
Citation: Kim, Y.; Kim, J.; Lee, W.

Effect of Block-Based Python

Programming Environment on

Programming Learning. Appl. Sci.

2023, 13, 10898. https://doi.org/

10.3390/app131910898

Academic Editor: Krzysztof Koszela

Received: 17 July 2023

Revised: 20 September 2023

Accepted: 29 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Effect of Block-Based Python Programming Environment on
Programming Learning
Yongcheon Kim 1 , Jamee Kim 2 and Wongyu Lee 3,*

1 Department of Computer Science Education, Graduate School, Korea University, Seoul 02841,
Republic of Korea; kimyc3766@gmail.com

2 Major of Computer Science Education, Graduate School of Education, Korea University, Seoul 02841,
Republic of Korea; celine@korea.ac.kr

3 Department of Computer Science and Engineering, Graduate School, Korea University, Seoul 02841,
Republic of Korea

* Correspondence: lee@inc.korea.ac.kr; Tel.: +82-2-3290-2391

Abstract: The advancement of computing technology has led to many changes in a variety of fields,
and the importance of programming education has been emphasized in many countries worldwide.
Despite the importance of programming education, the cognitive burden of text programming for
beginners has not been reduced. The goal of this study was to implement an environment where a
text programming language is used in a block-based programming environment and to determine
at which school level this learning environment affects positive perceptions of programming. To
achieve this goal, we conducted programming classes targeting 128 middle school, high school,
and university students for 14 weeks and analyzed the effects of the factors of “understanding
of programming instructions”, “usage confidence”, and “usefulness” on “positive perceptions of
programming”. The results of the analysis by school level show that “usefulness” influenced positivity
toward programming for middle school students, “usefulness” and “understanding of programming
instruction” for high school students, and “understanding of programming instruction” and “usage
confidence” for university students. Therefore, the significance of this study confirms the need to
construct the learning environment differently depending on school level, even for beginners.

Keywords: block-based python programming; programming environment; programming learning

1. Introduction

Beginning with the United Kingdom in 2013, the educational curricula of various
countries, such as India, Korea, Japan, and Finland, have been revised to include software
and artificial intelligence (AI) content [1,2]. Given the direct correlation between software
and AI technology development, personnel training, and national competitiveness, coun-
tries worldwide are emphasizing the importance of programming education. The status of
software and AI in each country can be found on the global AI index provided by Tortoise
Media [3].

The importance of programming education began when computers were introduced
to schools in the 1980s, when text-based programming languages, such as Basic and Logo,
were initially taught [4]. However, the difficulty of the concepts and syntax that beginners
had to learn in these text-based programming courses was a factor that raised a barrier
to entry [5,6]. The use of complex programming languages with variables, loops, arrays,
functions, etc. was a major reason for beginners to fail at programming [7]. Inputting
commands accurately is essential in a text-based programming language, but it is often
perceived as difficult for beginners [8,9]. For example, text input for programming is a
major source of syntax errors, and the use of symbols and punctuation marks that beginners
do not recognize is frustrating for them [10,11]. Even when receiving error messages, it is

Appl. Sci. 2023, 13, 10898. https://doi.org/10.3390/app131910898 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910898
https://doi.org/10.3390/app131910898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5966-5363
https://doi.org/10.3390/app131910898
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910898?type=check_update&version=2

Appl. Sci. 2023, 13, 10898 2 of 16

difficult to find and correct errors without recognition of commands, punctuation, symbols,
etc. and accurate memorization of grammar [12–15].

Research on teaching methods and programming environments has been conducted
to solve the difficulties that beginners experience in the programming process [16]. As error
feedback is one of the causes of difficulties for beginners in the programming process [17],
Scratch, which is learned through trial and error, has been used to educate beginners regard-
less of school level [18]. University students have also shown high satisfaction with their
success in programming [19]. However, block-based programming has a limitation in that
it is disconnected from text programming languages used in industry, which increases the
difficulty of transitioning to text-based programming [4,20]. Hybrid-based programming
environments, such as Blockly [21] and Pencil Code [22], in which blocks are converted
into text commands when combined, have been developed, but they have not reduced the
burden of learning text commands. As there is a difficulty in the transition of concepts
learned from block-based into text-based programming, MakeCode for micro:bit has also
been used to perform “real” text-based programming [23].

To lower the barriers to programming, the advantages of a block-based environment
need to coexist with the sense of accomplishment that comes from text-based programming.
This is because a sense of efficacy in learning should have a positive impact on motivation
for programming [24,25]. Accordingly, various hybrid-based programming studies have
been conducted. The effectiveness of Parsons Problems, whereby text commands are
composed using blocks, has been demonstrated [26,27], and Pencil.cc [28], with which the
effectiveness of classes for high school students has been proven, utilizes Pencil Code and
has been reported to be suitable for university students [29,30]. In another study, Scratch
and Blockly were compared for female students aged 10 to 14 [21]. These studies on hybrid-
based programming environments are limited to specific school levels and do not specify
which factors influence the positive perceptions of programming. Thus, it is necessary to
show which factors contribute to a positive change in perceptions of programming rather
than the importance of constructing the environment itself.

Therefore, this study aimed to provide a text-based programming language in a block-
based programming environment and to identify the factors of the learning environment
that affect the positive perceptions of programming for beginners at different school levels.
To achieve the objectives of this study, we chose Python 3.9.0 as a text programming
language for the construction of a hybrid learning environment. Python had a global
programming language share of 13.58% in the TIOBE index as of January 2022, which is
higher than that of the C (12.44%) and Java (10.66%) languages. From the perspective of
constructing a programming environment, Python has the advantage of compiling the
code line-by-line, so if an error occurs, beginners can accurately identify the location of the
error. Furthermore, Python is a highly useful language as it is a supported language of
TensorFlow, which is related to artificial intelligence and big data analysis, and PyTorch
uses Python as a scripting language [31,32].

Proceeding with text-based programming in a block-based programming environment
by school level and identifying factors that influence positive perceptions of programming
suggest that learning points should be different for different school levels, even in the
same learning environment. While various studies on programming beginners have only
identified the limits of difficulty in programming, this study aimed to provide direction
for introductory programming classes that should be structured differently for different
school levels.

2. Related Work
2.1. Factor Analysis

When developing a programming environment and evaluating its usability, the valid-
ity of the evaluation tools must be ensured. In other words, it is necessary to verify that
the tools developed to evaluate usability contain questions that are suitable for evaluation.
Validity refers to whether the measurement target can be measured appropriately [33].

Appl. Sci. 2023, 13, 10898 3 of 16

Additionally, to evaluate two or more pieces of content, it is important to confirm whether
the corresponding constructs can be used to evaluate what they are meant to evaluate. To
confirm the validity of a construct, factor analysis can be used, whose purpose is to reveal
the covariance structure of the data variables. It is used to create a single construct when
one variable changes with another. The process for confirming the validity of the usability
evaluation tool and performing factor analysis to create the constructs is as follows:

(1) Create questions, perform a usability analysis, and obtain scores for each evaluation question.
(2) Calculate a matrix of the correlation coefficients between questions.
(3) Extract nonrotated factors.
(4) Rotate the factors.
(5) Interpret and assign names based on the content of questions with high factor loadings

related to rotated factors.

Factor rotation is used to obtain a structure wherein the variables of each factor can
be clearly interpreted. The goal is to consider factors that are not accurately explained
through factor loading, which indicates the degree to which each variable reflects a single
factor, and convert them into a simple structure. By rotating to a simple structure, each
variable receives a high load from only one factor and relatively low loads from others,
simplifying the factor structure. Thereafter, it can be interpreted as a factor structure that
is not explained by the initial factor load. The following factor equation can be used to
derive factors F1, F2, . . ., Fk which include the weight coefficients a1, a2, . . ., ak of multiple
variables in the data:

Zj = aj1F1 + aj2F2 + . . . + ajkFk + Uj

Zj = Standard score of the jth variable;
ajk = Weight (coefficient) for factor k(Fk) of the jth variable;
Uj = Unique variance of the jth variable.

