
Citation: Liao, X.; Zhang, L.; Hu, X.;

Peng, Y.; Zhou, T. FPGA

Implementation of a Higher SFDR

Upper DDFS Based on Non-Uniform

Piecewise Linear Approximation.

Appl. Sci. 2023, 13, 10819. https://

doi.org/10.3390/app131910819

Academic Editors: KC Santosh and

Alejandro Rodríguez-González

Received: 7 September 2023

Revised: 25 September 2023

Accepted: 27 September 2023

Published: 29 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FPGA Implementation of a Higher SFDR Upper DDFS Based
on Non-Uniform Piecewise Linear Approximation
Xuan Liao 1, Longlong Zhang 1, Xiang Hu 1 , Yuanxi Peng 1 and Tong Zhou 2,*

1 State Key Laboratory of High-Performance Computing, College of Computer Science and Technology,
National University of Defense Technology, Changsha 410073, China; liaoxuan21@nudt.edu.cn

2 College of Advanced Interdisciplinary Studies, National University of Defense Technology,
Changsha 410073, China

* Correspondence: zhoutong09@nudt.edu.cn

Abstract: We propose a direct digital frequency synthesizer (DDFS) by using an error-controlled
piecewise linear (PWL) approximation method. For a given function and a preset max absolute error
(MAE), this method iterates continuously from right to left within the input interval, dividing the
entire interval into multiple segments. Within each segment, the least squares method is used to
approximate the objective function, ensuring that each segment meets the error requirements. Based
on this method, We first implemented a set of DDFS under different MAE to study the relationship
between SFDR and MAE, and then evaluated its hardware overhead. In order to increase the
frequency of the output signal, we implement a multi-core DDFS using time interleaving scheme.
The experimental results show that our DDFS has significant advantages in SFDR, using fewer
hardware resources to achieve high SFDR. Specifically, the SFDR of proposed DDFS can reach 114 dB
using 399 LUTs, 66 flip flops and 3 DSPs. More importantly, we demonstrate through experiments
that proposed DDFS breaks the SFDR theoretical upper bound of DDFS based on piecewise linear
approximation methods.

Keywords: direct digital frequency synthesis;non-uniform piecewise linear approximation; spurious
free dynamic range

1. Introduction

DDFS technology can generate the ideal sinusoid signal. Because of its advantages
of fast frequency switching, high frequency resolution and low phase noise, it is widely
used in modern communication and radar systems. Tierney et al. [1] first proposed DDFS
architecture in 1971, and almost all subsequent DDFS were based on this architecture.
As shown in Figure 1, the architecture of DDFS mainly consists of two parts: phase
accumulator and phase-amplitude converter(PAC). Finally, if an analog signal output is
needed, a digital-to-analog converter (DAC) and a low-pass filter (LPF) will be added.

Phase to amplitude
converter

re
gi

st
er

phase accumulator

clk

FCW

N N N L DAC/LP
F

𝑓𝑜𝑢𝑡

Figure 1. General architecture of DDFS.

The frequency control word (FCW) is the input to the entire DDFS and is used to
control the frequency of the output signal. The phase accumulator accumulates FCW every

Appl. Sci. 2023, 13, 10819. https://doi.org/10.3390/app131910819 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910819
https://doi.org/10.3390/app131910819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1798-8508
https://doi.org/10.3390/app131910819
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910819?type=check_update&version=2

Appl. Sci. 2023, 13, 10819 2 of 14

clock cycle to continuously generate new phase stored in the phase register. Its essence
is to sample the phase based on the clock frequency, and for each overflow of the phase
register, it completes one cycle sampling of the sine signal. The phase is then converted
to the corresponding amplitude value in PAC. According to the above description, the
frequency of the output signal is determined by the frequency control word (FCW) and
clock frequency, which can be expressed as follows:

fout =
FCW

N
∗ fclk (1)

where fclk is the clock frequency, and N is the width of the frequency control word.
The core design of DDFS is the PAC, which can be implemented in many ways, the

simplest way is to use a lookup table (LUT), which use the phase as address to index the
corresponding amplitude value. The size of LUT increases exponentially with the increase
of the bit width N of the FCW, and in order to improve the frequency resolution of the
output signal, N is usually taken to a large value, which results in a very large size of LUT,
even using the symmetry of the sine function. In [2–5], the phase is truncated to reduce the
size of LUT, but it amplifies the error of the PAC and introduces more spurious signals into
the output signal. The latest LUT-based DDFS were proposed by Narayan Sinha et al. [6],
which use multiplexer-based LUT implemented in a tree structure.

In order to get rid of the limitation of LUT size, many computation-based methods
have been proposed. The core idea of these methods is to optimize space complexity with
computational complexity. CORDIC algorithm [7] is introduced to calculate the amplitude
value in [8–13]. This method calculates trigonometric functions by angle rotation, which can
avoid memory access, but the iteration period is longer. Bergeron et al. [14] design DDFS
using a multiplier-based angle rotation algorithm and achieve impressive performance.
Some work combines the two methods of angular rotation and lookup table to reduce the
lookup table size as much as possible while maintaining accuracy [15–18]. In addition,
polynomial approximation method is also used for amplitude calculation [19–28]. In
polynomial interpolation methods, the first quadrant of the sine function is usually evenly
divided into s segments, each of which is approximated separately by a polynomial, and
s is usually a power of two. Among these works, Freeman [19] first used 16-segment
linear functions to approximate the first quadrant of the sine function, and designed
a correction table using ROM. In order to reduce errors, Chebyshev polynomial and
Lagrange polynomial interpolation are used to reduce the MAE and mean square error
(MSE) respectively, such as [20,21]. The most important performance indicator of DDFS
is SFDR. Therefore, many researchers have conducted in-depth studies on SFDR of DDFS
based on polynomial interpolation. Langlois et al. [22] theoretically proved the SFDR
upper bound of DDFS based on PWL approximation, as shown in Equation (2). Later,
Caro [21] proved the SFDR upper bound of DDFS based on first-order and higher-order
polynomial approximation, where the SFDR upper bound of first-order linear interpolation
is the same as Equation (2). The SFDR upper bounds of second and third order polynomial
interpolation are shown in Equation (3) and Equation (4) respectively.

