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Abstract: The deformation behavior of a dam can comprehensively reflect its structural state. By
comparing the actual response with model predictions, dam deformation prediction models can
detect anomalies for effective advance warning. Most existing dam deformation prediction models
are implemented within a single-step prediction framework; the single-time-step output of these
models cannot represent the variation trend in the dam deformation, which may contain important
information on dam evolution during the prediction period. Compared with the single value
prediction, predicting the tendency of dam deformation in the short term can better interpret the
dam’s structural health status. Aiming to capture the short-term variation trends of dam deformation,
a multi-step displacement prediction model of concrete dams is proposed by combining the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, the k-harmonic
means (KHM) algorithm, and the error minimized extreme learning machine (EM-ELM) algorithm.
The model can be divided into three stages: (1) The CEEMDAN algorithm is adopted to decompose
dam displacement series into different signals according to their timing characteristics. Moreover, the
sample entropy (SE) method is used to remove the noise contained in the decomposed signals. (2) The
KHM clustering algorithm is employed to cluster the denoised data with similar characteristics.
Furthermore, the sparrow search algorithm (SSA) is utilized to optimize the KHM algorithm to avoid
the local optimal problem. (3) A multi-step prediction model to capture the short-term variation
of dam displacement is established based on the clustered data. Engineering examples show that
the model has good prediction performance and strong robustness, demonstrating the feasibility of
applying the proposed model to the multi-step forecasting of dam displacement.

Keywords: dam deformation; multi-step prediction; concrete dams; complete ensemble empirical
mode decomposition with adaptive noise; K-harmonic means; sparrow search algorithm

1. Introduction

Concrete dams are the most common types of dams for flood control, irrigation, and
water supply. A dam in a safe state can significantly boost the national economy. The
operation of dams is required not only to withstand various static and dynamic loads but
also to avoid different impacts of harsh environmental conditions. Their service behavior is
a nonlinear dynamic process [1]. Once a dam fails, it can cause unpredictable economic
damage downstream. In order to ensure the safe operation of dams, it is essential to imple-
ment effective monitoring and analysis methods. Among these, dam deformation serves as
a crucial indicator for monitoring the safe operation of the dam and can effectively reflect
the working condition of a concrete gravity dam under complex environmental conditions.
Therefore, scientific research on the deformation data can help to better understand and
monitor the health of dams [2].

In the past few decades, researchers have proposed several effective mathematical
models, including statistical, deterministic, and hybrid models, to forecast the deformation
behavior of dams [3]. These models can describe and evaluate the deformation behavior of
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concrete dams by considering the effects of hydrostatic pressure, ambient temperature, and
time on the deformation behavior [4,5]. Among them, both deterministic and hybrid models
require the solution of differential equations, for which closed-form solutions are difficult to
obtain [6]. In comparison, the statistical model has a more straightforward formula and is
faster to execute. However, the relationships between the structural response of a concrete
dam and its influencing factors are nonlinear, while most of the existing statistical models
are constructed using linear assumptions as their foundation, which limits the accuracy of
the model fitting and thus cannot accurately capture the structural behavior of concrete
dams [7].

In recent years, a variety of machine learning architectures have been used in the field
of dam safety monitoring, such as the autoregressive integrated moving average (ARIMA)
algorithm [8], the support vector machine (SVM) algorithm [9], the artificial neural network
(ANN) algorithm [10–12], and the random forest (RF) algorithm [13,14], etc. These algo-
rithms can predict dam displacement with reasonable accuracy; among them, the ANN
algorithm illustrates superior performance in dealing with nonlinear problems [15,16].
Liu et al. [17] used the long short-term memory (LSTM) model to predict the displacement
of the arch dam. The results showed that the LSTM model can predict dam displacement
well. However, the LSTM model has the problem of difficult hyperparameter selection. In
order to alleviate this problem, Zhang et al. [18] proposed using an improved LSTM model
to predict dam deformation and achieved good results. However, the relevant parameters
need to be corrected within the iteration procedure, which makes it very expensive in terms
of calculation time [19]. In comparison, dam displacement prediction models developed
based on the SVM algorithm can avoid the shortcomings of ANN algorithms and remark-
ably improve computational efficiency. Kang et al. [20] proposed using the SVM algorithm
to predict dam deformation and achieved certain results. Regarding the SVM-based models,
prediction accuracy and generalization ability are affected by the determination of model
parameters, which narrows their application.

The extreme learning machine (ELM) algorithm as a single hidden layer neural net-
work is different from the traditional single hidden layer feedforward neural network. The
ELM algorithm can randomly initialize the hidden layer bias and input layer weight; the
whole learning is completed through a mathematical change without any iteration; there
is only a need to set the number of hidden layer nodes, and in the process of algorithm
implementation, there is no need to adjust the network input weight and hidden layer
bias to generate the only optimal solution. The conventional ELM algorithm performs
well in most cases; however, inappropriate parameter selection can lead to relatively poor
prediction results [21,22]. In this regard, Huang et al. [23] proposed the incremental extreme
learning machine (IELM) algorithm by adding new hidden layer nodes to assist in reducing
errors. While the IELM algorithm contains many useless neurons in hidden layers, and
these redundant neurons increase the number of iterations and reduce the algorithm’s
efficiency. To encounter the drawbacks of the IELM algorithm, the error minimized extreme
learning machine (EMELM) algorithm is proposed. The hidden nodes in the EM-ELM
algorithm can be added individually or in batches, which vigorously promote the efficiency
of those models [24].