Factor analysis was used to extract constructs for measuring their effectiveness and sat-
isfaction toward education and to ensure their validity. Lee (2019) developed 48 evaluation
items to measure the relationship between motivation and achievement based on student
engagement in an e-learning environment. Furthermore, six constructs (psychological
motivation, peer collaboration, cognitive problem solving, interaction with instructors,
community support, and learning management) were extracted to conduct the study [34].
To determine why beginner programmers have low coding skill levels, factor analysis was
conducted on the answers to programming problems submitted by 614 university stu-
dents through a web-based learning system, and four skill-level constructs were extracted:
code style, syntactic, logical error-related, and syntax debugging [35]. Factor analysis is a
method used to extract underlying constructs from a set of observed variables, categorizing
confirmed constructs based on shared variance and extracting content commonly explained
by multiple evaluation questions.

Thus, factor analysis ensures the validity of the developed tools and can be utilized to
extract factors that commonly explain the questions within an examination tool.

2.2. Regression Analysis

Regression analysis is a statistical technique that enables the prediction of values for
dependent variables based on the values of independent variables [36]. It accomplishes this
by establishing linear equations that represent the relationships between the independent
and dependent variables. In other words, it examines the extent to which dependent vari-
ables change based on the changes in independent variables and estimates the predictive
power of independent variables with regard to dependent variables. Simple regression
analysis assumes linear relationships between independent and dependent variables and is
expressed as follows:

Y′ = β0 + β1Xi + εi

β0: When Xi = 0, the expected value of Yi (regression constant, intercept);

Appl. Sci. 2023, 13, 10898 4 of 16

β1: Population’s regression coefficient (slope of regression line);
εi : Error that is not explained by Xi.

In regression analysis, the least squares method is utilized to estimate the intercept
(β0) and regression (β1) coefficients. These coefficients minimize differences between the
actual values of the dependent variable (Y) and the predicted values (Y′) obtained using
the independent variables. The goal is to find the regression equation that minimizes the
overall difference between the observed and predicted values of the dependent variable.

The total change in the Y value is classified into two parts: those that can and cannot
be explained by the regression equation.

∑
(
Yi −Y

)2
= ∑

(
Y′i −Y

)2
+ ∑

(
Yi −Y′

)2

SST = SSR+SSE

SST : Total deviation sum of squares of Y;
SSR : Change that can be explained by the regression equation (regression deviation sum
of squares);
SSE : Change that cannot be explained by the regression equation (residual sum of squares).

An analysis of the variance table for simple regression can be seen in Table 1.

Table 1. Block-based programming environment analysis results.

Sum of Squares (SS) df Mean Square (MS) F R2

Regression SSR 1 SSR/1 MSR/MSE SSR/SST

Residual SSE n − 2 SSR/n− 2

Total SST n − 1

One criterion for judging the suitability of a regression equation is the determination
coefficient (R2). It indicates the explanatory power of an independent variable for a
dependent variable and refers to the ratio of the variance, obtained using the regression
equation, to the total variance of the dependent variable. The closer the value of the
determination coefficient is to 1, the greater the explanatory power of the independent
variable [37].

R2=
SSR
SST

= 1− SSE
SST

Simple regression analysis is used for analyzing the predictive power of an indepen-
dent variable with regard to a dependent variable, whereas multiple regression analysis is a
statistical method used to determine the variable that affects the dependent variable among
several independent variables. The linear equation for the multiple regression model is
as follows:

Yi = β0 + β1X1i + β2X2i + . . . + βkXki + εi

where βk is the unstandardized regression coefficient, i.e., the partial slope of the regression
equation. It indicates the change in the Y value when the value of a certain independent
variable Xk is increased by 1, while those of the other independent variables are fixed.

There are several methods for selecting the variables that must be included in the
regression model to find the optimal regression equation, such as enter, forward selection,
backward elimination, and stepwise selection [18]. Stepwise selection determines the
optimal regression equation through an appropriate combination of adding and removing
independent variables. As the variables are added individually, the significance of the
variables already included in the model is reviewed, and those that are insignificant are
excluded. This method is helpful for extracting significant variables.

Appl. Sci. 2023, 13, 10898 5 of 16

Multiple regression analysis has been used to determine the factors that affect students’
attitudes toward computer programming, which are a sense of achievement during the pro-
gramming process, self-efficacy with regard to programming, and recognition learning [38].
Additionally, studies have been conducted to predict students’ levels of academic achieve-
ment in the early stages [39]. In some cases, path diagrams have been used to visualize
the extent to which two or more explanatory variables affect a dependent variable [40].
This is because path diagrams of the effects of three independent variables (X, U1, and U2)
on a dependent variable (Y) can help users understand the relationships between them
and interpret their significance. Figure 1 shows a path diagram in which mindfulness-
based relapse prevention (MBRP) treatment, treatment period (CRAVE0), and hours in
treatment (TREATHRS) are designated as independent variables to identify factors that
affect alcoholism treatment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16

independent variables. As the variables are added individually, the significance of the

variables already included in the model is reviewed, and those that are insignificant are

excluded. This method is helpful for extracting significant variables.

Multiple regression analysis has been used to determine the factors that affect stu-

dents’ attitudes toward computer programming, which are a sense of achievement during

the programming process, self-efficacy with regard to programming, and recognition

learning [38]. Additionally, studies have been conducted to predict students’ levels of ac-

ademic achievement in the early stages [39]. In some cases, path diagrams have been used

to visualize the extent to which two or more explanatory variables affect a dependent var-

iable [40]. This is because path diagrams of the effects of three independent variables (X,

𝑈1, and 𝑈2) on a dependent variable (Y) can help users understand the relationships be-

tween them and interpret their significance. Figure 1 shows a path diagram in which

mindfulness-based relapse prevention (MBRP) treatment, treatment period (CRAVE0),

and hours in treatment (TREATHRS) are designated as independent variables to identify

factors that affect alcoholism treatment.

Figure 1. A path diagram of multiple linear regression.

3. Programming Environments

Figure 2 shows the components of the programming environment used for data col-

lection.

Figure 2. Programming activity user interface (UI).

First, “Provided Problems” area. Learners were provided with some problems and

asked to develop programs based on their content. For example, if the problem was “Print

the process of adding numbers 1–4,” then “1, 3, 6, 10” must be printed.

Second, “Provided Commands” area. In some cases, all commands required to solve

the problem were provided, and in others, too many or too few commands were provided.

If too few commands were provided, the learner was required to use the “+” button to add

commands directly. For the provided commands, a single-line Python program command

Figure 1. A path diagram of multiple linear regression.

3. Programming Environments

Figure 2 shows the components of the programming environment used for data collection.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16

independent variables. As the variables are added individually, the significance of the

variables already included in the model is reviewed, and those that are insignificant are

excluded. This method is helpful for extracting significant variables.

Multiple regression analysis has been used to determine the factors that affect stu-

dents’ attitudes toward computer programming, which are a sense of achievement during

the programming process, self-efficacy with regard to programming, and recognition

learning [38]. Additionally, studies have been conducted to predict students’ levels of ac-

ademic achievement in the early stages [39]. In some cases, path diagrams have been used

to visualize the extent to which two or more explanatory variables affect a dependent var-

iable [40]. This is because path diagrams of the effects of three independent variables (X,

𝑈1, and 𝑈2) on a dependent variable (Y) can help users understand the relationships be-

tween them and interpret their significance. Figure 1 shows a path diagram in which

mindfulness-based relapse prevention (MBRP) treatment, treatment period (CRAVE0),

and hours in treatment (TREATHRS) are designated as independent variables to identify

factors that affect alcoholism treatment.