SFDR = 16s2 + 1 (2)

SFDR = 256s3 − 96s2 + 24s− 1 (3)

SFDR =
5120s4 + 768s2 + 5

3
(4)

Appl. Sci. 2023, 13, 10819 3 of 14

where s is the number of segments. However, Ashrafi [23] pointed out that the above
SFDR upper bound is only true if the polynomial is complete, and analyzed the harmonics
generated in the case of even fourth-order polynomial. The polynomial approximation
methods mentioned above are all based on uniform segmentation, while there are few
works based on non-uniform segmentation, and we only found [24].

No matter what method is used to design PAC, three indicators are the main consider-
ations of the designer: MAE, MSE and SFDR, which indirectly reflect the noise in the signal.
The first work proposing the idea of improving sFDR by reducing MAE is [29].

In this paper, we propose a high SFDR DDFS. The characteristic of this DDFS is using a
non-uniform PWL approximation method to convert phase into amplitude, rather than the
traditional uniform PWL approximation or LUT.We call the method PWLMMAE (Piecewise
Linear Minimize Maximum Absolute Error) and will describe it in detail in the next section.
This method can calculate the piecewise points, the slope and intercept of each segment,
satisfying the preset MAE. Moreover, this method is hardware friendly. Based on this
method, We first implemented a set of DDFS under different MAE to study the impact
of MAE on SFDR, and then evaluated its hardware overhead. We also investigate the
relationship betwween the number of segments in the PWL approximation of sin function
and SFDR and compare it with Equation (2). Finally, we implemented multi-core DDFS
using a time interleaving scheme to increase the frequency of the output sine signal. In
summary, the main contributions of this paper are as follows:

• Proposing a non-uniform PWL approximation method with MAE controlled.
• Implementing a set of DDFS under different MAE based on the above method on

FPGA to study the the impact of MAE on SFDR.
• our proposed DDFS breaks through the SFDR theoretical upper bound of DDFS based

on the piecewise linear approximation method represented in Equation (2).
• Implementing multi-core DDFS which can achieve 3.9 GHz sampling rate and

114 dB SFDR.

The organization of this paper is as follows. The Section 2 introduces the non-uniform
piecewise linear approximation method we proposed, and the Section 3 designs the hard-
ware architecture of single-core and multi-core DDFS based on this method. The Section 4
presents the experimental results, including the approximation of sine function by our
PWL approximation method, SFDR of DDFS under different MAE and the performance of
multi-core DDFS. Finally, the Section 5 summarizes this paper.

2. Non-Uniform PWL Approximation Method

In this section, We first introduce the PWLMMAE algorithm, which is based on [30].
We further reduced the number of segments and mean square error by modifying the way
of fitting target curve [31]. The algorithm is used to perform PWL approximation of the
first quadrant of sin function, and then a period of sin function is fitted using its symmetry.

2.1. PWLMMAE

The core idea of the algorithm is to determine the subinterval straight line by least
squares, then calculate the maximum absolute error between the line and the real curve and
find the maximum absolute error less than the predetermined error through continuous
iteration, the steps of the algorithm are as follows.

1. Input range discretization
Considering the hardware implementation, the input range should be discretized. For
a given input interval [X, Y], the input x should be defined as a vector

Appl. Sci. 2023, 13, 10819 4 of 14

x = x(1 : NUM) = X, X +
1

2Q , X +
2

2Q , ..., Y (5)

where Q is the number of fractional bits setting in hardware and NUM is the length
of the vector.

2. Minimization of MAE for a given width of subinterval
The slope a and intercept b of the subinterval approximation line are first calculated
using the least squares method by Equations (6) and (7), and we can use h(x) to
represent the approximation line.

bn + a ∑ x = ∑ f (x) (6)

b ∑ x + a ∑ x2 = ∑ x f (x) (7)

where n is the number of discrete points in the subinterval, then, the objective function
is denoted by f (x) with x ∈ (j : k), 1 ≤ j ≤ k ≤ NUM, so the error vector can be
expressed as Equation (8).

δ = f (x(j : k))− h(x(j : K)) (8)

The corresponding MAE can also be calculated as

MAE = max{|max(δ)|, |min(δ)|} (9)

To minimize MAE, we shift line h(x) vertically such that |max(δ)| = |min(δ)|, and
the distance T moved can be calculated by Equation (10). The MAE after movement
is shown in Equation (11).