Although the models mentioned above have achieved good prediction results in single
value dam displacement monitoring, considering the deformation tendency rather than
a given predicted value can better depict the dam’s structural health status, it is of great
importance to forecast the evolution of dam displacement in the short term. The multi-step
prediction methods provide a means for tendency prediction as they can output multiple
results to elaborate on the deformation evolution of dams. To further demonstrate the
meaning of multi-step dam displacement predictions, Figure 1 shows a comparison of
multi-step and single-step predictions. As we can see in Figure 1, although the multi-step
and single-step prediction have the same displacement on 9 January 2022, the single-step
result is unable to reflect the variation trend of the deformation among the predicted period.
Diverse deformation processes can reflect different structural health statuses even at the
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same level of displacement. For instance, the last predicted values of Case 1, Case 2, and
Case 3 are consistent, while their variation trends are remarkably distinct. Compared to
Case 2 and Case 3, Case 1 presents a sharp uptrend, revealing the probable existence of
more security risk in Case 1 than in other cases. In this context, capturing the variation
trend in the dam displacement in advance can benefit in capturing the behaviors of the
dam displacement so as to better ensure dam safety.
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Bearing this in mind as motivation, this paper attempts to construct a multi-step
prediction model of dam displacement and provide a suitable modeling strategy. Recursive
and direct strategies are currently the most common modeling strategies for multi-step
prediction. Regarding the recursive strategy, a prediction model is constructed by means of
minimizing the squares of the sample one-step-ahead residuals, and the predicted value is
used as input for the next prediction [25]. Since the predicted values are used instead of the
actual values, the recursive strategy suffers from the error accumulation problem [26,27].
By contrast, researchers proposed the direct strategy method, in which separated models
using past observations are constructed for each time step [28,29]. Although the direct
strategy can mitigate the cumulative error problem, it is a time-consuming process. To better
address these issues, researchers introduced a multiple-input multiple-output (MIMO)
strategy. In this multi-target output process, the prediction is performed through a set
of vectors, and the size of the vector is equal to the number of forecasting days, which
can effectively alleviate the consumption problem of the direct strategy and the error
accumulation problem of the recursive strategy. Hence, this paper adopts the MIMO
strategy to construct a hybrid model based on the EM-ELM algorithm, namely the CSSKEE
model. The model can better predict the short-term dam displacement evolution with
excellent predictive accuracy and good generalization performance, thus making dam
monitoring more precise and effective.
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Since uncertainty errors and anomalous data contained in dam displacement data
can directly affect the predictive accuracy of the models, signal decomposition techniques
have found extensive application in enhancing the predictive accuracy of dam displace-
ment models as they can extract the features of the original data and remove the noise in
the original data [30]. The EMD, EEMD, and CEEMD algorithms are three typical signal
decomposition techniques [31–33]. However, these decomposition techniques suffer from
problems such as modal confounding, and energy leakage in the low-frequency region,
and other phenomena [34]. In this regard, the complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) algorithm is proposed by introducing particular
noises and computing unique residues which could provide better frequency separation of
the extracted sequences. Therefore, this paper uses the CEEMDAN method to decompose
the original data and combines other methods, such as the sample entropy method, to
eliminate the noise sequence.

Clustering is a search process to excavate possible hidden patterns in data. The
clustering method divides the data into several disjoint groups, each of which is similar but
different from the other groups [35]. The clustering techniques are applied in fields such as
data mining and natural language [36–38]. In this paper, clustering analysis is conducted
to help identify the features of the short-term variation trend in the dam displacement and
to merge similar features. The k-means (KM) algorithm is widely used due to its speed,
simple structure, and suitability for regular datasets. However, the clustering results are
sensitive to the initial state of the cluster center, making this algorithm prone to falling
into local optimal solutions [39,40]. The k-harmonic means (KHM) algorithm is proposed,
using the distance of the harmonic mean as a component of the objective to mitigate local
optimal issues. To further address this problem, some optimization algorithms have been
introduced to enhance the ability of KHM models to obtain the optimal solution. As a novel
swarm optimization method, the sparrow search algorithm (SSA) has the superiority of
high stability and robustness [41]. Therefore, it is promising to combine the SSA algorithm
with the KHM model, and the integrated approach could overcome the shortcoming of
falling into the local optimum of the KM algorithm, thus improving the clustering effect as
well as the prediction accuracy.