Figure 1. A path diagram of multiple linear regression.

3. Programming Environments

Figure 2 shows the components of the programming environment used for data col-

lection.

Figure 2. Programming activity user interface (UI).

First, “Provided Problems” area. Learners were provided with some problems and

asked to develop programs based on their content. For example, if the problem was “Print

the process of adding numbers 1–4,” then “1, 3, 6, 10” must be printed.

Second, “Provided Commands” area. In some cases, all commands required to solve

the problem were provided, and in others, too many or too few commands were provided.

If too few commands were provided, the learner was required to use the “+” button to add

commands directly. For the provided commands, a single-line Python program command

Figure 2. Programming activity user interface (UI).

First, “Provided Problems” area. Learners were provided with some problems and
asked to develop programs based on their content. For example, if the problem was “Print
the process of adding numbers 1–4”, then “1, 3, 6, 10” must be printed.

Second, “Provided Commands” area. In some cases, all commands required to solve
the problem were provided, and in others, too many or too few commands were provided.
If too few commands were provided, the learner was required to use the “+” button to add
commands directly. For the provided commands, a single-line Python program command
constituted a single block. The learner could move commands by dragging and dropping
them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged
and dropped commands from the provided command area to complete the program.

Appl. Sci. 2023, 13, 10898 6 of 16

Unnecessary commands could either be deleted or modified by clicking the Modify button
(

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

constituted a single block. The learner could move commands by dragging and dropping
them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged
and dropped commands from the provided command area to complete the program. Un-
necessary commands could either be deleted or modified by clicking the Modify button (

). The Run (▶) button could be pressed to execute the combined commands and see the
results. The Run One Step () button could be used to run a command one line at a time,
obtain the results, and view the locations of commands where errors have occurred during
the debugging process, which is useful. Clicking the Run or Run One Step buttons showed
commands causing errors in yellow color. To initialize with the first command given, the
Command Initialization () button must be clicked.

The fourth component was an area for viewing “the execution results and error feed-
back”. If there were no errors, the execution results of the combined commands were out-
put. In case of errors, the programming environment outputs the locations of the com-
mands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When
block-based Python commands are combined in the programming area, the content of the
“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding
from Kindergarten COding to University). The first example is a program for distinguish-
ing between uppercase and lowercase letters in ASCII code. This program uses a combi-
nation of conditional statements to determine whether the entered alphabet letter is up-
percase or lowercase. It provides the indentation functionality along with variables, oper-
ators, conditional statements, and output statements to help beginners perform Python
programming.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers entered.
One of the functionalities that beginners find difficult in Python programming is indenta-
tion. COKCOU provides a constant indentation size to help reduce errors caused by in-
dentation.

). The Run (

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

constituted a single block. The learner could move commands by dragging and dropping
them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged
and dropped commands from the provided command area to complete the program. Un-
necessary commands could either be deleted or modified by clicking the Modify button (

). The Run (▶) button could be pressed to execute the combined commands and see the
results. The Run One Step () button could be used to run a command one line at a time,
obtain the results, and view the locations of commands where errors have occurred during
the debugging process, which is useful. Clicking the Run or Run One Step buttons showed
commands causing errors in yellow color. To initialize with the first command given, the
Command Initialization () button must be clicked.

The fourth component was an area for viewing “the execution results and error feed-
back”. If there were no errors, the execution results of the combined commands were out-
put. In case of errors, the programming environment outputs the locations of the com-
mands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When
block-based Python commands are combined in the programming area, the content of the
“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding
from Kindergarten COding to University). The first example is a program for distinguish-
ing between uppercase and lowercase letters in ASCII code. This program uses a combi-
nation of conditional statements to determine whether the entered alphabet letter is up-
percase or lowercase. It provides the indentation functionality along with variables, oper-
ators, conditional statements, and output statements to help beginners perform Python
programming.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers entered.
One of the functionalities that beginners find difficult in Python programming is indenta-
tion. COKCOU provides a constant indentation size to help reduce errors caused by in-
dentation.

) button could be pressed to execute the combined commands and see the
results. The Run One Step (

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

constituted a single block. The learner could move commands by dragging and dropping
them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged
and dropped commands from the provided command area to complete the program. Un-
necessary commands could either be deleted or modified by clicking the Modify button (

). The Run (▶) button could be pressed to execute the combined commands and see the
results. The Run One Step () button could be used to run a command one line at a time,
obtain the results, and view the locations of commands where errors have occurred during
the debugging process, which is useful. Clicking the Run or Run One Step buttons showed
commands causing errors in yellow color. To initialize with the first command given, the
Command Initialization () button must be clicked.

The fourth component was an area for viewing “the execution results and error feed-
back”. If there were no errors, the execution results of the combined commands were out-
put. In case of errors, the programming environment outputs the locations of the com-
mands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When
block-based Python commands are combined in the programming area, the content of the
“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding
from Kindergarten COding to University). The first example is a program for distinguish-
ing between uppercase and lowercase letters in ASCII code. This program uses a combi-
nation of conditional statements to determine whether the entered alphabet letter is up-
percase or lowercase. It provides the indentation functionality along with variables, oper-
ators, conditional statements, and output statements to help beginners perform Python
programming.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers entered.
One of the functionalities that beginners find difficult in Python programming is indenta-
tion. COKCOU provides a constant indentation size to help reduce errors caused by in-
dentation.

) button could be used to run a command one line at a time,
obtain the results, and view the locations of commands where errors have occurred during
the debugging process, which is useful. Clicking the Run or Run One Step buttons showed
commands causing errors in yellow color. To initialize with the first command given, the
Command Initialization (

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

constituted a single block. The learner could move commands by dragging and dropping
them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged
and dropped commands from the provided command area to complete the program. Un-
necessary commands could either be deleted or modified by clicking the Modify button (

). The Run (▶) button could be pressed to execute the combined commands and see the
results. The Run One Step () button could be used to run a command one line at a time,
obtain the results, and view the locations of commands where errors have occurred during
the debugging process, which is useful. Clicking the Run or Run One Step buttons showed
commands causing errors in yellow color. To initialize with the first command given, the
Command Initialization () button must be clicked.

The fourth component was an area for viewing “the execution results and error feed-
back”. If there were no errors, the execution results of the combined commands were out-
put. In case of errors, the programming environment outputs the locations of the com-
mands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When
block-based Python commands are combined in the programming area, the content of the
“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding
from Kindergarten COding to University). The first example is a program for distinguish-
ing between uppercase and lowercase letters in ASCII code. This program uses a combi-
nation of conditional statements to determine whether the entered alphabet letter is up-
percase or lowercase. It provides the indentation functionality along with variables, oper-
ators, conditional statements, and output statements to help beginners perform Python
programming.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers entered.
One of the functionalities that beginners find difficult in Python programming is indenta-
tion. COKCOU provides a constant indentation size to help reduce errors caused by in-
dentation.

) button must be clicked.
The fourth component was an area for viewing “the execution results and error

feedback”. If there were no errors, the execution results of the combined commands were
output. In case of errors, the programming environment outputs the locations of the
commands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When
block-based Python commands are combined in the programming area, the content of the
“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding
from Kindergarten COding to University). The first example is a program for distinguishing
between uppercase and lowercase letters in ASCII code. This program uses a combination
of conditional statements to determine whether the entered alphabet letter is uppercase or
lowercase. It provides the indentation functionality along with variables, operators, condi-
tional statements, and output statements to help beginners perform Python programming.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

constituted a single block. The learner could move commands by dragging and dropping

them using the mouse instead of entering the text.