T = max(δ)− max(δ)−min(δ)
2

=
max(δ) + min(δ)

2
(10)

MAE =
max(δ)−min(δ)

2
(11)

3. segmentation points
To obtain the maximum segmentation interval, we determine the segmentation points
from right to left. Initially, we set START = x(1), END = x(NUM), then perform
the PWL method on x(START: END) to calculate MAE by Equations (8) and (9). If
MAE ≤ Ec, where Ec is a predefined error, approximation succeeds and set b = b + T;
otherwise END = END − 1 and repeat above step. Once approximation succeeds,
we will update START and END to find the next subinterval, where MAE ≤ Ec. The
values of START and END record the segmentation points, the index i records the
number of segments.
Figure 2 shows the process of finding the ith segment. h1, h2, ..., hi−1 represent the
approximate lines of the previous i− 1 segments respectively, x(ENDi−1) is the start
point of the ith segment. The end point of first approximation of ith segment is
x(NUM).Continuously move the end point to the left in steps 1

2Q until the error be-
tween the approximate line and the objective curve is less than Ec. Then, we can obtain
the end point x(ENDi) of the ith segment and the approximate line hi(x) = aix + bi.

Appl. Sci. 2023, 13, 10819 5 of 14

Index: 1 2 3 …… NUM
M N

ℎ1(𝑥) ℎ2(𝑥)

𝑥(𝐸𝑁𝐷𝑖−1)

ℎi−1(𝑥)

𝑓(𝑥)

The first approximation of 𝑖th segment

𝑥(𝐸𝑁𝐷𝑖)

ℎ𝑖 𝑥 = 𝑎𝑖𝑥 + b𝑖

Figure 2. The process of seeking for the ith segment that meets the error requirements.

In summary, the implementation of PWLMMAE is as follows (Algorithm 1). On the
fifth line, poly f it is a function that uses the least squares method to fit the curve and the
argument “1” indicates first-order.

Algorithm 1: PWLMMAE

1 x = M : 1
2Q : N, NUM = length(x);

2 j = 1, END = NUM, i = 1, F = 1;
3 while j! = NUM do
4 while F == 1 do
5 ai, bi = poly f it(x(j : END), f (x(j : END)), 1);
6 h(x) = ai ∗ x + bi;
7 δ = f (x(j : END))− h(x(j : END));
8 MAE = (max(δ)−min(δ))/2;
9 if MAE ≤ Ec then

10 bi = bi +
max(δ)+min(δ)

2 ;
11 store ai, bi, x(j), x(END);
12 F = 0;
13 end
14 end
15 i = i + 1, j = END, END = NUM, F = 1;
16 end

2.2. PWL Approximation of the Sin Function

Let’s consider the first quadrant of the sin function:

f (x) = sin(
π

2
x) 0 < x < 1 (12)

Set Ec = 0.001, Q = 10. The segmentation results can be obtained through MATLAB R2021a
as shown in Table 1.

Appl. Sci. 2023, 13, 10819 6 of 14

Table 1. Segmentation results of the first quadrant of the sin function.

i a b End Point

1 1.54503497834031 0.000990880661757787 0.2001953125
2 1.43612208005773 0.0227876190983088 0.326171875
3 1.29779670692432 0.0679214996797700 0.43359375
4 1.14069314244100 0.136030419000189 0.5302734375
5 0.970322027885993 0.226383524844325 0.62109375
6 0.790355834163542 0.338143580690051 0.70703125
7 0.604027272905406 0.469880462191978 0.7900390625
8 0.412863639934916 0.620903909462291 0.87109375
9 0.218415511777311 0.790288325648528 0.951171875
10 0.0602097594473886 0.940157596611038 1

The first quadrant of the sin function is divided into 10 segments, the first segment
starts at 0, the end point of the previous segment is the start point of the next segment,
and the end of the last segment is 1. Using the symmetry of the sin function, we make
a PWL approximation of one period, as shown in Figure 3. The sin function realized by
PWLMMAE fits well with the sin function in MATLAB, and MAE is within the preset
range, which verifies the effectiveness of the algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

Sin-MATLAB

Sin-PWLMMAE
Absolute error × 500

1.1 1.15 1.2
0.979

0.9795

0.98

0.9805

0.981

0.9815

0.982

0.9825

1.5

1

𝟎.5

𝟎

−1.5

−1

−𝟎.5

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 3. PWL approximation of the sin function.

3. Hardware Architecture of DDFS

In this section, we focus on the single-core DDFS hardware architecture, and then
make some minor changes to it to get a multi-core DDFS architecture.

3.1. Single-Core DDFS

Before introducing the overall architecture of DDFS, we discuss the hardware imple-
mentation of the PWL approximation. Suppose we obtain the s linear segments of the
sin function by executing the PWLMMAE algorithm introduced in the previous section
in MATLAB, and the start point, end point, slope a, and intercept b of each segment are

Appl. Sci. 2023, 13, 10819 7 of 14

also obtained. We store the a and b of each segment in two separate LUTs. The hardware
implementation architecture of the PWLMMAE algorithm is shown in Figure 4. In order
to compute the approximate function value of the input x, the first step is to determine in
which interval segment the input x is located before indexing to the corresponding a and b.
The independent variables in the first quadrant of the sin function are all positive, and both
the interval endpoints and the input can be expressed as unsigned numbers, so we use s− 1
parallel comparators and a multiplexer to implement segment indexing instead of using a
subtractor as in [30]. Comparison of unsigned numbers is obviously more efficient than
subtraction, and it is sufficient to start comparing from the high significant bits. The input
x is compared with the first s− 1 interval endpoints at the same time, if x ≥ x(ENDi), then
signi+1 = 0, indicating that the input x is not in the ith segment, otherwise signi+1 = 1,
which does not mean that the input x is in the ith segment, and the results of the s− 1
comparators can form an s− 1 bits vector {signs : sign2}, which will be used as the input
of the multiplexer to select the segment index. The mapping of this vector to segment index
is shown in Table 2, where index1, index2 and indexs represent the address or index of the
slope a and intercept b of the first, second and last segment in the LUT.

