate the new target point within the work at random and
plan the trajectories through the cubic polynomials in the joint space, to make the dataset
represent the features in each posture and motion adequately. It is important to check
whether the operation is in working space for all the points in the trajectory after designing
the training trajectory to ensure that the arm will not collide during the movement.

From the inverse dynamics equation described in the previous section, it can be seen
that the torques of the six-axis robotic arm are interdependent. Therefore, the position,
angular velocity, and angular acceleration of each axis are important parameters for training
the dynamic model. In order to align the trajectory with the diversity of training data,
the movement time for each segment of the trajectory was set to 3 s, 5 s, and 8 s. This
experiment collected a total of 20 million data points for the angle and angular velocity of
each axis.

3.2.5. Hyperparameter Optimization

The inputs of the model are the angle and angular velocity of each axis, and the
definition of the loss function is Mean Square Error (MSE), as shown in Equation (2).
Standardization is used to preprocess the input data, and the best hyperparameters are
searched through Bayesian Optimization to reduce the time spent in Grid Search. The

Appl. Sci. 2023, 13, 10917 8 of 20

range of hyperparameters is shown as Table 1, and this paper tests and analyzes the results
of different hyperparameter combinations.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

Table 1. The range of hyperparameters.

Hyperparameter Range

Max_depth 1~15
Eta 0.2, 0.1, 0.05, 0.01

Min_child_weight 0~6
Subsample 0.1~1

Colsample_bytree 0.1~1
Gamma 0~1

The top 3 model hyperparameter combinations after completing Bayesian optimization
are shown in Table 2. In Table 2, the minimum MSE value was 0.00158. Therefore, this
paper chose this set of hyperparameter combinations to train the dynamic model.

Table 2. Bayesian optimization results.

Item\Rank 1 2 3

Max_depth 10 10 8
Eta 0.01 0.1 0.1

Min_child_weight 0 5 0
Subsample 0.79 0.92 0.69

Colsample_bytree 0.73 0.96 0.45
Gamma 0.08 0.31 0.63

MSE 0.00158 0.00161 0.00164

3.3. Virtual Force Sensor

The external toque observer is established by the dynamic model for each axis, τa 6∗1
is the actual torque produced by the driver, τpred 6∗1 is the torque of the arm when there is
no load estimated by the model, and the external torque τe 6∗1 is obtained by the external
toque observer. After τe 6∗1 has been obtained, τe 6∗1 is converted into the external force
applied to the endpoint of the robotic arm through the inverse Jacobian transpose matrix(

J′
)−1 and the virtual force sensor for the robotic arm is established in this way. Figure 5 is

the flowchart of the virtual force sensor algorithm.

τe 6∗1 = τa 6∗1 − τpred 6∗1 (3)

Force6∗1 =



fx
fy
fz
f∅
fθ

fϕ

 =
(
J′
)−1



τ1
τ2
τ3
τ4
τ5
τ6

 (4)

Appl. Sci. 2023, 13, 10917 9 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20

is no load estimated by the model, and the external torque 𝜏௘ ଺∗ଵ is obtained by the exter-
nal toque observer. After 𝜏௘ ଺∗ଵ has been obtained, 𝜏௘ ଺∗ଵ is converted into the external
force applied to the endpoint of the robotic arm through the inverse Jacobian transpose
matrix(Jᇱ)ିଵ and the virtual force sensor for the robotic arm is established in this way.
Figure 5 is the flowchart of the virtual force sensor algorithm. 𝜏௘ ଺∗ଵ = 𝜏௔ ଺∗ଵ − 𝜏௣௥௘ௗ ଺∗ଵ (3)

𝐹𝑜𝑟𝑐𝑒଺∗ଵ =
⎣⎢⎢
⎢⎢⎢
⎡𝑓௫𝑓௬𝑓௭𝑓∅𝑓ఏ𝑓ఝ⎦⎥⎥

⎥⎥⎥
⎤ = (Jᇱ)ିଵ ⎣⎢⎢⎢

⎢⎡𝜏ଵ𝜏ଶ𝜏ଷ𝜏ସ𝜏ହ𝜏଺⎦⎥⎥
⎥⎥⎤ (4)

Figure 5. Flowchart of the virtual force sensor algorithm.

3.4. Hybrid Position/Force Control Architecture
The architecture of the proposed position and force hybrid controller is shown in

Figure 6. Position control was achieved by specifying a target position and executing Car-
tesian-space trajectory planning. The calculated trajectory points are coordinate values, so
they need to be converted into motor angle commands using inverse kinematics. After
obtaining the motor trajectory commands, motion is carried out using Cyclic Synchronous
Position (CSP) control mode. The position control, velocity control, and torque control in
Figure 6 are all internal loops provided by the motor driver. The actual position control
error will be compensated in the next command cycle through error compensation mech-
anisms. The force control component compares the feedback torque from each axis motor
with the estimated torque from the dynamic model and calculates the external torque. A
virtual force sensor is established to calculate the estimated end force and target force,
using the principles of the virtual force sensor. The force error is then converted into var-
iations in each joint of the robotic arm for force control.

Figure 5. Flowchart of the virtual force sensor algorithm.