The third component was the “Programming” area, wherein the learners dragged

and dropped commands from the provided command area to complete the program. Un-

necessary commands could either be deleted or modified by clicking the Modify button (

). The Run (▶) button could be pressed to execute the combined commands and see the

results. The Run One Step () button could be used to run a command one line at a time,

obtain the results, and view the locations of commands where errors have occurred during

the debugging process, which is useful. Clicking the Run or Run One Step buttons showed

commands causing errors in yellow color. To initialize with the first command given, the

Command Initialization () button must be clicked.

The fourth component was an area for viewing “the execution results and error feed-

back”. If there were no errors, the execution results of the combined commands were out-

put. In case of errors, the programming environment outputs the locations of the com-

mands where errors occurred and the causes of these errors.

Finally, the fifth component was an area to enter text-based Python commands. When

block-based Python commands are combined in the programming area, the content of the

“Combined commands area” changes.

Figure 3 shows examples of programs created by a student using COKCOU (COding

from Kindergarten COding to University). The first example is a program for distinguish-

ing between uppercase and lowercase letters in ASCII code. This program uses a combi-

nation of conditional statements to determine whether the entered alphabet letter is up-

percase or lowercase. It provides the indentation functionality along with variables, oper-

ators, conditional statements, and output statements to help beginners perform Python

programming.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers entered.

One of the functionalities that beginners find difficult in Python programming is indenta-

tion. COKCOU provides a constant indentation size to help reduce errors caused by in-

dentation.

Figure 3. Program for distinguishing between uppercase and lowercase letters in ASCII code.

Figure 4 shows example is a program that finds the largest of five numbers en-
tered. One of the functionalities that beginners find difficult in Python programming
is indentation. COKCOU provides a constant indentation size to help reduce errors caused
by indentation.

Appl. Sci. 2023, 13, 10898 7 of 16
Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16

Figure 4. Program that finds the largest of five numbers entered.

4. Methods

4.1. Participants

To determine the effects of the proposed programming environment on beginners’

positive perceptions of programming, one semester of Python classes was conducted with

22 middle school, 34 high school, and 72 university students who had never used Python.

4.2. Programming Course

Additionally, to determine whether a block-based Python programming environ-

ment is best suited for middle school, high school, or university students, we conducted

the study procedure shown in Figure 5.

Figure 5. Study procedure.

In Step 1, a programming course was provided to middle school, high school, and

university students through a 14-week programming course. In Step 2, we conducted a

survey for each group after the class. In Step 3, we conducted a factor analysis to ensure

the construct validity of the questionnaire. The construct validity aimed to determine

whether the content of the questionnaire is appropriate for the content to be measured

(see Section 2.1). In Step 4, we performed a multiple regression analysis to determine the

factors that affect positivity toward the programming course by school level (see Section

2.2).

4.2.1. Procedure

The classes were held for 2 h per week for 14 weeks, and the class content included

output (print), input, operations (the four arithmetic operations, logical operations, and

comparison operations), conditions (if, elif, and else), iteration (for, while), lists, Python’s

built-in functions, user-defined functions, and individual projects.

4.2.2. Data Collection

Table 2 presents the content of the survey regarding the “programming learning en-

vironment” and “positive perceptions of programming” answered by the 128 participants.

Figure 4. Program that finds the largest of five numbers entered.

4. Methods
4.1. Participants

To determine the effects of the proposed programming environment on beginners’
positive perceptions of programming, one semester of Python classes was conducted with
22 middle school, 34 high school, and 72 university students who had never used Python.

4.2. Programming Course

Additionally, to determine whether a block-based Python programming environment
is best suited for middle school, high school, or university students, we conducted the
study procedure shown in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16

Figure 4. Program that finds the largest of five numbers entered.

4. Methods

4.1. Participants

To determine the effects of the proposed programming environment on beginners’

positive perceptions of programming, one semester of Python classes was conducted with

22 middle school, 34 high school, and 72 university students who had never used Python.

4.2. Programming Course

Additionally, to determine whether a block-based Python programming environ-

ment is best suited for middle school, high school, or university students, we conducted

the study procedure shown in Figure 5.

Figure 5. Study procedure.

In Step 1, a programming course was provided to middle school, high school, and

university students through a 14-week programming course. In Step 2, we conducted a

survey for each group after the class. In Step 3, we conducted a factor analysis to ensure

the construct validity of the questionnaire. The construct validity aimed to determine

whether the content of the questionnaire is appropriate for the content to be measured

(see Section 2.1). In Step 4, we performed a multiple regression analysis to determine the

factors that affect positivity toward the programming course by school level (see Section

2.2).

4.2.1. Procedure

The classes were held for 2 h per week for 14 weeks, and the class content included

output (print), input, operations (the four arithmetic operations, logical operations, and

comparison operations), conditions (if, elif, and else), iteration (for, while), lists, Python’s

built-in functions, user-defined functions, and individual projects.

4.2.2. Data Collection

Table 2 presents the content of the survey regarding the “programming learning en-

vironment” and “positive perceptions of programming” answered by the 128 participants.

Figure 5. Study procedure.

In Step 1, a programming course was provided to middle school, high school, and
university students through a 14-week programming course. In Step 2, we conducted a
survey for each group after the class. In Step 3, we conducted a factor analysis to ensure
the construct validity of the questionnaire. The construct validity aimed to determine
whether the content of the questionnaire is appropriate for the content to be measured (see
Section 2.1). In Step 4, we performed a multiple regression analysis to determine the factors
that affect positivity toward the programming course by school level (see Section 2.2).

4.2.1. Procedure

The classes were held for 2 h per week for 14 weeks, and the class content included
output (print), input, operations (the four arithmetic operations, logical operations, and
comparison operations), conditions (if, elif, and else), iteration (for, while), lists, Python’s
built-in functions, user-defined functions, and individual projects.

4.2.2. Data Collection

Table 2 presents the content of the survey regarding the “programming learning
environment” and “positive perceptions of programming” answered by the 128 participants.
The survey used a 5-point Likert scale, where 5 = “strongly agree” and 1 = “strongly
disagree”. The survey was conducted after the classes were finished.

Appl. Sci. 2023, 13, 10898 8 of 16

Table 2. Questionnaire.

Category No. Item

Programming
Learning

Environment

A01 I understand commands.

A02 Commands are easy to use.

A03 I am confident in using commands.

A04 I have the knowledge and techniques required for using commands.

A05 I can obtain the desired results.

A06 It helps to understand “print()”

A07 It helps to understand “input()”

A08 It helps to understand “quadratic/comparative/logical operations”

A09 It helps to understand “if, elif, else”

A10 It helps to understand “for, while”

A11 It helps to understand “list”

A12 It helps to understand “function”

A13 It helps to understand “algorithm”

A14 The environment helps with my programming activities.

A15 I want to spend more time using the provided environment.

A16 I want to use the provided environment in the future.

Positive
Perceptions

of
Programming

B01 Programming helps create a better world.

B02 Programming is worth studying.

B03 Programming will be useful even after I graduate school.

B04 Programming is relevant to the environment, technology, and society.

B05 The programming class hours at school should be increased.

B06 Programmers think and make decisions rationally.

B07 I want to know more about programming.

The “Programming Learning Environment” was constructed based on the studies by
Chuang (2020) [41], Cheng (2019) [42], Moons (2013) [43], and Zorn (2013) [44]. “Positive
Perceptions of Programming” were constructed based on the studies by Tang (2020) [45],
Kong (2020) [46], Kong (2018) [47], Alothman (2017) [48], and Rubio (2015) [49].

4.2.3. Factor Analysis

To determine the factors of the programming environment that affected beginners’
“positive perceptions of programming” in this study, factor analysis was conducted through
the following steps: data suitability assessment, factor extraction, and factor rotation. SPSS
(version 26.0; IBM Corp., Armonk, NY, USA) for Windows was used for factor analysis.