≥

se
le

ct
o

r
LUT a

LUT b

X

+

𝑥(𝐸𝑁𝐷1)

𝑥(𝐸𝑁𝐷2)

𝑥(𝐸𝑁𝐷3)

𝑥(𝐸𝑁𝐷𝑠−1)

𝑠𝑖𝑔𝑛2

𝑠𝑖𝑔𝑛3

𝑠𝑖𝑔𝑛4

𝑠𝑖𝑔𝑛𝑠

𝑖𝑛𝑑𝑒𝑥1

𝑖𝑛𝑑𝑒𝑥2

𝑖𝑛𝑑𝑒𝑥3

𝑖𝑛𝑑𝑒𝑥𝑠

𝑖𝑛𝑑𝑒𝑥

𝑎

register

re
g

is
te

r

𝑏

…

… …

𝑥

≥

≥

≥

𝑎𝑥 + 𝑏

𝑠𝑖𝑔𝑛𝑠 , 𝑠𝑖𝑔𝑛𝑠−1 … 𝑠𝑖𝑔𝑛2

Figure 4. The hardware architecture of PWLMMAE algorithm.

Table 2. The mapping of the vector to segment index.

{signs : sign2} Index

s− 1’b111. . . 111 index1
s− 1’b111. . . 110 index2

.
s− 1’b000. . . 000 indexs

After getting the segment index corresponding to the input x, we can go to the LUT to
get the corresponding a and b, and then perform the multiplication and addition operation,
which requires a multiplier and an adder. Since the bit width of input x and slope a are
so long that the multiplication is time consuming, it is necessary to add a register after
the multiplier. In this way, the delay for the whole approximate calculation is only one
clock cycle.

Now, we design the entire hardware architecture of DDFS based on the hardware
architecture of the PWLMMAE algorithm described above. In fact, we only need to replace
the PAC in Figure 1 with the PWLMMAE hardware architecture and then add simple
control logic to exploit the symmetry of the sin function. The entire DDFS architecture is
shown in Figure 5.

Appl. Sci. 2023, 13, 10819 8 of 14

𝑥 ∈ [0,4] 𝑥 ∈ [0,1]

N
FCW

N N-2

fo
rm

at
 c

on
ve

rt
er

𝑓(𝑥)

MSB2

≥

se
le

ct
or

LUT a

LUT b

X

+

𝑥(𝐸𝑁𝐷1)

𝑥(𝐸𝑁𝐷2)

𝑥(𝐸𝑁𝐷3)

𝑥(𝐸𝑁𝐷𝑠−1)

𝑠𝑖𝑔𝑛2

𝑠𝑖𝑔𝑛3

𝑠𝑖𝑔𝑛4

𝑠𝑖𝑔𝑛𝑠

𝑖𝑛𝑑𝑒𝑥1

𝑖𝑛𝑑𝑒𝑥2

𝑖𝑛𝑑𝑒𝑥3

𝑖𝑛𝑑𝑒𝑥𝑠

𝑖𝑛𝑑𝑒𝑥

𝑎

register

re
gi

st
er

𝑏

…

… …≥

≥

≥

𝑎𝑥 + 𝑏

𝑠𝑖𝑔𝑛𝑠 , 𝑠𝑖𝑔𝑛𝑠−1 … 𝑠𝑖𝑔𝑛2

ph
as

e
ac

cu
m

ul
at

or

2’
s

co
m

pl
em

en
t

MSB1

PAC

Figure 5. The hardware architecture of proposed DDFS.

The input of the entire DDFS is an N-bits FCW, which is accumulated by the phase
accumulator to produce an N-bits phase x, x ∈ [0, 4], with the 2 most significant bits being
the integer part and the remaining N-2 bits being the fractional bits. In order to take
advantage of the symmetry of the sine function, truncation operations and 2’s complement
operations are required. We truncate the N bits phase to N-2 bits, keeping only the fractional
part. The truncation operation maps the phase to the first quadrant by a 2’s complement
operation. Whether or not to perform the 2’s complement operation is determined by
the most significant bit (MSB). We illustrate this process with an example below. For
example, x = 12’b010111000111, it is in the second quadrant. Its 2 most significant bits are
the integer part, the remaining 10 bits are the fractional part, so x is expressed in decimal as
1.4443359375. After the truncation, x = 10’b0111000111 (0.4443359375 in decimal), then take
the complement x = 10’b1000111001 (0.5556640625 in decimal). By the symmetry of the sin
function, sin(π

2 ∗ 1.4443359375) = sin(π
2 ∗ 0.5556640625). Thus we can get the approximate

value of sin(π
2 x) in the interval [0,2]. Similarly, we can obtain the absolute value of the

approximation of sin(π
2 x) in the interval [3,4]. The approximate values obtained also need

to be converted to the correct encoding format in a format converter, not the simple one
with signed numbers.