3.4. Hybrid Position/Force Control Architecture

The architecture of the proposed position and force hybrid controller is shown in
Figure 6. Position control was achieved by specifying a target position and executing
Cartesian-space trajectory planning. The calculated trajectory points are coordinate values,
so they need to be converted into motor angle commands using inverse kinematics. After
obtaining the motor trajectory commands, motion is carried out using Cyclic Synchronous
Position (CSP) control mode. The position control, velocity control, and torque control in
Figure 6 are all internal loops provided by the motor driver. The actual position control error
will be compensated in the next command cycle through error compensation mechanisms.
The force control component compares the feedback torque from each axis motor with the
estimated torque from the dynamic model and calculates the external torque. A virtual
force sensor is established to calculate the estimated end force and target force, using the
principles of the virtual force sensor. The force error is then converted into variations in
each joint of the robotic arm for force control.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20

Figure 6. Architecture of hybrid position/force control.

4. Experiment and Results
After establishing the virtual force sensor, this paper applied the virtual force sensor

to external contact force detection and force control. In the application of external contact
force detection, this paper designed a safety collision detection experiment to verify the
feasibility of applying the virtual force sensor to detect the external contact force. In the
application of the force control, the hybrid position/force control was applied to the grind
experiment of constant force control to verify that the virtual force sensor can be applied
to the constant force control.

4.1. Verification of the Robot Dynamic Model Based on PC
In this paper, the best hyperparameter combination of XGBoost was selected for

model establishing, and to predict and verify the test set for the model. A total of 100
random motion trajectories were used as a test set for evaluating the best model in this
experiment. To verify the precision of the best model, Root Mean Square Error, as shown
in Equation (5), Mean Absolute Error, as shown in Equation (6), and correlation coefficient γ of prediction torque 𝜏௣௜ and actual toque 𝜏௜ were applied to estimate the model, as
shown in Equation (7). In Equation (7), 𝜏 = ଵ௡ ∑ 𝜏௜ே௜ୀଵ and 𝜏௣ = ଵ௡ ∑ 𝜏௣௜ே௜ୀଵ .

𝑅𝑀𝑆𝐸 = ඩ1𝑛෍൫𝜏௜ − 𝜏௣௜൯ଶ௡
௜ୀଵ (5)

𝑀𝐴𝐸 = 1𝑛෍ቤ൫𝜏௜ − 𝜏௣௜൯𝜏௜ ቤ௡
௜ୀଵ (6)

𝑟 = ∑ (𝜏௜ − 𝜏)(𝜏௣௜ − 𝜏௣)ே௜ୀଵට∑ (𝜏௜ − 𝜏)ଶே௜ୀଵ ∑ (𝜏௣௜ − 𝜏௣)ଶே௜ୀଵ (7)

The analysis of the dynamic model based on XGBoost model for each axis is shown in
Table 3. As seen in Table 3, the correlation coefficient of prediction torque and actual toque
was about 0.99 and the model took about 1ms to predict the torque of the six-axis. Figure 7
compares the predict torque (estimation torque) and the actual torque (feedback torques)
for each axis.

Table 3. Analysis of the dynamic model.

 MAE(Nm) RMSE(Nm) 𝛄
Axis 1 15.5489 23.9275 0.9859
Axis 2 6.7931 12.4564 0.9876
Axis 3 4.2617 6.3248 0.9872
Axis 4 1.1564 1.6451 0.9923
Axis 5 0.5816 0.8051 0.9906
Axis 6 0.1695 0.2280 0.9967

Figure 6. Architecture of hybrid position/force control.

Appl. Sci. 2023, 13, 10917 10 of 20

4. Experiment and Results

After establishing the virtual force sensor, this paper applied the virtual force sensor
to external contact force detection and force control. In the application of external contact
force detection, this paper designed a safety collision detection experiment to verify the
feasibility of applying the virtual force sensor to detect the external contact force. In the
application of the force control, the hybrid position/force control was applied to the grind
experiment of constant force control to verify that the virtual force sensor can be applied to
the constant force control.

4.1. Verification of the Robot Dynamic Model Based on PC

In this paper, the best hyperparameter combination of XGBoost was selected for model
establishing, and to predict and verify the test set for the model. A total of 100 random
motion trajectories were used as a test set for evaluating the best model in this experiment.
To verify the precision of the best model, Root Mean Square Error, as shown in Equation (5),
Mean Absolute Error, as shown in Equation (6), and correlation coefficient γ of prediction
torque τpi and actual toque τi were applied to estimate the model, as shown in Equation (7).

In Equation (7),
−
τ = 1

n ∑N
i=1 τi and

−
τ p = 1

n ∑N
i=1 τpi.

RMSE =

√√√√√ 1
n

n

∑
i=1

(
τi − τpi

)2 (5)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣
(
τi − τpi

)
τi

∣∣∣∣∣ (6)

r =
∑N

i=1

(
τi −

−
τ

)(
τpi −

−
τ p

)
√

∑N
i=1

(
τi −

−
τ

)2

∑N
i=1

(
τpi −

−
τ p

)2
(7)

The analysis of the dynamic model based on XGBoost model for each axis is shown in
Table 3. As seen in Table 3, the correlation coefficient of prediction torque and actual toque
was about 0.99 and the model took about 1ms to predict the torque of the six-axis. Figure 7
compares the predict torque (estimation torque) and the actual torque (feedback torques)
for each axis.

Table 3. Analysis of the dynamic model.

MAE (Nm) RMSE (Nm) γ

Axis 1 15.5489 23.9275 0.9859
Axis 2 6.7931 12.4564 0.9876
Axis 3 4.2617 6.3248 0.9872
Axis 4 1.1564 1.6451 0.9923
Axis 5 0.5816 0.8051 0.9906
Axis 6 0.1695 0.2280 0.9967

Appl. Sci. 2023, 13, 10917 11 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of the feedback torques and estimation (prediction) torques: (a) Axis 1;
(b) Axis 2; (c) Axis 3; (d) Axis 4; (e) Axis 5; (f) Axis 6.