The main contribution of this paper is the proposal of a short-term multi-step predic-
tion method for dam displacement, termed the CSSKEE model. Generally, the model is
implemented based on the signal processing method, the computational intelligence algo-
rithm, and multiple machine learning techniques. Firstly, the original data is decomposed
by the CEEMDAN model, and the noise is eliminated through counting the sample entropy
of decomposed sequences. Secondly, the SSA-KHM algorithm is utilized to cluster the
denoised data. Thirdly, the clustered data is finally predicted by the EM-ELM algorithm.
Figure 2 shows the specific details of the model. The simulation results confirm that the
proposed method can better predict the multi-step dam displacement in the short term.

The remainder of this paper is structured in the following manner. Section 2 introduces
the methodology. Then, the effectiveness of the proposed model is elaborated by the case
study in Section 3. Finally, the conclusions and future perspectives are outlined in Section 4.
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2. Methodology
2.1. Noise Reduction of Prototype Dam Displacement Data
2.1.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Huang et al. [31] proposed the empirical mode decomposition (EMD) algorithm. As a
time-frequency domain processing method, the EMD algorithm can decompose an original
signal into a set of intrinsic mode functions (IMFs) and is effective for analyzing nonlinear
and nonstationary signals. However, the EMD algorithm has problems such as modal alias-
ing and significant reconstruction errors [42]. To alleviate this modal aliasing problem, Wu
and Huang [32] proposed the ensemble empirical mode decomposition (EEMD) algorithm.
In the EEMD algorithm, Gaussian white noise with a zero mean is added for auxiliary
analysis. Because of the characteristics of the zero mean, after multiple averaging, the noise
will cancel each other, and the final result is the result of the integrated mean. Although
the EEMD algorithm has alleviated the modal problem to a certain extent, due to its low
decomposition efficiency, problems such as modal aliasing in the low-frequency region and
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high reconstruction error remain. Yeh et al. [33] developed the complete ensemble empirical
mode decomposition (CEEMD) method, which involves adding the positive and negative
relative auxiliary white noise to the original signal and phase canceling them in the pooled
average, thereby effectively improving the decomposition efficiency and overcoming the
problems of large reconstruction error and lack of completeness of the EEMD algorithm.
However, there remains a difference in the number of IMFs generated by the CEEMD
algorithm during the EMD algorithm decomposition, leading to difficulties in aligning the
IMF components in the final ensemble averaging, resulting in an ensemble averaging error.
Researchers developed the CEEMDAN algorithm to solve the IMF component alignment
problem at ensemble averaging. The CEEMDAN algorithm lowers the noise residual in
the final reconstructed signal compared with the CEEMD algorithm result and reduces the
screening time. The method also alleviates the problems of difficult alignment of the IMF
components due to the differences in the decomposition results and the impact of poor IMF
decomposition results on subsequent decomposition sequences. The specific principles can
be found in the literature [43].

2.1.2. Sample Entropy

The SE algorithm is derived from approaches developed by [44]. The SE algorithm
can be used to measure the complexity of a time series; the higher the entropy value, the
higher the sequence complexity and the stronger the randomness; the lower the entropy
value, the lower the sequence complexity and the stronger the regularity [45]. The length
of the time series x{x(1), x(2), · · ·, x(n)} is set to N. The SE is calculated as follows:

(1) Assume a dimensionality of m, the time series can be reconstructed in phase space,
yielding the following:

x(i) = {x(i), x(i + 1), · · ·, x(i + m− 1)} (1)

Here, i = 1, 2, · · ·, N−m + 1.
(2) Calculate the maximum difference between the corresponding elements of x(i) and

x(j), the following formula for details:

d[x(i),x(j)] = max
k∈(0,m−1)

|x(i + k)− x(j + k)| (2)

(3) Assume a r(r > 0), for each 1 ≤ i, j ≤ N −m, calculate the ratio of the number of
d[x(i),x(j)] < r to the total number of vectors N−m− 1, as follows:

Bm
i (r) =

1
N−m− 1

num{d[x(i),x(j)] < r} (3)

(4) Average all the results obtained from Step (3), as follows:

Bm(r) =
1

N−m

N−m

∑
i=1

Bm
i (r) (4)

(5) Repeat steps (1)–(4) for the m+ 1 dimensional vector to obtain Gm(r), and calculate SE:

SampEn(m, r, N) = − ln
[

Gm(r)
Bm(r)

]
(5)

In this paper, to reconstruct the original data, we decompose the original sequence by
the CEEMDAN algorithm, then calculate SE algorithm of each subsequence, and finally
determine whether the subsequence is a noisy sequence according to the size of the sample
entropy algorithm so as to reconstruct the original data. In addition, another evaluation
index has been employed to verify the selection of noisy sequences, and the index is defined
as follows:
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1. Denote the length of the dam deformation sequence x{x(1), x(2), · · ·, x(n)} to N. Then
x is decomposed and can be expressed as:

x(n) =
D

∑
i=1

IMFi(n) + r(n) (6)

where D is the number of decomposed IMFs; IMFi(n) is the decomposed subsequence;
r(n) is the residual series.