3.2. Multi-Core DDFS

Multi-core DDFS [6] is able to increase the sampling rate and the frequency of the
output signal. Its main idea is to use different cores to calculate simultaneously the values
of functions corresponding to different offset phases. Its architecture is shown in Figure 6.

There are two main differences between the multi-core architecture and the single-core
architecture. The first one is that the input to each core is the MFCW (multicore frequency
control word), which can be calculated from Equation (13). The another difference is the
addition of an adder after the phase accumulator for adding the phase offset which can be
represented by Equation (14) for each core between the different cores.

MFCW = M ∗ FCW (13)

o f f setj = j ∗ FCW (14)

where M is the number of cores, j denotes the jth core, and 1 ≤ j ≤ M. With such an
architecture, the sin function can be sampled M times in one clock cycle, increasing the
sampling rate by a factor of M.

Appl. Sci. 2023, 13, 10819 9 of 14

𝑗 + 2th core

fo
rm

at
 c

on
ve

rt
er

signal

MSB2

ph
as

e
ac

cu
m

ul
at

or

2’
s

co
m

pl
em

en
t

MSB1

+

𝑜𝑓𝑓𝑠𝑒𝑡𝑗

𝑗th core

MFCW

𝑗 + 1th core

PAC

Figure 6. The Hardware architecture of multi-core DDFS.

4. Experimental Result

This section describes the experimental setup of our proposed DDFS and the experi-
mental results. The DDFS is implemented using the Verilog hardware description language
and deployed to the Xilinx AXU15EG development board after simulation and synthesis
by the Vivado tool. The input bit width N is uniformly set to 12, and the output data is
read using ila IP cores, followed by MATLAB for spectrum analysis. The performance of
the single-core DDFS is shown first, and then the experimental results of multi-core DDFS
is introduced.

4.1. Performance Evaluation of Single-Core DDFS

We have implemented six sets of DDFS under different MAEs, and the spectrum
images of the output signals are shown in Figure 7. The FCW and clock frequency of DDFS
in these images are the same, FCW = 200, clock frequency is 200 MHz. But the bits of
output signal are different under different precision. The bit number of output signal in
Figure 7a–c is 16 bits, and that in Figure 7d–f are 17 bits, 19 bits, 20 bits respectively. From
the spectrum images, we can discover that the SFDR of DDFS increases and the noise floor
reduces with the increase of the approximate accuracy, which means our idea of improving
the SFDR by minimizing the MAE is feasible.

Next we discuss the relationship between the number of linear segments s and the
SFDR. We implemented six sets of DDFS with different MAE corresponding to different
numbers of linear segments, and the specific number of segments and SFDR are shown in
Table 3. Each set of DDFS generate three signals at low frequency (FCW = 200), medium
frequency (FCW = 1000) and high frequency (FCW = 1800), and their SFDR is measured
separately and averaged. As introduced in Section 1, in [21,22], Caro and Langlois derived
theoretically the upper bound of SFDR for DDFS using uniform segmented linear approx-
imation, respectively, whose upper bound of SFDR is shown in Equation (2) and can be
expressed in Equation (15) after converting to decibels.

SFDR = 20 log(16s2 + 1) ≈ 20 log(16s2) = 24 + 40 log s (15)

This equation is derived through Fourier transform. During the derivation process, an
important prerequisite is uniform segmentation, which means that the segmentation points
can be represented using the number of segments s. In our proposed non-uniform PWL
method, this prerequisite is not valid and mathematical derivation is not feasible. Therefore,
we directly tested SFDR under different segmentation numbers through experiments.

Appl. Sci. 2023, 13, 10819 10 of 14

0 20 40 60 80 100
Frequency(MHz)

-150

-100

-50

0

re
la

ti
ve

 p
o

w
er

 t
o

 c
ar

ri
er

(d
B

c
)

−50

−100

0

−150
0 20 40 60 80 100

(a)

0 20 40 60 80 100
Frequency(MHz)

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

re
la

ti
ve

 p
o

w
er

 t
o

 c
ar

ri
er

(d
B

c
)

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

(b)

0 20 40 60 80 100
Frequency(MHz)

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

re
la

ti
ve

 p
o

w
er

 t
o

 c
ar

ri
er

(d
B

c
)

0 20 40 60 80 100

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

−200

(c)

0 20 40 60 80 100
Frequency(MHz)

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

re
la

ti
ve

 p
o

w
er

 t
o

 c
ar

ri
er

(d
B

c
)

0 20 40 60 80 100

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

−200

(d)

0 20 40 60 80 100
Frequency(MHz)

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

re
la
ti
ve
p
o
w
er
to
ca
rr
ie
r(
d
B
c
)

0 20 40 60 80 100

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

−200

(e)

0 20 40 60 80 100
Frequency(MHz)

-250

-200

-150

-100

-50

0

re
la

ti
ve

 p
o

w
er

 t
o

 c
ar

ri
er

(d
B

c
)

0 20 40 60 80 100

−150

−200

−250

−50

−100

0

(f)

Figure 7. Spectrum of DDFS output signal under different MAE, FCW = 200, clock frequency is
200 MHz. (a) MAE = 0.01 (b) MAE = 0.001 (c) MAE = 0.0001 (d) MAE = 0.00005 (e) MAE = 0.00002
(f) MAE = 0.00001.