4.2. Verification of the Robot Dynamic Model based on Raspberry Pi
This section will validate the dynamic model established using Raspberry Pi. Due to

the lower computational power of Raspberry Pi compared to personal computers, there
may be insufficient computational power when running the AI model. Therefore, the dy-
namic model of the Raspberry Pi system was conducted using a pure mathematical model,
and the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and correlation

Figure 7. Comparison of the feedback torques and estimation (prediction) torques: (a) Axis 1;
(b) Axis 2; (c) Axis 3; (d) Axis 4; (e) Axis 5; (f) Axis 6.

4.2. Verification of the Robot Dynamic Model Based on Raspberry Pi

This section will validate the dynamic model established using Raspberry Pi. Due to
the lower computational power of Raspberry Pi compared to personal computers, there may
be insufficient computational power when running the AI model. Therefore, the dynamic
model of the Raspberry Pi system was conducted using a pure mathematical model,

Appl. Sci. 2023, 13, 10917 12 of 20

and the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and correlation
coefficient between actual torque and estimated torque were evaluated. Figure 8 compares
the estimated torque and actual torque during the actual test. By organizing the results
obtained from Figure 8, the evaluation table in Table 4 was created. It can be observed that,
with the exception of the correlation coefficient of the third axis, which was lower than 0.98,
the correlation coefficients of the remaining axes were all higher than 0.988. Although the
accuracy was lower than using the XGBoost model on a personal computer, the results
were still within an acceptable range.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20

coefficient between actual torque and estimated torque were evaluated. Figure 8 compares
the estimated torque and actual torque during the actual test. By organizing the results
obtained from Figure 8, the evaluation table in Table 4 was created. It can be observed
that, with the exception of the correlation coefficient of the third axis, which was lower
than 0.98, the correlation coefficients of the remaining axes were all higher than 0.988.
Although the accuracy was lower than using the XGBoost model on a personal computer,
the results were still within an acceptable range.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison of the feedback torques and estimation (prediction) torques: (a) Axis 1;
(b) Axis 2; (c) Axis 3; (d) Axis 4; (e) Axis 5; (f) Axis 6.

Figure 8. Comparison of the feedback torques and estimation (prediction) torques: (a) Axis 1;
(b) Axis 2; (c) Axis 3; (d) Axis 4; (e) Axis 5; (f) Axis 6.

Appl. Sci. 2023, 13, 10917 13 of 20

Table 4. Analysis of the dynamic model.

MAE (Nm) RMSE (Nm) γ

Axis 1 14.7371 19.9986 0.9915
Axis 2 9.4744 14.1449 0.9895
Axis 3 6.2997 9.6843 0.9770
Axis 4 5.0730 6.2901 0.9894
Axis 5 1.8219 2.0906 0.9940
Axis 6 0.6542 0.8158 0.9964

4.3. Verification of Virtual Force Sensor

To verify the virtual force sensor, this paper analyzed the external force exerted by the
robotic arm through the experiment of grind motion, such as in Figure 9. The experiment
plan was to grind from point A to point B in Figure 9b on the XY plane after touching
the platform. And the trajectory was planned at the speed of 100 mm/s. After the virtual
force sensor was established through the external torque observer, the MAE, RMSE, and
correlation coefficients of the virtual force sensor and the force sensor were evaluated in the
above experiment. The analysis of the virtual force senor is shown in Table 5. From Table 5,
it can be seen that the correlation coefficient of X was approximately 0.71, the correlation
coefficient of Y was approximately 0.73, the mean absolute errors (MAE) of X and Y were
both around 20 N, the correlation coefficient of Z was approximately 0.75, the MAE was
around 9.37 N, and the root mean square error (RMSE) was around 12.93N. Furthermore,
Figure 10 shows that the errors and noise generated during the estimation of the external
force in the Z direction were relatively small. This is advantageous for our application
in pressure sensing and control. Therefore, this paper conducted experiments using the
virtual force sensor of the robotic arm to explore its potential for pressure control-related
applications and to verify its applicability in the field of force control.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

Table 4. Analysis of the dynamic model.

 MAE(Nm) RMSE(Nm) 𝛄
Axis 1 14.7371 19.9986 0.9915
Axis 2 9.4744 14.1449 0.9895
Axis 3 6.2997 9.6843 0.9770
Axis 4 5.0730 6.2901 0.9894
Axis 5 1.8219 2.0906 0.9940
Axis 6 0.6542 0.8158 0.9964

4.3. Verification of Virtual Force Sensor
To verify the virtual force sensor, this paper analyzed the external force exerted by

the robotic arm through the experiment of grind motion, such as in Figure 9. The experi-
ment plan was to grind from point A to point B in Figure 9b on the XY plane after touching
the platform. And the trajectory was planned at the speed of 100 mm/s. After the virtual
force sensor was established through the external torque observer, the MAE, RMSE, and
correlation coefficients of the virtual force sensor and the force sensor were evaluated in
the above experiment. The analysis of the virtual force senor is shown in Table 5. From
Table 5, it can be seen that the correlation coefficient of X was approximately 0.71, the
correlation coefficient of Y was approximately 0.73, the mean absolute errors (MAE) of X
and Y were both around 20 N, the correlation coefficient of Z was approximately 0.75, the
MAE was around 9.37 N, and the root mean square error (RMSE) was around 12.93N.
Furthermore, Figure 10 shows that the errors and noise generated during the estimation
of the external force in the Z direction were relatively small. This is advantageous for our
application in pressure sensing and control. Therefore, this paper conducted experiments
using the virtual force sensor of the robotic arm to explore its potential for pressure con-
trol-related applications and to verify its applicability in the field of force control.