2. Define the c-filtering reconstruction yc(n) as

yc(n) =
D

∑
i=c

IMFi(n) + rD(n) (7)

where c = 1, 2, · · ·, D; rD(n) is the residual series.
3. Eliminate the IMF by taking the minimum value from the following equation

SMSE(yc(n), yc+1(n)) =
1
N

N

∑
n=1

[yc(n)− yc+1(n)]
2 =

1
N

N

∑
n=1

[IMFc(n)]2 (8)

where c = 1, 2, · · ·, D− 1.

2.2. Clustering
2.2.1. K-Harmonic Means

To overcome the problem that the k-means algorithm easily falls into the local optimal
solution, for each data object in the dataset, the KHM uses the sum of the harmonic means
of the data to all the cluster centers, and the affiliation function and particle weights are
used to update the cluster centers. The harmonized mean sum of all data is used as the
evaluation index. The specific process of the KHM clustering algorithm is shown below [46].

1. Select k initial centroids c1, c2, · · ·, ck randomly, where ck is the centroid of the kth
cluster, set t to the number of iterations.

2. Calculate the fitness function:

F(X, c1, c2, · · ·, ck) =
n

∑
i=1

j
K
∑

k=1

1
‖xi−ck‖p

(9)

In the formula: X = {x1, x2, · · ·, xn}, n is the number of objects to be clustered, p is an
input parameter Generally p ≥ 2.

3. For xi calculate its affiliation at each center ck:

m(ck|xi ) =
‖xi − ck‖−p−2

K
∑

k=1
‖xi − ck‖−p−2

(10)

4. For xi, calculate its weight:

w(xi) =

K
∑

k=1
‖xi − ck‖−p−2

(
K
∑

k=1
‖xi − ck‖−p

)2 (11)
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5. For ck, recalculate the clustering centers based on their affiliation, weights, and all
data points xi:

ck =

n
∑

i=1
m(ck|xi )w(xi)xi

n
∑

i=1
m(ck|xi )w(xi)

(12)

6. Repeat 2–5 until the set number of iterations is exceeded:
7. Classify sample xi into the largest group k of m(ck|xi ).

2.2.2. Sparrow Search Algorithm

The SSA algorithm is a heuristic optimization algorithm. The algorithm consists
of followers, discoverers, and investigators [47]. The guidelines followed by the SSA
algorithm are as follows:

Assuming that the parameter being searched is 1d data, a group of n sparrows can be
expressed by the following formula:

X =


x1

1 x2
1 . . . xd

1
x1

2 x2
2 . . . xd

2
. . . . . . . . . . . .
x1

n x2
n . . . xd

n

 (13)

Here, d is the number of dimensions, and n is the number of sparrows. The fitness of
the sparrow is expressed by Equation (14):

Fx =


f
([

x1
1x2

1 . . . xd
1

])
f
([

x1
2x2

2 . . . xd
2

])
. . . f

([
x1

nx2
n . . . xd

n

])
 (14)

Here, f denotes the adaptation value.
For sparrow colonies, a discoverer with better adaptability provide an important

resource for the entire colony and guide the predation direction of other sparrows in their
predation:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

θ·itermax

)
, i f Q2 < ZD

Xt
i,j + R · T, i f Q2 ≥ ZD

(15)

Here, Xi,j represents the position information of the ith sparrow in the jth dimen-
sion. t represents the current number of iterations, j = 1, 2, 3, · · ·, d. itermax represents the
maximum number of iterations. θ ∈ (0, 1] is a random number. R stands for a random
number that follows a normal distribution. T represents a 1× d matrix with an element of
1. Q2(Q2 ∈ [0, 1]) and ZD(ZD ∈ [0.5, 1]) indicate the alarm and safety values, respectively.

When Q2 < ZD, it indicates that no aggressor is found around the predation area, and
the discoverer is able to perform an extensive search mechanism. If Q2 ≥ ZD, representing
individuals in the group to spot the aggressor and sound the alarm, all individuals in
the group take anti-predation behavior, and the discoverer will take the follower to a
relatively safe position [48]. The position of the follower is updated as shown in the
following equation:

Xt+1
i,j =

R · exp
(

Xt
ws−Xt

i,j
i2

)
, i f i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ ·A+ · T, otherwise
(16)

A+ = AT(AAT)
−1

(17)
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Here, Xws represents the current global worst position and Xp represents the best
position occupied by the discoverer. A represents 1× d matrix with a random value of 1 or
−1. When i > n/2, it indicates that the ith follower is in a position where there is less food
and needs to go to a location where food is abundant.