Setting s to the power of 2, the equation is plotted as an image as shown in the blue
curve in Figure 8. And the red curve in the figure shows the relationship between the
number of segments and the SFDR of the DDFS using PWLMMAE segmentation method.
This experimental result shows that the DDFS based on our method has a higher upper
bound of SFDR than the DDFS based on the uniform segmentation linear approximation
method in [21,22]. Explaining from the perspective of MAE, for a fixed interval, the more
the number of segments, the higher the accuracy of the approximation and the smaller the
MAE. Our proposed PWLMMAE method has a higher approximation precision with the
same segments.

Appl. Sci. 2023, 13, 10819 11 of 14

Table 3. Averaged SFDR of DDFS under different MAE.

MAE Segments SFDR (dB)

0.01 4 44.94
0.001 10 69.64

0.0001 31 91.41
0.00005 44 96.58
0.00002 70 105.47
0.00001 100 114.04

0 10 20 30 40 50 60 70 80 90 100

number of linear segments s

40

50

60

70

80

90

100

110

120

S
F

D
R

(d
B

)

SFDR of proposed DDFS
SFDR upper bound of DDFS based on PWL

Figure 8. The relationship between SFDR and the number of segments s of DDFS based on different
PWL approximation method. The red curve represents the SFDR measured by the proposed DDFS,
while the blue curve is the upper bound of the SFDR inferred in [21,22].

In the following, we comprehensively evaluate the performance and resource con-
sumption of DDFS. For performance we mainly consider SFDR and maximum clock
frequency, because SFDR reflects the quality of the output signal, and maximum clock
frequency reflects the highest frequency of the output signal. The resources used include
LUT, Flip Flop (FF), and DSP. As can be seen in Figure 9, as the MAE decreases, the SFDR
of DDFS will increase, but the hardware resources required will also be more, and the
maximum clock frequency also tends to decrease, which is mainly caused by the increase
in the number of segments.

Table 4 shows the performance of this work compared to other FPGA-based DDFSs.
the DDFS with MAE = 0.00001 uses 399 LUTs, 66 FFs and 3 DSPs and is able to achieve
a SFDR of 114.04 dB with a maximum clock frequency of 244 MHz. SFDR is the most
important indicator, reflecting the quality of the DDFS output signal. Except for [14],
our DDFS is leading in SFDR without significant increase or even decrease in resources.
Compared to the latest work [6] to the best of our knowledge, our work achieves a 4 dB
higher SFDR. We use 67 more LUTs and three more DSPs, while we use 150 fewer FFs.
The SFDR of this work is 41.84 dB higher than [9], but uses significantly 99 less LUTs and
140 FFs. Compared to [12,25], our proposed DDFS has significant advantages in SFDR,
clock frequency, and resource consumption. It is foreseeable that the SFDR will be further
improved if we further reduce the MAE.

Appl. Sci. 2023, 13, 10819 12 of 14

MAE = 0.01 MAE = 0.001 MAE = 0.0001 MAE = 0.00005 MAE = 0.00002 MAE = 0.00001

SFDR

max clock frequency

LUT

FF

DSP

44.94
dB

69.64
dB

91.41
dB

96.58
dB

105.47
dB

114.04
dB

288
MHz

268
MHz

115
LUTs

184
LUTs

237
LUTs

287
LUTs

429
LUTs

399
LUTs

51
FFs

56
FFs

73
FFs

58
FFs

65
FFs

66
FFs

3
DSPs

3
DSPs

4
DSPs

3
DSPs261

MHz
263
MHz

253
MHz

3
DSPs 244

MHz

3
DSPs

Figure 9. Comprehensive evaluation of DDFS under different MAE.

Table 4. Performance comparison among different DDFSs.

DDFS Design SFDR (dB) Max Clock Frequency (MHz) Target Device Output Bits Resource Utilization

Proposed 114.04 244 AXU15EG 20 399LUTs, 66FFs, 3DSPs
[6] 110 250 Artix-7 16 332LUTs, 216FFs
[9] 72.2 251 Virtex-6 16 498LUTs, 206FFs
[12] 96.31 107.216 XC3S500E 16 967LUTs, 788FFs, 487 slices *
[14] 120 1000 Virtex-7 16 46slices, 3DSPs
[25] 95 192 Spartan-2 16 566slices
[32] 104.1 281.7 Virtex-5 16 158slices

* Taking xilinx7 series FPGAs as a reference, a slice contains four 6-input LUTs, eight FFs, and some multiplexers
and carry logic.

4.2. Performance of Multi-Core DDFS

According to the analysis of the performance and resource consumption of proposed
DDFS in the previous subsection, we choose the DDFS with MAE = 0.00001 to implement
the 16-core DDFS, which increases the output signal frequency while maintaining high
SFDR. The sampling rate of single-core DDFS is 244 MHz, so the sampling rate of 16-core
DDFS can achieve 3.9 GHz. Figure 10 shows the spectrum of the output signal of multi-core
DDFS with FCW = 1800, the output signal frequency is about 1.7 GHz, and the SFDR can
reach 114.04 dB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (GHz)

-250

-200

-150

-100

-50

0

re
la
ti
ve
p
o
w
er
to
ca
rr
ie
re
(d
B
c) 114.04dB

−50

0

−100

−150

−200

−250
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 10. Spectrum of 16-core DDFS output signal.