First, to verify the suitability of the factor analysis model, the Kaiser–Meyer–Olkin
(KMO) test and Bartlett’s test of sphericity were performed on the survey content “pro-
gramming learning environment” as presented in Table 3. The KMO value was 0.924, and
Bartlett’s test of sphericity significance probability was 0.000. Thus, the factor analysis
model was suitable.

Appl. Sci. 2023, 13, 10898 9 of 16

Table 3. Kaiser–Meyer–Olkin and Bartlett’s test of sphericity.

Kaiser–Meyer–Olkin (KMO) Measure of Sampling Adequacy 0.924

Bartlett’s Test of Sphericity Approx. Chi-Square 3475.178

df 253

Sig. 0.000

Second, the factors were extracted. Principal component analysis and exploratory
factor analysis were used in this study. Table 4 presents the total explained variance. There
were 23 components before extraction; however, after extraction and rotation, there were
4 components with eigenvalues greater than 1. Apparently, the four extracted factors
accounted for 81.06% of the total variance and could be considered to comprise high
explanatory power.

Table 4. Total variance explained.

Initial Eigenvalues Rotation Sums of Squared Loadings

Component Total % of Variance Cum. % Total % of Variance Cum. %

1 13.727 59.684 59.684 6.496 28.243 28.243

2 2.223 9.664 69.348 5.772 25.095 53.338

3 1.684 7.324 76.671 3.546 15.418 68.756

4 1.010 4.389 81.060 2.830 12.305 81.060

Third, a factor rotation was performed. This study used an orthogonal rotation method
based on varimax, which uses Kaiser normalization. Table 5 shows the rotated component
matrix. The following Table 5 presents the results of reducing factors using the rotated
component matrix.

The model settings were validated through dimensionality reduction. The model used
in this study is Figure 6.

The following Table 6 shows the averages and standard deviations for each grade
level, according to this proposed model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16

Perceptions

of

Programming

B01
Programming helps create a better

world.
0.211 0.238 0.119 0.846

B04
Programming is relevant to the envi-

ronment, technology, and society.
0.179 0.138 0.136 0.841

B03
Programming will be useful even after I

graduate school.
0.270 0.179 0.085 0.814

B07
I want to know more about program-

ming.
0.275 0.191 0.141 0.790

B05
The programming class hours at school

should be increased.
0.282 0.193 0.179 0.782

B06
Programmers think and make decisions

rationally.
0.312 0.153 0.215 0.679

The model settings were validated through dimensionality reduction. The model

used in this study is Figure 6.

Figure 6. Path diagram of the impact of programming learning environment factors on “Positive

Perceptions of Programming”.

The following Table 6 shows the averages and standard deviations for each grade

level, according to this proposed model.

Table 6. Averages and standard deviations for each grade level.

Factor
M (SD)

Middle School High School University Total

Understanding of

Programming Instruc-

tions

4.04 (0.58) 4.35 (0.74) 4.63 (0.68) 4.46 (0.71)

Usage Confidence 3.80 (0.64) 4.28 (0.75) 4.53 (0.67) 4.34 (0.73)

Usefulness 4.18 (0.69) 4.34 (0.70) 4.16 (0.96) 4.21 (0.86)

Positive Perceptions of

Programming
4.58 (0.43) 4.70 (0.48) 4.72 (0.57) 4.69 (0.53)

4.2.4. Regression Analysis

A multiple regression analysis was performed to determine the effects of the “pro-

gramming learning environment” on “positive perceptions of programming” at each

grade level. Stepwise selection was used to input the independent variables into the anal-

ysis, and SPSS for Windows (version 26.0) was used for regression analysis.

Figure 6. Path diagram of the impact of programming learning environment factors on “Positive
Perceptions of Programming”.

Appl. Sci. 2023, 13, 10898 10 of 16

Table 5. Rotated factor matrix.

Category Subcategory No. Item Factor

Programming
Learning

Environment

Understanding of
Programming
Instructions

A11 It helps to understand “list” 0.847 0.263 0.138 0.285

A08
It helps to understand
“quadratic/comparative/logical
operations”

0.845 0.203 0.258 0.314

A09 It helps to understand “if, elif, else” 0.835 0.291 0.213 0.285

A13 It helps to understand “algorithm” 0.818 0.227 0.189 0.276

A10 It helps to understand “for, while” 0.792 0.338 0.093 0.306

A07 It helps to understand “input()” 0.731 0.290 0.237 0.356

A12 It helps to understand “function” 0.702 0.465 0.109 0.243

A06 It helps to understand “print()” 0.627 0.438 0.248 0.352

Usage
Confidence

A03 I am confident in using commands. 0.352 0.822 0.002 0.236

A05 I can obtain the desired results. 0.363 0.705 0.239 0.239

A04 I have the knowledge and techniques
required for using commands. 0.513 0.675 0.068 0.293

A01 I understand commands. 0.467 0.626 0.208 0.335

A02 Commands are easy to use. 0.232 0.594 0.531 0.204

Usefulness

A16 I want to use the provided environment in
the future. 0.190 0.112 0.920 0.153

A15 I want to spend more time using the
provided environment. 0.193 0.089 0.908 0.199

A14 The environment helps with my
programming activities. 0.552 0.237 0.564 0.301

Positive
Perceptions

of
Programming

B02 Programming is worth studying. 0.281 0.198 0.113 0.862

B01 Programming helps create a better world. 0.211 0.238 0.119 0.846

B04 Programming is relevant to the
environment, technology, and society. 0.179 0.138 0.136 0.841

B03 Programming will be useful even after I
graduate school. 0.270 0.179 0.085 0.814

B07 I want to know more about programming. 0.275 0.191 0.141 0.790

B05 The programming class hours at school
should be increased. 0.282 0.193 0.179 0.782

B06 Programmers think and make decisions
rationally. 0.312 0.153 0.215 0.679

Table 6. Averages and standard deviations for each grade level.

Factor
M (SD)

Middle School High School University Total

Understanding of
Programming
Instructions

4.04 (0.58) 4.35 (0.74) 4.63 (0.68) 4.46 (0.71)

Usage Confidence 3.80 (0.64) 4.28 (0.75) 4.53 (0.67) 4.34 (0.73)

Usefulness 4.18 (0.69) 4.34 (0.70) 4.16 (0.96) 4.21 (0.86)

Positive Perceptions of
Programming 4.58 (0.43) 4.70 (0.48) 4.72 (0.57) 4.69 (0.53)

Appl. Sci. 2023, 13, 10898 11 of 16

4.2.4. Regression Analysis

A multiple regression analysis was performed to determine the effects of the “pro-
gramming learning environment” on “positive perceptions of programming” at each grade
level. Stepwise selection was used to input the independent variables into the analysis, and
SPSS for Windows (version 26.0) was used for regression analysis.

5. Results

The results of analyzing the effect of the “programming learning environment” factor
on “positive perceptions of programming” are as follows: The “programming learning
environment” factor includes “understanding of programming instructions, usage confi-
dence, and usefulness”. The analysis of variance results show that the usability factor had
a statistically significant effect on “positive perceptions of programming”. Table 7 shows
the results of the detailed analysis of the factors that affected the “positive perceptions
of programming”.

Table 7. The analysis of variance summary of the correlation.

ANOVA

Model Sum of Squares (SS) df Mean Square (MS) F

Regression 16.144 2 8.072 53.133 0.000

Residual 18.990 125 0.152

Total 35.134 127

Table 8 represents the analysis results. “understanding of programming instructions”
had a statistically significant effect on “positive perceptions of programming” with a
Beta value of 0.462 and a significance level of 0.5. The “usage confidence” factor was
also statistically significant with a Beta value of 0.248 (p < 0.05). Therefore, it can be
considered that using the programming environment and increasing the confidence made
the programming perceptions more positive.