Sparrow colonies will defend themselves when they feel dangerous. The investigators
were randomly selected individuals from the sparrow population. When predators appear
in the vicinity of the population, they will promptly alert the entire population regarding
the anti-predatory behavior, and the mathematical expression is as follows:

Xt+1
i,j =


Xt

bs + δ ·
∣∣∣Xt

i,j − Xt
bs

∣∣∣, i f fi > fg

Xt
i,t + M ·

( ∣∣∣Xt
i,j−Xt

ws

∣∣∣
( fi− fw)+α

)
, i f fi = fg

(18)

Here Xbs represents the current global best position. δ represents a random number
that follows a standard normal distribution. α represents a very small constant. M ∈ [−1, 1]
represents a random number. fi indicates the adaptation value of the current sparrow. fw
and fg represent the current global worst fitness and optimal fit, respectively. When fi > fg,
it means that the sparrow is on the edge of the population. When fi = fg, it means that
the sparrows in the middle of the group are aware of the danger and need to approach the
other sparrows to avoid the danger. The process is shown below:

Step 1: Initialize the number of discoverers, followers, investigators, and iterations.
Step 2: Calculate the fitness values of all the sparrows to rank and find the best and

worst individuals.
Step 3: Update the discoverer location using Equation (15).
Step 4: Update the follower positions using Equations (16) and (17).
Step 5: Update the investigator positions using Equation (18).
Step 6: If the optimal sparrow fitness is inferior to the updated sparrow fitness, the

optimal fitness is updated.
Step 7: Determine whether the number of iterations exceeds the maximum number of

iterations. If satisfied, the program is terminated and the final result is output, otherwise,
the execution of steps 2–6 is repeated.

2.2.3. SSA-KHM Algorithm Flow

Since the KHM algorithm has a more straightforward structure than the SSA algorithm,
it converges faster; however, it typically falls into local optimum solutions. To overcome
the local optimum issue, this study uses a hybrid model comprising the SSA and KHM
algorithms to determine the clustering centers. The model can maintain the advantages
of the KHM and SSA algorithms to better cluster the data and capture the characteristics
of the data in the time series, enabling a more accurate multi-step prediction of the dam
deformation data. The specific flow of the SSA-KHM model is shown below:

1. Divide the dam deformation data into a 60% training set and a 40% test set and
normalize. The training set is clustered, and its cluster centers are calculated, and the
test set is clustered using the cluster centers of the training set.

2. Initialize the cluster center and set the maximum number of iterations Itermax.
3. Set G1 = 0.
4. Set G2 = G3 = 0.
5. The SSA method

5.1 Use the SSA algorithm to update the clustering center.
5.2 G2 = G2 + 1. If G2 < 3, then return to 5.1.

6. The KHM method

6.1 The current location of the individual is used as the initial cluster center and
updated by the KHM algorithm.

6.2 G3 = G3 + 1. If G3 < 7, then return to 6.1.
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7. G1 = G1 + 1. If G1 < Itermax, then return to 4.
8. Classify sample xi into the largest group k of m(ck|xi ).

2.3. Prediction
2.3.1. Extreme Learning Machine

Conventional neural network learning algorithms require setting a large number of
artificial network training parameters [49]. By contrast, the extreme learning machine
(ELM) algorithm can randomly initialize input weights, biases, and the number of hidden
layer nodes and obtain the corresponding output weights by least squares. The entire
learning is performed by a mathematical change without any iterations, which makes the
ELM algorithm a compact yet effective learning algorithm [50]. The ELM algorithm process
is as follows:

L

∑
i=1

βig
(
Wi · Xj + bi

)
=
∼
yj, j = 1, · · ·, N (19)

Here, g(x) is the activation function (sigmoid is chosen as the activation function in
this paper), Wi is the input weight, bi denotes the bias of the ith hidden layer cell, and βi
indicates the output weights. In order to obtain βi with good results using the training
sample set, the goal of the ELM algorithm is to minimize the error of the output:

N

∑
j=1

∥∥∥∼yj − tj

∥∥∥ = 0 (20)

There exists βi, Wi, and bi, which makes:

L

∑
i=1

βig
(
Wi · Xj + bi

)
= tj, j = 1, · · ·, N (21)

Equation (21) can be expressed as:

Hβ = T (22)

Here, T represents the desired output, β represents the output weight, and H repre-
sents the output of the hidden node.

The output weight β can be determined by Equation (23):

β = H†T =
(

HTH
)−1

HTT (23)

Here, H† is the Moore–Penrose generalized inverse of the matrix H and the norm of β
is minimal and unique.

2.3.2. Error Minimized Extreme Learning Machine (EM-ELM)

Although the structure of the ELM algorithm is simple and effective, choosing the
optimal number of hidden layer nodes remains problematic. In contrast, the EM-ELM
algorithm can add hidden nodes individually or in batches; the output weight value
is updated each time a new hidden node is added, which reduces the computational
complexity. Generally, the EM-ELM algorithm can be divided into two steps: initialization
and learning. In the initialization phase, the initial network structure is constructed by
giving an initial number of hidden layer nodes, and the initial hidden layer output matrix
and initial residual error ε > 0 are calculated. In the learning phase, hidden nodes are
added individually or in batches, the hidden output matrix is calculated, and the output
weights and residual errors are updated. The specific flow of the EM-ELM algorithm is
as follows:
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Suppose N arbitrary samples (Xi, ti) ∈ Rn × Rm(i = 1, 2, · · ·, N), the maximum
number of hidden layer nodes is Lmax, initial hidden layer node L0, and hidden layer
activation function g(x).