Appl. Sci. 2023, 13, 10819 13 of 14

5. Conclusions

In this paper, we propose a DDFS based on a non-uniform segmented linear ap-
proximation method. We implement a set of single-core DDFS with different MAE, and
benefitting from the segmentation algorithm we use, our proposed DDFS has a higher
SFDR upper bound compared to other segmented linear approximation based DDFS, break-
ing the theoretical upper bound obtained by previous researchers. Compared with other
FPGA-based works, our work can achieve higher SFDR without significantly increasing or
even decreasing the resource consumption. finally, considering the DDFS performance and
resource consumption, we choose a DDFS with MAE = 0.00001 to implement a multi-core
DDFS, enabling a sampling rate of 3.9 GHz and a SFDR of 114.04 dB.

Author Contributions: Methodology, X.L.; validation, T.Z. and Y.P.; writing—original draft prepara-
tion, X.L.; writing—review and editing, X.L. and T.Z.; supervision, L.Z. and X.H. All authors have
read and agreed to the published version of the manuscript.

Funding: The Opening Foundation of State Key Laboratory of High-Performance Computing, Na-
tional University of Defense Technology, under Grant No. 202201-05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tierney, J.; Rader, C.; Gold, B. A Digital Frequency Synthesizer. IEEE Trans. Audio Electroacoust. 1971, 19, 48–57. [CrossRef]
2. Nicholas, H.T.; Samueli, H. An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of

Phase-Accumulator Truncation. In Proceedings of the 41st Annual Frequency Control Symposium, Philadelphia, PA, USA, 27–29
May 1987; pp. 495–502.

3. Torosyan, A.; Willson, A.N. Analysis of the Output Spectrum for Direct Digital Frequency Synthesizers in the Presence of Phase
Truncation and Finite Arithmetic Precision. In Proceedings of the ISPA 2001. Proceedings of the 2nd International Symposium
on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology
Interfaces (IEEE Cat.), Pula, Croatia, 19–21 June 2001; pp. 458–463.

4. Cheng, S.; Jensen, J.R.; Wallis, R.E.; Weaver, G.L. Further Enhancements to the Analysis of Spectral Purity in the Application of
Practical Direct Digital Synthesis. In Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition,
Montreal, QC, Canada, 23–27 August 2004; pp. 462–470.

5. Kroupa, V.F.; Cizek, V.; Stursa, J.; Svandova, H. Spurious Signals in Direct Digital Frequency Synthesizers Due to the Phase
Truncation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1166–1172. [CrossRef] [PubMed]

6. Narayan Sinha, S.; Chatterjee, S.; Palani, R.K. A 2-GHz Two-Tone Direct Digital Frequency Synthesizer. IEEE Trans. Circuits Syst.
II 2022, 69, 5109–5113. [CrossRef]

7. Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [CrossRef]
8. Ma, S.; Wang, X.; Li, Y.; Long, K.; Zhu, B.; Lei, X. A Low Complexity DDS Based On Optimized CORDIC Algorithm. In

Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November
2019; pp. 1–5.

9. Annafianto, N.F.R.; Jabir, M.V.; Burenkov, I.A.; Ugurdag, H.F.; Battou, A.; Polyakov, S.V. FPGA Implementation of a Low Latency
and High SFDR Direct Digital Synthesizer for Resource-Efficient Quantum-Enhanced Communication. In Proceedings of the 2020
IEEE East-West Design & Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020; pp. 1–8.

10. Madisetti, A.; Kwentus, A.Y.; Willson, A.N. A 100-MHz, 16-b, Direct Digital Frequency Synthesizer with a 100-DBc Spurious-Free
Dynamic Range. IEEE J. Solid-State Circuits 1999, 34, 1034–1043. [CrossRef]

11. Kang, C.Y.; Swartzlander, E.E. Digit-Pipelined Direct Digital Frequency Synthesis Based on Differential CORDIC. IEEE Trans.
Circuits Syst. I 2006, 53, 1035–1044. [CrossRef]

12. Prasad, N.; Swain, A.K.; Mahapatra, K.K. FPGA Implementation of Pipelined CORDIC Based Quadrature Direct Digital
Synthesizer with Improved SFDR. In Proceedings of the 2013 International Conference on Circuits, Power and Computing
Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; pp. 756–760.

13. Aggarwal, S.; Meher, P.K.; Khare, K. Scale-Free Hyperbolic CORDIC Processor and Its Application to Waveform Generation. IEEE
Trans. Circuits Syst. I 2013, 60, 314–326. [CrossRef]

http://doi.org/10.1109/TAU.1971.1162151
http://dx.doi.org/10.1109/58.869062
http://www.ncbi.nlm.nih.gov/pubmed/18238657
http://dx.doi.org/10.1109/TCSII.2022.3202903
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/4.777100
http://dx.doi.org/10.1109/TCSI.2005.862183
http://dx.doi.org/10.1109/TCSI.2012.2215778

Appl. Sci. 2023, 13, 10819 14 of 14

14. Bergeron, M.; Willson, A.N. A 1-GHz Direct Digital Frequency Synthesizer in an FPGA. In Proceedings of the 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 329–332.

15. Willson, A.; Ojha, M.; Agarwal, S.; Lai, T.; Kuo, T. A Direct Digital Frequency Synthesizer with Minimized Tuning Latency of 12ns.
In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011;
pp. 138–140.

16. Zhang, J.-A.; Li, G.; Zhang, R.; Li, J.; Wei, Y.; Yan, B. A 2.5-GHz Direct Digital Frequency Synthesizer in 0.18 µm CMOS. Analog.
Integr. Circuits Signal Process. 2015, 82, 369–379.