Table 8. The regression coefficient of the correlation.

Model B Std. Error Beta t Sig.

(Constant) 2.393 0.225 10.612 0.000

Understanding of Programming Instructions 0.342 0.082 0.462 4.170 0.000

Usage Confidence 0.178 0.080 0.248 2.233 0.027

The B-value was used to predict the programming perceptions based on the program-
ming learning environment. The following regression equation was derived using the B
(unstandardized coefficient) value of the three factors, and the perceptions of the program-
ming value can be predicted based on “understanding of programming instructions” and
“usage confidence”.

(a) All Students Reg = 2.393 + 0.342 × (Understanding of Programming Instructions) +
0.178 × (Usage Confidence);

(b) Middle School Students RM = 0.426 × (Usefulness) + 2.804;
(c) High School Students RH = 0.280 × (Usefulness) + 0.251 × (Understanding of Pro-

gramming Instructions) + 2.395;
(d) University Students RU = 0.375 × (Understanding of Programming Instructions) +

0.277 × (Usage Confidence) + 1.724.

For example, out of all students (a), the positive perceptions toward programming of
those who answered 5 for “understanding of programming instructions” and 3 for “usage

Appl. Sci. 2023, 13, 10898 12 of 16

confidence” was calculated as Reg = 2.393 + (0.342×5) + (0.178) × 3, and their perception
toward programming was 4.637.

The explanatory power of the “programming learning environment” factor with re-
spect to “positive perceptions of programming” was 45.9%. Of this, “understanding of
programming instructions” was 43.8% and “usage confidence” was 2.1%. When we exam-
ined results by school level, the explanatory power of “usefulness” on “positive perceptions
of programming” was found to be 45.7% for middle school students. For high school
students, “usefulness” was found to be 41.1%, whereas “understanding of programming in-
structions” was found to be 9.8%. For university students, “understanding of programming
instructions” and “usage confidence” were found to be 52.0% and 2.7%, respectively.

6. Discussions

In the programming education for beginners, it is important for beginners to main-
tain a positive perception throughout their learning process. In other words, an in-
crease in learning efficacy is expected to have a positive effect on motivation to continue
learning [24,25]. Accordingly, hybrid-based programming environments studies have been
conducted wherein text-based programming was performed in block-based programming
environments [21,22]. Although this hybrid-based programming environment approach
has demonstrated effectiveness, it has not been shown to provide specific factors that instill
positive perceptions of programming. In this study, we utilized a block-based program-
ming environment [5–9], as such environments have been shown to alleviate negative
perceptions regarding typos and errors [10,11,17]. We also analyzed the factors associated
with positive perceptions of programming. Based on the analysis, the discussion of the
research results is as follows:

First, we must consider the fact that interest in and understanding of programming
may vary with respect to school level, even in beginners. In the case of “understanding
of programming instructions”, middle school students were found to exhibit the lowest
level of understanding (4.04), whereas university students displayed the highest level of
understanding (4.63). Whereas middle school students could use the basic instructions
presented in this study, university students successfully created unique programs according
to these basic instructions. Furthermore, “understanding of programming instructions” was
linked to “usage confidence”, measured at 3.80 and 4.53 for middle school and university
students, respectively, indicating that the development of programs relates to confidence.
In contrast, “usefulness” of programming was similar between middle school (4.18) and
university (4.16) students. These results are consistent with those of a previous study [19],
which suggest that success in programming leads to satisfaction with the learning process
itself. Likewise, the results obtained in [10,11,50] suggest that an insufficient understanding
of programming instructions decreases overall satisfaction in the classroom. In other words,
a sense of accomplishment may instill positive perceptions of programming in beginners.
Therefore, it is necessary to stimulate a sense of confidence in students based on their
understanding of instructions.

Second, the direction of the class should be set differently depending on the school
level. The results of analyzing factors that affect “positive perceptions of programming”
show that “usefulness” was a factor for middle school students, “usefulness” and “un-
derstanding of programming instructions” were factors for high school students, and
“understanding of programming instructions” and “usage confidence” were factors for
university students. In this study, “Usefulness” referred to whether the programming envi-
ronment was assisting in programming. Therefore, it is necessary to build an environment
that minimizes difficulties for middle and high school students. This is consistent with the
results of studies that have reported that block-based programming environments cultivate
learners’ interest and motivate them to continue programming because these environments
have no errors [51–53].

Unlike middle and high school students, the “usage confidence” factor affected “posi-
tive perceptions of programming” among university students. Confidence in programming

Appl. Sci. 2023, 13, 10898 13 of 16

ability can strengthen positive perceptions among students. This is consistent with the
results of studies that have reported that beginners lose confidence and interest when
programming education is conducted solely in a text-based environment. However, they
use commands confidently and are motivated to continue programming when text-based
programming is performed in a block-based programming environment [54,55]. University
students perform programming either because it is a requirement of their course or to gain
employment; therefore, text-based programming will help them in a practical manner [56].

The factors that influence high school students’ positive perceptions of programming
are “usefulness” and “understanding of programming instructions”. Between these fac-
tors, the “usefulness” also affected middle school students, and the “understanding of
programming instructions” also affected university students. As high school students
are in an intermediate stage of growth, a balanced approach should be utilized to teach
programming to high school students by considering the learning dispositions of middle
school and university students. In other words, it is important to consider simultaneously
the aspect of university students experiencing reduced motivation due to the boredom of
using error-free and easy-to-use block-based programming environments and the aspect of
middle school students finding text-based programming classes challenging, given that
they are beginners in programming.

To lower the barriers of introductory programming, classes must be tailored to the
learning disposition of each school level.

7. Conclusions

With the increasing importance of programming education, many studies have been
conducted to support beginners. Despite various studies on programming environmental
factors, learning motivation, learning effectiveness, and satisfaction, the challenges faced
by programming beginners remain an issue that needs to be addressed in programming
education. Therefore, this study was conducted to identify factors associated with positive
perceptions of programming in beginners. To achieve the research objectives, the school
levels were categorized into middle school, high school, and university, and classes were
conducted over a 14-week period. The results of the analysis of factors influencing positive
perceptions of programming are as follows:

First, we found that factors associated with positive perceptions of programming
varied according to school level. For middle school students, the “usefulness” of the pro-
gramming environment, and for university students, “understanding of programming in-
structions” and “usage confidence” were the factors that influenced positive perceptions of
programming. For high school students, the factors influencing “positive perceptions of pro-
gramming” were found to have an intersection with both middle school and university stu-
dents. In other words, the factors affecting “positive perceptions of programming” among
high school students are “usefulness” and “understanding of programming instructions”.

Second, for university students, “usage confidence” emerged as a significant factor,
unlike middle school or high school students. These results are consistent with those
of a previous study, which suggests that university students prioritize the outcome and
practicality of programming, as programming may be necessary for their careers [56]. The
findings of this study demonstrate that the programming environment and educational
methods should vary with respect to the students’ objectives and perceptions.

Based on these results, we propose the following directions for future research:
First, research is needed to correct the reasons for beginners failing in the process of

programming according to their school level. For middle school students who need to
understand basic commands, feedback should be provided that can resolve errors. For
university students working toward employment, feedback must be provided on a higher
difficulty level to stimulate their confidence. Moreover, because middle school or high
school students may vary in terms of grade-level development stages and learning compre-
hension, it is necessary to elucidate the direction in which failures should be corrected in
the programming process.