Initialization phase:
(1) Initial hidden layer node L0 randomly generates initial weights and biases (Wi, bi)

L0
i=1.

(2) Calculate the initial hidden layer output matrix H0 according to Equation (24).

H0 =

 g(w1, b1, x1) . . . g(wL0 , bL0 , x1)
...

...
g(w1, b1, xN) . . . g(wL0 , bL0 , xN

)


N×L0

(24)

(3) Calculate the initial residual output error according to Equation (25).

E0 =
∥∥∥H0H

†

0T− T
∥∥∥ (25)

Learning phase:
(1) k = 0, while Lk < Lmax and Ek > ε (1) k = k + 1.
(2) Randomly generate ∆Lk−1 nodes to add to the existing network. At this time

Lk = Lk−1 + ∆Lk−1, and the hidden layer output matrix Hk =
[
Hk−1, ∆H∆Lk−1

]
, where:

∆H∆Lk−1 =

 g(wLk−1 + 1, bLk−1 + 1, x1) . . . g(wLk , bLk , x1)
...

...
g(wLk−1 + 1, bLk−1 + 1, xN) . . . g(wLk , bLk , xN

)


N×Nk−1

(26)

Equations (27)–(29) are used to calculate the output weights.

Dk =
((

I−Hk−1H†
k−1

)
∆H∆Lk−1)

† (27)

Uk = H†
k−1

(
I− ∆HT

∆Lk−1
Dk

)
(28)

βk = H†
kT =

[
Uk
Dk

]
T (29)

End While.

3. Case Study

A case study was conducted on a concrete dam located in China with a height of
63 m, a crest length of 196.62 m, a left bank width of 8 m, a right bank width of 6 m, and a
bottom width of 46.5 m. The main structures include a barrage, a water diversion system, a
powerhouse, and a switching station. The dam was put into storage in 1993 and passed
completion acceptance in 1995. To better ensure the safe operation of the dam, in August
2000, renovation of the automated system was conducted for automatic monitoring of
the deformation. A lead line was placed at the top of the dam to monitor the horizontal
displacement of the dam, with a total of seven points, numbered E01–E07. In addition,
there is an inverted plumb line at each end of the lead wire to monitor the horizontal
displacement, numbered IP1 and IP2. The data were acquired once a day, and the layout
scheme is shown in Figure 3.
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Figure 3. Project example chart.

In this study, the radial displacement at the monitoring point E04 in the overflow
section of the dam was selected as the test case (negative toward upstream and positive
toward downstream). The E04 dataset was created between August 1998 and January 2021,
and the first 60% of the data was selected for model training, and the rest of the data was
used as the test set to verify the prediction performance of the model. Mean absolute error
(MAE) and root mean square error (RMSE) are used to evaluate the predictive accuracy.
See the following formula for details:

MAE =
1
a

a

∑
i=1

∣∣∣yi −
∼
yi

∣∣∣ (30)

MSE =
1
a

a

∑
i=1

(
yi −

∼
yi

)2

(31)

where a is the number of samples; yi is the measured value of the dam’s displacement; and
∼
y i is the predicted value of the dam’s displacement.

3.1. Denoising of Prototype Dam Displacement Data

In this study, the prototype dam displacement data were denoised using the method
proposed in Section 2.1. The implemented process is as follows:

Step 1: Divide the data into 60% training sets and 40% testing sets.
Step 2: Use the CEEMDAN to decompose the training set data, and then the method

introduced in Section 2.1.2 is utilized to judge which of the decomposed IMF sequences are
noisy sequences and remove them.

Step 3: The displacement data are denoised and reconstructed according to the calcu-
lation results of the training set.

Figure 4 exhibits the decomposition results of the E04 test set deformation, and the
calculated sample entropy and the SMSE values of IMFs are listed in Tables 1 and 2. The
magnitude of the sample entropy and the SMSE values can measure the complexity of IMFs.
When the sample entropy value is large and the SMSE value is small, the corresponding
IMFs sequence is determined as a noise sequence. Accordingly, IMF1 is identified as a noise
sequence and eliminated. Moreover, to verify the applicability of the proposed denoising
method, the deformation sequences before and after denoising are plotted in Figure 5.
As shown in Figure 5, the denoised sequence trends are generally consistent with the
original sequence while having a higher smoothness, which reveals that the proposed
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denoising method can better remove the redundant information while preserving the
original sequence features.
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Table 1. Sample entropy values of IMFs.

Subsequences Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 Imf9

entropy 1.0518 0.8186 0.6306 0.5638 0.3276 0.0669 0.0232 0.0086 9.7 × 10−5

Table 2. SMSE values of IMFs.