(a) (b)

Figure 9. (a) Grinding experiment; (b) motion trajectory of the grinding experiment.

Table 5. Analysis of the virtual force sensor.

 MAE(N) RMSE(N) 𝛄 𝐹௫ 20.0838 24.6242 0.7107 𝐹௬ 20.8401 30.0805 0.7325 𝐹௭ 9.3788 12.9381 0.7542

Figure 9. (a) Grinding experiment; (b) motion trajectory of the grinding experiment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20

Figure 10. Comparison of the external force between senor and virtual sensor in the Z direction.

Based on the above arguments, the system could not accurately estimate the external
contact force of 20N or lower because the virtual force sensor based on the dynamic model
was limited by the accuracy of the model, the noise of the driver and the influence of the
inaccurate estimation of the static state. Therefore, this system is only suitable for detect-
ing external contact force and lower precision force control applications.

4.4. Safety Collision Detection
In the safety collision detection experiment, the external force was detected through

the virtual force sensor, and the movement of robotic arm would stop when the external
force exceeded the safe range of external force of the human body to ensure the safety of
the human when operating the equipment. In Table 6, BG/BGIA Risk Assessment Recom-
mendations According to Machinery Directive: Design of Workplaces with Collaborative
Robots [25] suggest the minimum external force and pressure that the body region can
withstand.

Clamping/squeezing force (CSF) is the external force affecting the body region at
more than 0.5s; impact force (IMF) is the difference between the maximum force and the
forces before and after the maximum when it is more than 5 N over a time interval of 0.5
s or less; pressure/surface pressing (PSP) is the pressure generated under the contact area
of the collision; and compression constant (CC) is the deformation constant of each region
of the body.

Table 6. The minimum external force and pressure that the body region can withstand.

 Skull Face Neck (Slides) Neck (Front) Shoulder Chest Arm Leg
CSF (N) 130 65 145 35 210 140 160 140
IMF (N) 175 90 190 35 250 210 220 170

PSP (N/cmଶ) 30 20 50 10 70 45 50 45
CC (N/mm) 150 75 50 10 35 25 40 60

According to Table 6, the smallest external force that the front side of the human neck
can withstand is about 35 N. Therefore, the safety collision detection mechanism of the
experiment was defined through the table. The flowchart of the safety collision detection
algorithm is shown in Figure 11; when the external force is higher than the threshold for
10ms, it will be considered as a collision and the movement of the robotic arm will be
stopped.

Figure 10. Comparison of the external force between senor and virtual sensor in the Z direction.

Appl. Sci. 2023, 13, 10917 14 of 20

Table 5. Analysis of the virtual force sensor.

MAE (N) RMSE (N) γ

Fx 20.0838 24.6242 0.7107
Fy 20.8401 30.0805 0.7325
Fz 9.3788 12.9381 0.7542

Based on the above arguments, the system could not accurately estimate the external
contact force of 20N or lower because the virtual force sensor based on the dynamic model
was limited by the accuracy of the model, the noise of the driver and the influence of the
inaccurate estimation of the static state. Therefore, this system is only suitable for detecting
external contact force and lower precision force control applications.

4.4. Safety Collision Detection

In the safety collision detection experiment, the external force was detected through
the virtual force sensor, and the movement of robotic arm would stop when the external
force exceeded the safe range of external force of the human body to ensure the safety
of the human when operating the equipment. In Table 6, BG/BGIA Risk Assessment
Recommendations According to Machinery Directive: Design of Workplaces with Collabo-
rative Robots [25] suggest the minimum external force and pressure that the body region
can withstand.

Table 6. The minimum external force and pressure that the body region can withstand.

Skull Face Neck
(Slides)

Neck
(Front) Shoulder Chest Arm Leg

CSF (N) 130 65 145 35 210 140 160 140
IMF (N) 175 90 190 35 250 210 220 170

PSP (N/cm2) 30 20 50 10 70 45 50 45
CC (N/mm) 150 75 50 10 35 25 40 60

Clamping/squeezing force (CSF) is the external force affecting the body region at
more than 0.5s; impact force (IMF) is the difference between the maximum force and the
forces before and after the maximum when it is more than 5 N over a time interval of 0.5 s
or less; pressure/surface pressing (PSP) is the pressure generated under the contact area of
the collision; and compression constant (CC) is the deformation constant of each region of
the body.

According to Table 6, the smallest external force that the front side of the human
neck can withstand is about 35 N. Therefore, the safety collision detection mechanism
of the experiment was defined through the table. The flowchart of the safety collision
detection algorithm is shown in Figure 11; when the external force is higher than the
threshold for 10 ms, it will be considered as a collision and the movement of the robotic arm
will be stopped.

Figure 12 shows the experiment of collision detection with safety control. According to
the result, the external force was detected at 5.11 s and the system judged that the collision
occurred at 5.31 s. The safety collision mechanism was triggered within 10 ms after the
external force occurred, and the movement stopped immediately. The result shows that the
system conformed to the safety specifications suggested by [25] and the virtual force sensor
can be applied in safe collision detection.

Appl. Sci. 2023, 13, 10917 15 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

Figure 11. Flowchart of the safety collision detection algorithm.