Appl. Sci. 2023, 13, 10898 14 of 16

Second, there is a need for comparative research on different types of programming
environments. There are hybrid studies that consider both text- and block-based pro-
gramming languages. For instance, in some studies, block-based environments have been
constructed for learning about text programming languages, and there have been studies
that lower the barrier to entry to programming for beginners through the construction of
hybrid-type environments. Despite these various studies, there is still a debate regarding
appropriate environments for programming beginners at each school level. Thus, it is
necessary to conduct research to compare traditional text programming language-based
classes with classes in different types of block-based environments. Research on program-
ming environments based on each school level will help to identify the characteristics
of the environments that middle school, high school, and university students require to
get started in programming and to conduct programming education that considers the
developmental stages of students.

Third, there is a need for an environment that provides learners with various program-
ming languages. It is necessary to provide environments for block-based text programming
in not only Python but also C, Java, and other languages allowing users at different school
levels the opportunity to choose a programming language that is suitable for their level.

This study is significant in that it demonstrates the need for different approaches to
programming education, considering learning dispositions based on school levels, even for
the same group of programming beginners.

Author Contributions: Conceptualization, Y.K. and W.L.; methodology, J.K. and Y.K.; software, Y.K.;
validation, W.L. and J.K.; writing—original draft preparation, Y.K.; writing—review and editing, Y.K.
and J.K.; supervision, J.K. and W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2021R1A2C2013735).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wong, G.K.; Cheung, H.Y.; Ching, E.C.; Huen, J.M. School perceptions of coding education in K-12: A large scale quantitative

study to inform innovative practices. In Proceedings of the IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE 2015), Zhuhai, China, 10–12 December 2015; pp. 5–10.

2. Stephens, M. Embedding algorithmic thinking more clearly in the mathematics curriculum. In Proceedings of the ICME 24 School
Mathematics Curriculum Reforms: Challenges, Changes and Opportunities, Tsukuba, Japan, 25–30 November 2018.

3. Intelligence. The Global AI Index. Available online: https://www.tortoisemedia.com/intelligence/global-ai/ (accessed on
14 June 2023).

4. Moors, L.; Sheehan, R. Aiding the transition from novice to traditional programming environments. In Proceedings of the 2017
Conference on Interaction Design and Children, Stanford, CA, USA, 27–30 June 2017; pp. 509–514.

5. Topalli, D.; Cagiltay, N.E. Improving programming skills in engineering education through problem-based game projects with
Scratch. Comput. Educ. 2018, 120, 64–74. [CrossRef]

6. Ezeamuzie, N.O. Project-first approach to programming in K–12: Tracking the development of novice programmers in technology-
deprived environments. Educ. Inf. Technol. 2023, 28, 407–437. [CrossRef]

7. Gomes, A.; Mendes, A.J. Learning to Program—Difficulties and Solutions. In Proceedings of the International Conference on
Engineering Education, Paris, France, 28–31 July 2007; pp. 283–287.

8. Espinal, A.; Vieira, C.; Guerrero-Bequis, V. Student ability and difficulties with transfer from a block-based programming language
into other programming languages: A case study in Colombia. Comput. Sci. Educ. 2022, 1–33. [CrossRef]

9. Mladenović, M.; Boljat, I.; Žanko, Ž. Comparing loops misconceptions in block-based and text-based programming languages at
the K-12 level. Educ. Inf. Technol. 2018, 23, 1483–1500. [CrossRef]

10. Charles, T.; Gwilliam, C. The Effect of Automated Error Message Feedback on Undergraduate Physics Students Learning Python:
Reducing Anxiety and Building Confidence. J. STEM Educ. Res. 2023, 6, 326–357. [CrossRef]

https://www.tortoisemedia.com/intelligence/global-ai/
https://doi.org/10.1016/j.compedu.2018.01.011
https://doi.org/10.1007/s10639-022-11180-8
https://doi.org/10.1080/08993408.2022.2079867
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1007/s41979-022-00084-4

Appl. Sci. 2023, 13, 10898 15 of 16

11. Becker, B.A.; Denny, P.; Pettit, R.; Bouchard, D.; Bouvier, D.J.; Harrington, B.; Prather, J. Compiler error messages considered
unhelpful: The landscape of text-based programming error message research. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education, New York, NY, USA, 15–17 July 2019; pp. 177–210.

12. Soomro, A.H. An Exploration of Visual and Textual Based Programming Languages: A Comparative Analysis. Int. J. Electr. Eng.
Emerg. Technol. 2023, 6, 20–23.

13. Hijón-Neira, R.; Pizarro, C.; French, J.; Paredes-Barragán, P.; Duignan, M. Improving CS1 Programming Learning with Visual
Execution Environments. Preprints 2023, 2023081390.

14. Seo, H.; Sadowski, C.; Elbaum, S.; Aftandilian, E.; Bowdidge, R. Programmers’ Build Errors: A Case Study (at Google). In
Proceedings of the 36th International Conference on Software Engineering—ICSE 2014, Hyderabad, India, 31 May–7 June 2014;
ACM Press: New York, NY, USA, 2014; pp. 724–734.

15. Oppenlaender, J. Prompt Engineering for Text-Based Generative Art. arXiv 2022, arXiv:2204.13988.
16. Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
17. McCall, D.; Kölling, M. A new look at novice programmer errors. ACM Trans. Comput. Educ. 2019, 19, 38. [CrossRef]
18. Xinogalos, S.; Satratzemi, M.; Malliarakis, C. Microworlds, games, animations, mobile apps, puzzle editors and more: What is

important for an introductory programming environment? Educ. Inf. Technol. 2017, 22, 145–176.2. [CrossRef]
19. Cárdenas-Cobo, J.; Puris, A.; Novoa-Hernández, P.; Parra-Jiménez, Á.; Moreno-León, J.; Benavides, D. Using scratch to improve

learning programming in college students: A positive experience from a non-weird country. Electronics 2021, 10, 1180. [CrossRef]
20. Emerson, A.; Rodríguez, F.J.; Mott, B.; Smith, A.; Min, W.; Boyer, K.E.; Lester, J. Predicting Early and Often: Predictive Student

Modeling for Block-Based Programming Environments. In Proceedings of the International Educational Data Mining Society,
Paper presented at the International Conference on Educational Data Mining (EDM), Montreal, BC, Canada, 2–5 July 2019.

21. Seraj, M.; Katterfeldt, E.S.; Bub, K.; Autexier, S.; Drechsler, R. Scratch and Google Blockly: How girls’ programming skills and
attitudes are influenced. In Proceedings of the 19th Koli Calling International Conference on Computing Education Research,
Koli, Finland, 21–24 November 2019; pp. 1–10.

22. Deng, W.; Pi, Z.; Lei, W.; Zhou, Q.; Zhang, W. Pencil Code improves learners’ computational thinking and computer learning
attitude. Comput. Appl. Eng. Educ. 2020, 28, 90–104. [CrossRef]

23. Žanko, Ž.; Mladenović, M.; Krpan, D. Mediated transfer: Impact on programming misconceptions. J. Comput. Educ. 2023, 10,
1–26. [CrossRef]

24. Tavares, P.C.; Henriques, P.R.; Gomes, E.F. A Computer Platform to Increase Motivation in Programming Students-PEP.
CSEDU 2017, 1, 284–291.

25. Yong, S.T.; Tiong, K.M. A Blended Learning Approach: Motivation and Difficulties in Learning Programming. Int. J. Inf. Commun.
Technol. Educ. 2022, 18, 1–16. [CrossRef]

26. Ericson, B.J.; Foley, J.D.; Rick, J. Evaluating the efficiency and effectiveness of adaptive parsons problems. In Proceedings of the
2018 ACM Conference on International Computing Education Research, Espoo, Finland, 13–15 August 2018; pp. 60–68.

27. Shah, M. Exploring the Use of Parsons Problems for learning a New Programming Language; Technical Report EECS-2020–88; Electrical
Engineering and Computer Sciences, University of California at Berkeley: Berkeley, CA, USA, 2020.