Subsequences Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 Imf9

SMSE 0.0248 0.0419 0.0622 0.0771 0.1812 7.1408 0.1217 0.0296 36.8884
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3.2. Prediction Results Based on EM-ELM, LSTM and CNN before and after Denoising
Displacement Data

Since the partial autocorrelation function (PACF) is a statistical method that directly
describes the relationship between time series and their lags, PACF can verify the time
correlation of a sequence. Therefore, PACF is utilized to consider the influence of dam
deformation self-sequential lag on dam displacement in this paper. Figure 6 plots the PACF
before and after denoising. According to Figure 6 (the shaded area is the 95% confidence
interval), the PACF of the prototype dam displacement data before denoising presents a
39th order truncation; accordingly, the data input length before denoising is adopted as 39.
Similarly, the data input length after denoising is chosen as 4. The results before and after
denoising the data are further analyzed and compared using EM-ELM, LSTM, and CNN
models. The indicators of the six models are listed in Tables 3–5, and Figure 7 shows the
residual distribution of each model.
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Figure 6. PACF charts of dam displacement data before and after denoising.

Table 3. Performance comparison of different algorithms on the test set (predicted three-day average).

Algorithm CS-EMELM EMELM CS-LSTM LSTM CS-CNN CNN

RMSE (mm) 0.2235 0.6602 0.2504 0.3314 0.2707 0.6376
MAE (mm) 0.1419 0.4920 0.1706 0.2314 0.1894 0.5180

Time(s) 60.87 53.28 89.66 193.67 72.64 94.70

Note: The best results are highlighted in boldface.

Table 4. Comparison of RMSE of different algorithm test set for different prediction days.

Prediction Days
Algorithm

CS-EMELM EMELM CS-LSTM LSTM CS-CNN CNN

First day (mm) 0.0714 0.6207 0.1026 0.2358 0.1241 0.6086
Second day (mm) 0.1969 0.6609 0.2307 0.3315 0.2551 0.6319
Third day (mm) 0.3256 0.6967 0.3526 0.4049 0.3733 0.6709

Note: The best results are highlighted in boldface.

Table 5. Comparison of MAE of different algorithm test set for different prediction days.

Prediction Days
Algorithm

CS-EMELM EMELM CS-LSTM LSTM CS-CNN CNN

First day (mm) 0.0478 0.4598 0.0716 0.1532 0.0934 0.4951
Second day (mm) 0.1388 0.4932 0.1719 0.2382 0.1916 0.5131
Third day (mm) 0.2391 0.5229 0.2683 0.3027 0.2833 0.5458

Note: The best results are highlighted in boldface.
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denoising on the test set.

In order to intuitively verify the effectiveness of the denoising method proposed in this
paper, a comparative analysis of the results listed in Table 3 is performed. The results show
that, after denoising the prototype dam displacement sequence, the RMSE and MAE of the
EM-ELM algorithm on the test set are improved by 66.15% and 71.16%, respectively. The
RMSE and MAE of the LSTM algorithm on the test set are improved by 24.44% and 26.27%,
respectively. The RMSE and MAE of the CNN algorithm on the test set are improved by
57.54% and 63.44%, respectively. In summary, the accuracy of the multi-step predictive
model can be improved by using the denoising sequence, which suggests that the proposed
denoising method can effectively remove redundancy information from the data and
thereby increase the prediction accuracy.

Furthermore, the statistical indicators in Table 3 are analyzed to verify the applicability
and validity of each prediction model. From Table 3, in comparison to the CNN algorithm,
the LSTM algorithm improves the RMSE and MAE on the test set by 48.02% and 55.33%,
respectively, while the time performance decreases by 51.10%. Compared with the EM-ELM
algorithm, the LSTM algorithm improves the RMSE and MAE on the test set by 49.80%
and 52.97%, respectively, while the time performance decreases by 72.49%. Regarding the
prediction performance after denoising, the CS-EMELM algorithm improves the RMSE
and MAE on the test set by 10.74% and 16.82% compared with the CS-LSTM algorithm,
respectively, and the time performance improves by 32.11%. With respect to the CS-CNN
algorithm, the CS-EMELM algorithm improves the RMSE and MAE on the test set by 17.44%
and 25.08%, respectively, and the time performance improves by 16.20%. To summarize
the above, without any special denoise processing, the LSTM algorithm illustrates stronger
generalization ability compared with CNN and EMELM algorithms, which shows that the
LSTM algorithm is capable of capturing the temporal characteristics contained in noise
sequences and results in better prediction ability for the redundant prototype data. After
denoising the data through the CS algorithm, the performance of all involved approaches
has been improved to a large extent, especially the EM-ELM algorithm, which achieves
the most significant improvement and results in similar predictive accuracy with the other
two models, which demonstrates that by incorporating the CS algorithm, the EM-ELM
algorithm can capture and reveal the temporal characteristics of the data and has great
predictive accuracy. Moreover, to obtain a reasonable solution, the implementation of
LSTM and CNN algorithms is usually complicated, dueto the need to employ optimization
algorithms to determine multiple hyperparameters. Hence, taking advantage of combining
good accuracy with an affordable computational cost, the CS-EMELM algorithm is utilized
as the predictive model in the proposed method.
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The prediction results of all involved models under different forecasting days are
shown in Figures 8–10, and the values of the evaluation criteria are given in Tables 4 and 5.
In comparison to the second-day predicted value, the first-day predicted value of the
CS-EMELM algorithm improves by 63.74% and 65.56% in RMSE and MAE, respectively;
the first-day predicted value of the CS-LSTM algorithm improves by 55.53% and 58.35%
in RMSE and MAE, respectively. The first-day predicted value of the CS-CNN algorithm
improves by 51.35% and 51.25% in RMSE and MAE, respectively. Compared with the
third-day predicted value, the second-day predicted value of the CS-EMELM algorithm
improves by 39.53% and 41.95% in RMSE and MAE, respectively, the second-day predicted
value of the CS-LSTM algorithm improves by 34.57% and 35.93% in RMSE and MAE,
respectively, the second-day predicted value of the CS-CNN algorithm improves by 31.66%
and 32.37% in RMSE and MAE, respectively. In general, since the generalization ability
of the model deteriorates as the forecasting duration increases and the short-lag feature
of dam displacement data increases, the models’ predictive accuracy decreases with the
increase in the predictive period.
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3.3. Prediction Analysis after Clustering