Figure 12 shows the experiment of collision detection with safety control. According
to the result, the external force was detected at 5.11 s and the system judged that the col-
lision occurred at 5.31s. The safety collision mechanism was triggered within 10 ms after
the external force occurred, and the movement stopped immediately. The result shows
that the system conformed to the safety specifications suggested by [25] and the virtual
force sensor can be applied in safe collision detection.

(a) (b)

Figure 12. (a) Results of collision detection with safety control; (b) safe collision detection.

4.5. Hybrid Position/Force Control Experiment Result
In the experiment on force control, the hybrid position/force control was applied to

the grinding motion and the position and constant force were controlled during the grind-
ing motion. The experiment planned to grind on the XY plane after touching the platform
(see Figure 13). The trajectory was planned at the speed of 100 mm/s, the position control
was performed on the X and Y directions and the 𝐹௭ applied to the Z direction was con-
trolled by a constant force controller.

Figure 11. Flowchart of the safety collision detection algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

Figure 11. Flowchart of the safety collision detection algorithm.

Figure 12 shows the experiment of collision detection with safety control. According
to the result, the external force was detected at 5.11 s and the system judged that the col-
lision occurred at 5.31s. The safety collision mechanism was triggered within 10 ms after
the external force occurred, and the movement stopped immediately. The result shows
that the system conformed to the safety specifications suggested by [25] and the virtual
force sensor can be applied in safe collision detection.

(a) (b)

Figure 12. (a) Results of collision detection with safety control; (b) safe collision detection.

4.5. Hybrid Position/Force Control Experiment Result
In the experiment on force control, the hybrid position/force control was applied to

the grinding motion and the position and constant force were controlled during the grind-
ing motion. The experiment planned to grind on the XY plane after touching the platform
(see Figure 13). The trajectory was planned at the speed of 100 mm/s, the position control
was performed on the X and Y directions and the 𝐹௭ applied to the Z direction was con-
trolled by a constant force controller.

Figure 12. (a) Results of collision detection with safety control; (b) safe collision detection.

4.5. Hybrid Position/Force Control Experiment Result

In the experiment on force control, the hybrid position/force control was applied
to the grinding motion and the position and constant force were controlled during the
grinding motion. The experiment planned to grind on the XY plane after touching the
platform (see Figure 13). The trajectory was planned at the speed of 100 mm/s, the position
control was performed on the X and Y directions and the Fz applied to the Z direction was
controlled by a constant force controller.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 13. (a) Contact situation; (b) contact and force control.

This experiment validated the feasibility of the hybrid controller by utilizing a virtual
force sensor to execute the mixed control of position and force. The experiment planned
to validate the hybrid controller through a reciprocating grinding experiment. The exper-
iment first compared the results of controlling pressure under the same target using a
personal computer (see Figure 14) and a Raspberry Pi (see Figure 15). The MAE (Mean
Absolute Error) for the personal computer was 9.2406 N, and the RMSE (Root Mean
Square Error) was 14.6020 N. The mean absolute error (MAE) for the Raspberry Pi was
9.6231 N, and the root mean square error (RMSE) was 11.1620 N. It can be seen that com-
pared to the personal computer, the results of the Raspberry Pi control had a more im-
pressive RMSE. This is because the Raspberry Pi system established in this paper could
provide a higher control command update rate compared to the personal computer, re-
sulting in higher control efficiency. Therefore, this paper continued to use the Raspberry
Pi to control under different pressure conditions and evaluate the results.

Figure 14. Results of the contact force control experiment on PC.

Figure 15. Results of the contact force control experiment on Raspberry Pi.

Figure 13. (a) Contact situation; (b) contact and force control.

Appl. Sci. 2023, 13, 10917 16 of 20

This experiment validated the feasibility of the hybrid controller by utilizing a virtual
force sensor to execute the mixed control of position and force. The experiment planned to
validate the hybrid controller through a reciprocating grinding experiment. The experiment
first compared the results of controlling pressure under the same target using a personal
computer (see Figure 14) and a Raspberry Pi (see Figure 15). The MAE (Mean Absolute
Error) for the personal computer was 9.2406 N, and the RMSE (Root Mean Square Error)
was 14.6020 N. The mean absolute error (MAE) for the Raspberry Pi was 9.6231 N, and
the root mean square error (RMSE) was 11.1620 N. It can be seen that compared to the
personal computer, the results of the Raspberry Pi control had a more impressive RMSE.
This is because the Raspberry Pi system established in this paper could provide a higher
control command update rate compared to the personal computer, resulting in higher
control efficiency. Therefore, this paper continued to use the Raspberry Pi to control under
different pressure conditions and evaluate the results.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 13. (a) Contact situation; (b) contact and force control.

This experiment validated the feasibility of the hybrid controller by utilizing a virtual
force sensor to execute the mixed control of position and force. The experiment planned
to validate the hybrid controller through a reciprocating grinding experiment. The exper-
iment first compared the results of controlling pressure under the same target using a
personal computer (see Figure 14) and a Raspberry Pi (see Figure 15). The MAE (Mean
Absolute Error) for the personal computer was 9.2406 N, and the RMSE (Root Mean
Square Error) was 14.6020 N. The mean absolute error (MAE) for the Raspberry Pi was
9.6231 N, and the root mean square error (RMSE) was 11.1620 N. It can be seen that com-
pared to the personal computer, the results of the Raspberry Pi control had a more im-
pressive RMSE. This is because the Raspberry Pi system established in this paper could
provide a higher control command update rate compared to the personal computer, re-
sulting in higher control efficiency. Therefore, this paper continued to use the Raspberry
Pi to control under different pressure conditions and evaluate the results.