17. Yang, Y.; Wang, Z.; Yang, P.; Chang, M.-F.; Ho, M.-S.; Yang, H.; Liu, Y. A 2-GHz Direct Digital Frequency Synthesizer Based on
LUT and Rotation. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy,
27–30 May 2018; pp. 1–5.

18. Yang, Y.; Shi, X.; Su, F.; Wang, Z.; Yang, P.; Yang, H.; Liu, Y. A 2.2-GHz Configurable Direct Digital Frequency Synthesizer Based
on LUT and Rotation. IEEE Trans. Circuits Syst. I 2019, 66, 1970–1980. [CrossRef]

19. Freeman, R.A. Digital sine Conversion Circuit for Use in Direct Digital Synthesizers. U.S. Patent 4 809 205, 28 February 1989.
20. Ashrafi, A.; Adhami, R.; Joiner, L.; Kaveh, P. Arbitrary Waveform DDFS Utilizing Chebyshev Polynomials Interpolation. IEEE

Trans. Circuits Syst. I 2004, 51, 1468–1475. [CrossRef]
21. De Caro, D.; Strollo, A.G.M. High-Performance Direct Digital Frequency Synthesizers Using Piecewise-Polynomial Approximation.

IEEE Trans. Circuits Syst. I 2005, 52, 324–337. [CrossRef]
22. Langlois, J.M.P.; Al-Khalili, D. Novel Approach to the Design of Direct Digital Frequency Synthesizers Based on Linear Interpola-

tion. IEEE Trans. Circuits Syst. II 2003, 50, 567–578. [CrossRef]
23. Ashrafi, A.; Adhami, R. Theoretical Upperbound of the Spurious-Free Dynamic Range in Direct Digital Frequency Synthesizers

Realized by Polynomial Interpolation Methods. IEEE Trans. Circuits Syst. I 2007, 54, 2252–2261. [CrossRef]
24. De Caro, D.; Petra, N.; Strollo, A.G.M. Direct Digital Frequency Synthesizer Using Nonuniform Piecewise-Linear Approximation.

IEEE Trans. Circuits Syst. I 2011, 58, 2409–2419. [CrossRef]
25. Kesoulis, M.; Soudris, D.; Koukourlis, C.; Thanailakis, A. Systematic Methodology for Designing Low Power Direct Digital

Frequency Synthesisers. IET Circuits Devices Syst. 2007, 1, 293. [CrossRef]
26. Li, X.-J.; Tang, J.-F.; Zhang, G.; Lai, Z.-S. A Direct Digital Frequency Synthesizer Based on Optimized Two Segment Sixth-Order

Polynomial Approximation. In Proceedings of the 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit
Technology, Xi’an, China, 29 October–1 November 2012; pp. 1–3.

27. Jeng, S.S.; Lin, H.C.; Lin, C.H. A Novel ROM Compression Architecture for DDFS Utilizing the Parabolic Approximation of
Equi-Section Division. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 2603–2612. [CrossRef] [PubMed]

28. Liu, S.-I.; Yu, T.-B.; Tsao, H.-W. Pipeline Direct Digital Frequency Synthesiser Using Decomposition Method. IEE Proc. Circuits
Devices Syst. 2001, 148, 141. [CrossRef]

29. Fanucci, L.; Roncella, R.; Saletti, R. A Sine Wave Digital Synthesizer Based on a Quadratic Approximation. In Proceedings of the
2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218), Seattle, WA, USA, 8 June 2001;
pp. 806–810.

30. Sun, H.; Luo, Y.; Ha, Y.; Shi, Y.; Gao, Y.; Shen, Q.; Pan, H. A Universal Method of Linear Approximation with Controllable Error
for the Efficient Implementation of Transcendental Functions. IEEE Trans. Circuits Syst. I 2020, 67, 177–188. [CrossRef]

31. Liao, X.; Zhou, T.; Zhang, L.; Hu, X.; Peng, Y. A Method for Calculating the Derivative of Activation Functions Based on Piecewise
Linear Approximation. Electronics 2023, 12, 267. [CrossRef]

32. Genovese, M.; Napoli, E.; De Caro, D.; Petra, N.; Strollo, A.G.M. Analysis and Comparison of Direct Digital Frequency Synthesizers
Implemented on FPGA. Integration 2014, 47, 261–271. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSI.2018.2872069
http://dx.doi.org/10.1109/TCSI.2004.832802
http://dx.doi.org/10.1109/TCSI.2004.841592
http://dx.doi.org/10.1109/TCSII.2003.815020
http://dx.doi.org/10.1109/TCSI.2007.904660
http://dx.doi.org/10.1109/TCSI.2011.2123730
http://dx.doi.org/10.1049/iet-cds:20060029
http://dx.doi.org/10.1109/TUFFC.2012.2501
http://www.ncbi.nlm.nih.gov/pubmed/23221209
http://dx.doi.org/10.1049/ip-cds:20010158
http://dx.doi.org/10.1109/TCSI.2019.2939563
http://dx.doi.org/10.3390/electronics12020267
http://dx.doi.org/10.1016/j.vlsi.2013.09.001

	Introduction
	Non-Uniform PWL Approximation Method
	PWLMMAE
	PWL Approximation of the Sin Function

	Hardware Architecture of DDFS
	Single-Core DDFS
	Multi-Core DDFS

	Experimental Result
	Performance Evaluation of Single-Core DDFS
	Performance of Multi-Core DDFS

	Conclusions
	References