The short-term variation trend of the dam displacement sequence may contain similar
characteristics in different periods. The grouping of data into classes or clusters is a process
of data clustering, which can make the data in each cluster highly similar while being very
dissimilar to data from other clusters. As the data feature in each group is concentrated
after the clustering process, better performance can be achieved by implementing the
predicting methods for each group separately. As mentioned in Section 2.2.3, the SSA-
KHM model can better overcome the shortcomings of traditional clustering models, which
are sensitive to the initial clustering center, and thus improve the accuracy of clustering.
Consequently, this paper uses the SSA-KHM model to cluster the data. Notably, the choice
of the clustering number may affect the accuracy of the SSA-KHM model. TO address
this problem, researchers have proposed some criteria to determine the optimal number of
clusters. Nevertheless, the effectiveness of these criteria for dam displacement clustering
is still unclear, particularly for the clustering problem of dams’ multi-step displacement
prediction. In this paper, the optimal number of clusters is determined using the traversal
method [51].

Figures 11 and 12 plot the distribution of the datasets after clustering. The results show
that the grouped sub-datasets are distributed around their respective clustering centers,
indicating that the proposed method can effectively extract the different characteristics
contained in the sequence and precisely cluster data with the same characteristics. Table 6
demonstrates the prediction results under different classifications. As shown in Table 6,
the optimal number of clusters is acquired by quantifying the statistical indicators, and the
model constructed by three clusters provides better fitting performance than the model
constructed by the other clustering numbers. Nevertheless, the deformation characteristics
of gravity dams are less complicated due to their relatively simple structural forms and
stable operating state. Therefore, fewer features of dam deformation can be extracted
by clustering methods, which results in a mild improvement in the prediction accuracy.
In view of the above, the proposed method can be further applied to other hydraulic
structures, such as earth-rock dams, and arch dams where more complex deformation
characteristics are present.

By analyzing the metrics in Tables 7 and 8, and Figure 13, the effects of different cluster
numbers for different prediction days can be obtained. When taking K = 3 (the optimal
number), the predicting accuracy of the model outperforms other scenarios with various
clustering numbers within different forecast days. Meanwhile, as the number of prediction
days increases, the prediction accuracy of the proposed model can be remarkably enhanced
when the optimal clustering number is adopted.
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4. Discussion

The model proposed in this paper is based on statistical methods and only considers
displacement values as input variables. Some explicitly influential factors, such as tempera-
ture, water level, etc., which are well-established in physics, are not directly considered
input factors in the proposed model. Incorporating these factors directly into the model
as inputs using existing analysis methods may lead to a decrease in predictive accuracy
due to accumulated measurement errors in the environmental factor measurement devices.
Therefore, in future research, how to integrate these environmental factors and propose
efficient and accurate predictive modeling approaches will further enhance the physical
interpretability of the model and improve its applicability.

5. Conclusions

In this paper, a multi-step hybrid prediction model is established, aiming to accurately
capture the variation trend in the short-term deformation of concrete dams, which is
simplified into the CSSKEE model. The model is applied to the displacement prediction
of a dam in China, and the experimental results show that it can effectively predict the
dam deformation variation trend so as to reflect the resulting structural behavior induced
by the deformation variation, thus better ensuring the safety of dam operation. The main
conclusions of this work are summarized below:

(1) The CEEMDAN and SE methods can effectively distinguish the noise term and
characteristic term of the measured deformation sequence, which can remove the
redundancy of the prototype dam displacement sequence effectively and efficiently.

(2) The SSA algorithm can better solve the local-trapped problem by applying the KHM
method to clustering problems, which achieves better clustering results of the se-
quence and improves the accuracy of the prediction model.

(3) The CSSKEE method proposed in this paper achieves the estimation of dam deforma-
tion trends by performing multi-step predictions on dam deformation. Compared to
traditional single-step prediction methods, this approach elevates the prediction of
a single measurement value to the prediction of deformation trends using multiple
measurement values. As a result, it can better reflect future changes in the safety
status of the dam, effectively enriching and expanding the theory and methods of
dam safety monitoring.
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