Figure 14. Results of the contact force control experiment on PC.

Figure 15. Results of the contact force control experiment on Raspberry Pi.

Figure 14. Results of the contact force control experiment on PC.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 13. (a) Contact situation; (b) contact and force control.

This experiment validated the feasibility of the hybrid controller by utilizing a virtual
force sensor to execute the mixed control of position and force. The experiment planned
to validate the hybrid controller through a reciprocating grinding experiment. The exper-
iment first compared the results of controlling pressure under the same target using a
personal computer (see Figure 14) and a Raspberry Pi (see Figure 15). The MAE (Mean
Absolute Error) for the personal computer was 9.2406 N, and the RMSE (Root Mean
Square Error) was 14.6020 N. The mean absolute error (MAE) for the Raspberry Pi was
9.6231 N, and the root mean square error (RMSE) was 11.1620 N. It can be seen that com-
pared to the personal computer, the results of the Raspberry Pi control had a more im-
pressive RMSE. This is because the Raspberry Pi system established in this paper could
provide a higher control command update rate compared to the personal computer, re-
sulting in higher control efficiency. Therefore, this paper continued to use the Raspberry
Pi to control under different pressure conditions and evaluate the results.

Figure 14. Results of the contact force control experiment on PC.

Figure 15. Results of the contact force control experiment on Raspberry Pi. Figure 15. Results of the contact force control experiment on Raspberry Pi.

The external forces applied to the Z direction Fz = 20, 30, 40 were compared in this
experiment. In this experiment, the force sensor and the target constant force MAE and
RMSE were evaluated for the force controller part, and the RMSE of the X and Y directions
with or without the position controller were evaluated for the position controller part.

Table 7 gives an evaluation of the effect of Raspberry Pi controlling different com-
pressive pressures. It can be seen that the experimental results generated for 30 N and
40 N are superior to those of the other two groups, with more accurate virtual force values
and better control force. From the experimental results, it can be seen that although the
control accuracy of the force controller is limited by the accuracy of the virtual force value,

Appl. Sci. 2023, 13, 10917 17 of 20

this experimental result can still meet the low-precision force control requirements for
different forces.

Table 7. Comparison of the force sensor and virtual force sensor.

MAE (N) RMSE (N)

Fz = 20 11.1700 16.2204
Fz = 30 9.0563 10.5321
Fz = 40 9.6231 11.1620

Figure 16 shows the results of the contact force control experiment, and we can see
that when the robotic arm moved to the turning point and the speed approached zero, the
virtual force sensor was inaccurate, as in the previous experiment. Therefore, the force
controller proposed in this system avoids the noise of inaccurate prediction at the turning
point.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20

The external forces applied to the Z direction 𝐹௭ = 20, 30, 40 were compared in this
experiment. In this experiment, the force sensor and the target constant force MAE and
RMSE were evaluated for the force controller part, and the RMSE of the X and Y directions
with or without the position controller were evaluated for the position controller part.

Table 7 gives an evaluation of the effect of Raspberry Pi controlling different com-
pressive pressures. It can be seen that the experimental results generated for 30 N and 40
N are superior to those of the other two groups, with more accurate virtual force values
and better control force. From the experimental results, it can be seen that although the
control accuracy of the force controller is limited by the accuracy of the virtual force value,
this experimental result can still meet the low-precision force control requirements for
different forces.

Table 7. Comparison of the force sensor and virtual force sensor.

 MAE (N) RMSE (N) 𝐹௭ = 20 11.1700 16.2204 𝐹௭ = 30 9.0563 10.5321 𝐹௭ = 40 9.6231 11.1620

Figure 16 shows the results of the contact force control experiment, and we can see
that when the robotic arm moved to the turning point and the speed approached zero, the
virtual force sensor was inaccurate, as in the previous experiment. Therefore, the force
controller proposed in this system avoids the noise of inaccurate prediction at the turning
point.

(a) (b) (c)

Figure 16. Results of the contact force control experiment: desired forces of 20 N (a), 30 N (b) and 40
N (c).

Based on the above experiments, the results generated by applying this system to
Raspberry Pi were better. The reason is that the Raspberry Pi system established in this
paper could provide a higher control command update rate compared to a personal com-
puter. It also achieved higher control efficiency and verified the feasibility of applying this
system to lower precision force control.

5. Conclusions
This article utilized personal computers and Raspberry Pi to create a virtual force

sensor for a six-axis robotic arm. It detected external contact forces using a virtual force
sensor for applications related to force control. The experiment confirmed that this system
can establish an external torque observer and virtual force sensor for a six-axis robotic arm
using a dynamic model with both the Raspberry Pi and personal computers. It was ap-
plied for force detection, and collision detection mechanisms were implemented using an
external torque observer. The position and force hybrid control framework was achieved
using the virtual force sensor.

Figure 16. Results of the contact force control experiment: desired forces of 20 N (a), 30 N (b) and
40 N (c).

Based on the above experiments, the results generated by applying this system to
Raspberry Pi were better. The reason is that the Raspberry Pi system established in this
paper could provide a higher control command update rate compared to a personal com-
puter. It also achieved higher control efficiency and verified the feasibility of applying this
system to lower precision force control.