28. Weintrop, D.; Wilensky, U. How block-based, text-based, and hybrid block/text modalities shape novice programming practices.
Int. J. Child-Comput. Interact. 2018, 17, 83–92. [CrossRef]

29. Alrubaye, H.; Ludi, S.; Mkaouer, M.W. Comparison of block-based and hybrid-based environments in transferring programming
skills to text-based environments. arXiv 2019, arXiv:1906.03060.

30. Hsu, W.C.; Gainsburg, J. Hybrid and non-hybrid block-based programming languages in an introductory college computer-science
course. J. Educ. Comput. Res. 2021, 59, 817–843. [CrossRef]

31. Cutting, V.; Stephen, N. Comparative review of java and python. Int. J. Res. Dev. Appl. Sci. Eng. (IJRDASE) 2021, 21.
32. Kumar, I.K.; Agarwal, V.; Reddy, M.S. Image Recognition based Driver Drowsiness Detection using Python. In Proceedings of the

International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 992–995.
33. Chan, L.L.; Idris, N. Validity and reliability of the instrument using exploratory factor analysis and Cronbach’s alpha. Int. J. Acad.

Res. Bus. Soc. Sci. 2017, 7, 400–410.
34. Lee, J.; Song, H.D.; Hong, A.J. Exploring factors, and indicators for measuring students’ sustainable engagement in e-learning.

Sustainability 2019, 11, 985. [CrossRef]
35. Zhang, Y.; Paquette, L.; Pinto, J.D.; Fan, A.X. Utilizing programming traces to explore and model the dimensions of novices’

code-writing skill. Comput. Appl. Eng. Educ. 2023, 31, 1041–1058. [CrossRef]
36. Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [CrossRef]
37. Xu, X.; Du, H.; Lian, Z. Discussion on regression analysis with small determination coefficient in human-environment researches.

Indoor Air 2022, 32, e13117. [CrossRef]
38. Gürer, M.D.; Cetin, I.; Top, E. Factors affecting students’ attitudes toward computer programming. Inform. Educ. 2019, 18, 281–296.

[CrossRef]
39. Alboaneen, D.; Almelihi, M.; Alsubaie, R.; Alghamdi, R.; Alshehri, L.; Alharthi, R. Development of a web-based prediction system

for students’ academic performance. Data 2022, 7, 21. [CrossRef]
40. Hayes, A.F.; Rockwood, N.J. Regression-based statistical mediation and moderation analysis in clinical research: Observations,

recommendations, and implementation. Behav. Res. Ther. 2017, 98, 39–57. [CrossRef]

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3335814
https://doi.org/10.1007/s10639-015-9433-1
https://doi.org/10.3390/electronics10101180
https://doi.org/10.1002/cae.22177
https://doi.org/10.1007/s40692-022-00225-z
https://doi.org/10.4018/IJICTE.301276
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1177/0735633120985108
https://doi.org/10.3390/su11040985
https://doi.org/10.1002/cae.22622
https://doi.org/10.1016/j.sbspro.2013.12.027
https://doi.org/10.1111/ina.13117
https://doi.org/10.15388/infedu.2019.13
https://doi.org/10.3390/data7020021
https://doi.org/10.1016/j.brat.2016.11.001

Appl. Sci. 2023, 13, 10898 16 of 16

41. Chuang, H.M.; Lee, C.C. Interactions of construal levels on programming ability and learning satisfaction: A case study of an
Arduino course for junior high school students. PLoS ONE 2020, 15, e0236500. [CrossRef]

42. Cheng, G. Exploring factors influencing the acceptance of visual programming environment among boys and girls in primary
schools. Comput. Hum. Behav. 2019, 92, 361–372. [CrossRef]

43. Moons, J.; De Backer, C. The design and pilot evaluation of an interactive learning environment for introductory programming
influenced by cognitive load theory and constructivism. Comput. Educ. 2013, 60, 368–384. [CrossRef]

44. Zorn, C.; Wingrave, C.A.; Charbonneau, E.; LaViola, J.J., Jr. Exploring Minecraft as a conduit for increasing interest in program-
ming. FDG 2013, 352–359.

45. Tang, X.; Yin, Y.; Lin, Q.; Hadad, R.; Zhai, X. Assessing computational thinking: A systematic review of empirical studies. Comput.
Educ. 2020, 148, 103798. [CrossRef]

46. Kong, S.C.; Wang, Y.Q. Formation of computational identity through computational thinking perspectives development in
programming learning: A mediation analysis among primary school students. Comput. Hum. Behav. 2020, 106, 106230. [CrossRef]

47. Kong, S.C.; Chiu, M.M.; Lai, M. A study of primary school students’ interest, collaboration attitude, and programming empower-
ment in computational thinking education. Comput. Educ. 2018, 127, 178–189. [CrossRef]

48. Alothman, M.; Robertson, J.; Michaelson, G. Computer usage and attitudes among Saudi Arabian undergraduate students.
Comput. Educ. 2017, 110, 127–142. [CrossRef]

49. Rubio, M.A.; Romero-Zaliz, R.; Mañoso, C.; Angel, P. Closing the gender gap in an introductory programming course. Comput.
Educ. 2015, 82, 409–420. [CrossRef]

50. Xu, W.W.; Su, C.Y.; Hu, Y.; Chen, C.H. Exploring the effectiveness and moderators of augmented reality on science learning: A
meta-analysis. J. Sci. Educ. Technol. 2022, 31, 621–637. [CrossRef]

51. Papadakis, S. Evaluating the efficiency of two programming environments in shaping novices’ attitudes, perceptions, beliefs and
knowledge in programming: A comparison between Scratch and App Inventor. Int. J. Teach. Case Stud. 2019, 10, 31–52. [CrossRef]

52. Weintrop, D.; Wilensky, U. Comparing block-based and text-based programming in high school computer science classrooms.
ACM Trans. Comput. Educ. 2017, 18, 1–25. [CrossRef]

53. Erol, O.; Çırak, N.S. The effect of a programming tool scratch on the problem-solving skills of middle school students. Educ. Inf.
Technol. 2022, 27, 4065–4086. [CrossRef]

54. Hu, Y.; Chen, C.H.; Su, C.Y. Exploring the effectiveness and moderators of block-based visual programming on student learning:
A meta-analysis. J. Educ. Comput. Res. 2021, 58, 1467–1493. [CrossRef]

55. Jenkins, T. On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of the LTSN Centre for
Information and Computer Sciences, Loughborough, UK, 23 August 2002; pp. 53–58.

56. Mihci, C.; Ozdener Donmez, N. Teaching GUI-Programming Concepts to Prospective K12 ICT Teachers: MIT App Inventor as an
Alternative to Text-Based Languages. Int. J. Res. Educ. Sci. 2017, 3, 543–559. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0236500
https://doi.org/10.1016/j.chb.2018.11.043
https://doi.org/10.1016/j.compedu.2012.08.009
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.chb.2019.106230
https://doi.org/10.1016/j.compedu.2018.08.026
https://doi.org/10.1016/j.compedu.2017.02.010
https://doi.org/10.1016/j.compedu.2014.12.003
https://doi.org/10.1007/s10956-022-09982-z
https://doi.org/10.1504/IJTCS.2019.096871
https://doi.org/10.1145/3089799
https://doi.org/10.1007/s10639-021-10776-w
https://doi.org/10.1177/0735633120945935
https://doi.org/10.21890/ijres.327912

	Introduction
	Related Work
	Factor Analysis
	Regression Analysis

	Programming Environments
	Methods
	Participants
	Programming Course
	Procedure
	Data Collection
	Factor Analysis
	Regression Analysis

	Results
	Discussions
	Conclusions
	References