5. Conclusions

This article utilized personal computers and Raspberry Pi to create a virtual force
sensor for a six-axis robotic arm. It detected external contact forces using a virtual force
sensor for applications related to force control. The experiment confirmed that this system
can establish an external torque observer and virtual force sensor for a six-axis robotic
arm using a dynamic model with both the Raspberry Pi and personal computers. It was
applied for force detection, and collision detection mechanisms were implemented using
an external torque observer. The position and force hybrid control framework was achieved
using the virtual force sensor.

In terms of the dynamic model, this article compared the torque estimation effects of
traditional mathematical models and machine learning models using personal computers
and Raspberry Pi. The experimental results demonstrate that the correlation coefficient
between the torque estimated by the dynamic model established using the mathematical
model on the Raspberry Pi system and the actual torque was approximately 0.985. This
value is higher than the correlation coefficient of the dynamic model established using the
traditional mathematical model [4]. These findings provide evidence for the feasibility of
torque estimation using the mathematical model. The correlation coefficient between the
torque estimated by the machine learning model established using personal computers and

Appl. Sci. 2023, 13, 10917 18 of 20

the actual torque was approximately 0.988. This is higher than the correlation coefficient
of the dynamic model established through the mathematical model on the Raspberry Pi
system. This result demonstrates the feasibility of establishing a dynamic model through
machine learning. The external torque observer and virtual force sensor were established
through machine learning, and the accuracy of the virtual force sensor was affected by
motor driver noise and model accuracy. The correlation coefficient of the estimated contact
force was approximately 0.75, and the RMSE was approximately 13 N, which is better than
the results obtained in [17,18].

Through the collision detection experiment of the robotic arm, it was verified that the
external torque observer established through the dynamic model in this system could stop
the motion of the robotic arm within the recommended safety range in [25], improving the
safety of human–robot collaboration.

In the position and force hybrid control experiment, the control results of using the
machine learning model to establish the virtual force sensor in personal computers and
using the mathematical model to establish the virtual force sensor in Raspberry Pi were
compared. From the experimental results, it can be observed that when the controlled
contact force was 40 N, the utilization of the machine learning model on personal computers
yielded control results with a Mean Absolute Error (MAE) of approximately 9.24 N and
a Root Mean Square Error (RMSE) of approximately 14.60 N. On the other hand, when
using Raspberry Pi, the MAE was approximately 9.62 N and the RMSE was approximately
11.16 N. It can be concluded from the experimental results that the position and force
hybrid controller established using Raspberry Pi could achieve superior control outcomes.
In subsequent fixed force control with different target contact forces, it was found that
this system had better performance when controlling a fixed force of 30 N and 40 N. The
accuracy of fixed force control not only depends on the estimation accuracy of the dynamic
model but also on the command update rate of the controller. The feasibility of applying
the position and force hybrid control framework proposed in this paper to lower-precision
force control domains was also verified.

This paper successfully developed a virtual force control for a six-axis robotic arm
using both personal computers and Raspberry Pi. It also established a position and force
hybrid control framework. However, we were unable to achieve high-precision force
control applications. Therefore, the following improvements are proposed based on the
results of this paper: It has been observed that the friction force in the low-speed range
differed from that during normal arm movement. This is because the system calculates
the friction force equation by comparing the dynamic equation with the actual torque.
Therefore, in the future, when establishing the dynamic model, a low-speed model can be
added to improve the overall prediction accuracy. This paper utilized Raspberry Pi with
Linux and real-time systems to establish an EtherCAT upper control platform with a higher
command update rate. However, due to the limitations of Raspberry Pi’s specifications,
it was not possible to apply the machine learning model used on personal computers to
Raspberry Pi. Therefore, in the future, the complexity of the machine learning algorithm
could be reduced by adjusting the machine learning model, enabling Raspberry Pi to handle
the computational load of the entire system.

Author Contributions: C.-W.H. and G.-Y.J. initiated and developed ideas for this research, developed
the presented novel methods, derived relevant formulations, and performed performance analyses of
simulation and experimental results. G.-Y.J. wrote the paper draft under the guidance of C.-W.H.,
who finalized the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This study was partly supported by the Ministry of Science and Technology, Taiwan, under
Contract NSTC 111-2622-E-224-013, 111-2221-E-224-052, 112-2221-E-150-027, and IRIS “Intelligent
Recognition Industry Service Research Center” from The Featured Areas Research Center Program
within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)
in Taiwan.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2023, 13, 10917 19 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gautier, M.; Poignet, P. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control. Eng. Pract.

2001, 9, 1361–1372. [CrossRef]
2. Swevers, J.; Ganseman, C.; Tukel, D.B.; de Schutter, J.; Van Brussel, H. Optimal robot excitation and identification. IEEE Trans.

Robot. Autom. 1997, 13, 730–740. [CrossRef]
3. Swevers, J.; Verdonck, W.; De Schutter, J. Dynamic Model Identification for Industrial Robots. IEEE Control Syst. 2007, 27, 58–71.
4. Ding, L.; Wu, H.; Yao, Y.; Yang, Y. Dynamic Model Identification for 6-DOF Industrial Robots. J. Robot. 2015, 2015, 9. [CrossRef]
5. Olsen, M.; Petersen, H. A new method for estimating parameters of a dynamic robot model. IEEE Trans. Robot. Autom. 2001, 17,

95–100. [CrossRef]
6. Ding, L.; Li, X.; Li, Q.; Chao, Y. Nonlinear friction and dynamical identification for a robot manipulator with improved cuckoo

search algorithm. J. Robot. 2018, 2018, 1–10. [CrossRef]
7. Bargsten, V.; de Gea Fernandez, J.; Kassahun, Y. Experimental Robot Inverse Dynamics Identification Using Classical and Machine

Learning Techniques. In Proceedings of the ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 21–22 June
2016; pp. 1–6.

8. Liang, B.; Li, T.; Chen, Z.; Wang, Y.; Liao, Y. Robot Arm Dynamics Control Based on Deep Learning and Physical Simulation. In
Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 2921–2925.

9. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

10. Lange, F.; Bertleff, W.; Suppa, M. Force and trajectory control of industrial robots in stiff contact. In Proceedings of the 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2927–2934.

11. Gan, Y.; Duan, J.; Chen, M.; Dai, X. Multi-robot trajectory planning and position/force coordination control in complex welding
tasks. Appl. Sci. 2019, 9, 924. [CrossRef]

12. Lange, F.; Jehle, C.; Suppa, M.; Hirzinger, G. Revised force control using a compliant sensor with a position controlled robot.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MI, USA, 14–18 May 2012;
pp. 1532–1537.

13. Murakami, K.; Ishimoto, K.; Senoo, T.; Ishikawa, M. Robot Hand Interaction Using Plastic Deformation Control with Inner
Position Loop. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
Boston, MA, USA, 6–9 July 2020; pp. 1748–1753.

14. Wahrburg, A.; Morara, E.; Cesari, G.; Matthias, B.; Ding, H. Cartesian contact force estimation for robotic manipulators using
Kalman filters and the generalized momentum. In Proceedings of the 2015 IEEE International Conference on Automation Science
and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1230–1235.

15. Zeng, F.; Xiao, J.; Liu, H. Force/Torque Sensorless Compliant Control Strategy for Assembly Tasks Using a 6-DOF Collaborative
Robot. IEEE Access 2019, 7, 108795–108805. [CrossRef]

16. Wahrburg, A.; Bos, J.; Listmann, K.D.; Dai, F.; Matthias, B.; Ding, H. Motor-Current-Based Estimation of Cartesian Contact Forces
and Torques for Robotic Manipulators and Its Application to Force Control. IEEE Trans. Autom. Sci. Eng. 2018, 15, 879–886.
[CrossRef]

17. Simoni, L.; Beschi, M.; Legnani, G.; Visioli, A. Friction modeling with temperature effects for industrial robot manipulators. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28
September–October 2015; pp. 3524–3529.

18. Simoni, L.; Villagrossi, E.; Beschi, M.; Marini, A.; Pedrocchi, N.; Tosatti, L.M.; Legnani, G.; Visioli, A. On the use of a temperature
based friction model for a virtual force sensor in industrial robot manipulators. In Proceedings of the 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 1–12 September 2017; pp. 1–6.

19. Liu, Z.; Liu, N.; Zhang, T.; Cui, L.; Li, H. EtherCAT based robot modular joint controller. In Proceedings of the 2015 IEEE
International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 1708–1713.

20. Jung, I.K.; Lim, S. An EtherCAT based control system for human-robot cooperation. In Proceedings of the 2011 16th International
Conference on Methods & Models in Automation & Robotics, Miedzyzdroje, Poland, 22–25 August 2011; pp. 341–344.

21. Jung, I.-K.; Lim, S. An EtherCAT based real-time centralized soft robot motion controller. In Proceedings of the 2012 International
Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Harbin, China, 18–20 May 2012;
Volume 1, pp. 117–120.

22. Chen, Y.; Chen, H.; Zhang, M.; Li, Y. The relevant research of CoE protocol in EtherCAT Industrial Ethernet. In Proceedings of
the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 29–31 October 2010;
pp. 67–70.

23. Yi, H.C.; Choi, J.Y. Performance analysis of Linux-based EtherCAT DC synchronization. In Proceedings of the 2015 IEEE
International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; pp. 549–552.

https://doi.org/10.1016/S0967-0661(01)00105-8
https://doi.org/10.1109/70.631234
https://doi.org/10.1155/2015/471478
https://doi.org/10.1109/70.917088
https://doi.org/10.1155/2018/8219123
https://doi.org/10.3390/app9050924
https://doi.org/10.1109/ACCESS.2019.2931515
https://doi.org/10.1109/TASE.2017.2691136

Appl. Sci. 2023, 13, 10917 20 of 20

24. Barbalace, A.; Luchetta, A.; Manduchi, G.; Moro, M.; Soppelsa, A.; Taliercio, C. Performance Comparison of VxWorks, Linux,
RTAI, and Xenomai in a Hard Real-Time Application. IEEE Trans. Nucl. Sci. 2008, 55, 435–439. [CrossRef]

25. IFA. BG/BGIA Risk Assessment Recommendations According to Machinery Directive—Design of Workplaces with Collaborative Robots;
BGIA—Institute for Occupational Safety and Health of the German Social Accident Insurance: Sankt Augustin, Germany, 2011;
p. 15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TNS.2007.905231

	Introduction
	Related Research
	Materials and Methods
	System Architecture
	Personal-Computer-Based
	Raspberry Pi-Based

	Machine Learning-Based Robot Dynamic Model
	Robot Dynamic Model
	Robot Friction Model
	Machine Learning Model
	Dataset Collection
	Hyperparameter Optimization

	Virtual Force Sensor
	Hybrid Position/Force Control Architecture

	Experiment and Results
	Verification of the Robot Dynamic Model Based on PC
	Verification of the Robot Dynamic Model Based on Raspberry Pi
	Verification of Virtual Force Sensor
	Safety Collision Detection
	Hybrid Position/Force Control Experiment Result

	Conclusions
	References

