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Abstract: Social Complex Networks in communication networks are pivotal for comprehending
the impact of human-like interactions on information flow and communication efficiency. These
networks replicate social behavior patterns in the digital realm by modeling device interactions,
considering friendship, influence, and information-sharing frequency. A key challenge in communi-
cation networks is their dynamic topologies, driven by dynamic user behaviors, fluctuating traffic
patterns, and scalability needs. Analyzing these changes is essential for optimizing routing and
enhancing the user experience. This paper introduces a network model tailored for Opportunistic
Networks, characterized by intermittent device connections and disconnections, resulting in spo-
radic connectivity. The model analyzes node behavior, extracts vital properties, and ranks nodes by
influence. Furthermore, it explores the evolution of node connections over time, gaining insights
into changing roles and their impact on data exchange. Real-world datasets validate the model’s
effectiveness. Applying it enables the development of refined routing protocols based on dynamic
influence rankings. This approach fosters more efficient, adaptive communication systems that
dynamically respond to evolving network conditions and user behaviors.

Keywords: dynamic complex networks; opportunistic social mobility patterns; device-to-device data
routing; spray and wait routing; quality of service

1. Introduction

The vast increase in autonomous and heterogeneous wireless devices poses challenges
for the future of communication systems due to the complexity of their interconnection,
which involves multiple networking technologies and a wide range of device capabilities.
According to statistics provided by Statista [1], the global number of smartphones reached
nearly 6.6 billion in 2022 and is projected to surpass 7.8 billion by 2028. In other words, a
world of pervasive mobile devices is being built that has vast processing capabilities and
allows for smooth communication among them, enabling greater connectedness. Each node
or gadget in a mobile communication network is a connecting point that is innately con-
nected to a person who is moving and takes part in the network’s data exchange. Moreover,
Mobile Social Networks (MSNs) leverage wireless devices and function as a communica-
tion infrastructure designed for point-to-point and short-range communications, seeking
increased data exchange efficiency by adapting to the typical movements and behaviors of
individuals using mobile devices [2–5]. In this regard, opportunistic networks emerge as a
classification of wireless networks characterized by sporadic, unreliable, or constrained
user-to-user ad hoc connections [6]. In such networks, conventional routing algorithms
often depend on the “storage-carry-and-forward” approach, whereby a node forwards mes-
sages to a varying number of neighboring nodes it encounters based on the specific routing
algorithm employed. Nevertheless, this flooding strategy can result in a proliferation of
message duplicates, potentially leading to network and device congestion [7].
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Within such a context, a Dynamic Social Complex Network (DSCN) can be defined as
a network that leverages human social behavior, such as daily routines, mobility patterns,
and interests, to facilitate message routing and data sharing over time. In these networks,
nodes (users with mobile devices) can form on-the-fly social networks to communicate
with each other. Considering users’ social routines when determining whether a node
should retransmit a message to another node can reduce transmission delay and routing
overhead [8]. Consequently, minimizing routing overhead will decrease the average
number of hops that message routes traverse before reaching their destination.

The search for the most influential or important nodes is a critical component of
analyzing and comprehending the network topology dynamics due to its intrinsic role in
determining the network’s overall structure or efficiency [9–11]. Influential devices often
act as key hubs for data exchange and efficient communication pathways and, depending
on the objective, the significance of a node can vary. There are several metrics of node im-
portance, such as degree centrality, closeness centrality, or social centrality. The first refers
to the number of its direct connections to other nodes and analyzes its level of activity in the
network’s topology compared to others. Closeness centrality measures a node’s proximity
to other nodes and indicates how efficiently it can access or distribute information within
the network. Finally, social centrality aims to capture the extent to which certain nodes
in the network hold influential positions in terms of data forwarding or control over the
network’s social dynamics. Social centrality metrics take into account factors such as con-
nectivity, interactions, and relationships among nodes to assess their relative significance
in the social behavior of the network.

However, conventional centrality metrics used in traditional networks are not useful
in DSCNs, as they rely on a static network model where there are multiple connections
and disconnections over time that are usually aggregated into a single binary network.
As a result, traditional metrics have been extended to work with weighted or dynamic
topologies [12–15]. The authors of [16] considered the number of connections as link
weights and redefined the centrality metrics to consider both the number of links and their
weights in the graphs. On the other hand, the authors of [17] proposed time-based measures
that leverage the temporal patterns of changing topologies. Furthermore, individuals have
inherent social tendencies, and their behavioral patterns, which are substantially influenced
by the patterns of interaction among individuals, are not random [18,19]. Thus, when
identifying hub nodes in the network, mobility patterns, spatiotemporal connections, and
social behavior must also be considered.

In examining the current landscape of detecting influential nodes, several notable
works have delved into incorporating both non-social and social attributes associated with
network nodes. The research conducted by the authors of [20] focuses on centrality metrics,
which help identify important nodes in a network, crucial for understanding network
structures and behaviors. Static and dynamic centrality metrics are discussed, including
their relevance in weighted networks. The study highlights challenges, proposes new cen-
trality metrics, and emphasizes the importance of considering temporal aspects in network
analysis. It also explores network resilience and the impact of centrality on fault tolerance.
However, the authors do not explore a broader range of centrality measures or compare this
measure with other existing centrality measures comprehensively. The research conducted
by the authors of [21] delves into online information propagation within complex networks,
emphasizing the critical role of influential nodes in network structure and operation. The
paper classifies centrality measures into global, local, and semi-local types, exploring their
effectiveness in identifying influential nodes. It introduces a novel centrality measure,
‘centripetal centrality,’ and presents an algorithm, ‘seeds exclusion,’ to enhance information
propagation. The work demonstrates the effectiveness of ‘centripetal centrality’ in identi-
fying key nodes and improving propagation effects. The authors assume that identifying
influential spreaders is essential for maximizing information coverage. However, this
assumption might not always hold true, especially in scenarios where the objective differs
from maximizing information spread. For instance, in communication networks, it is crucial
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to minimize overhead rather than increase it. The authors of [22] address the prediction of
social network dynamics and evolution, distinguishing between short-term dynamics and
long-term changes. The proposed methodology, MONDE, utilizes hidden Markov models
and a genetic algorithm to predict individual, group, and network dynamics. The approach
aims to provide a comprehensive view of network evolution and dynamics, benefiting
fields such as marketing and public security by aiding decision-making and strategy plan-
ning. However, the accuracy and effectiveness of MONDE heavily depend on the quality
and availability of data, especially the posting activities and comments used for feature
extraction. Incomplete or inaccurate data could lead to less reliable predictions, particularly
in the case of low-density networks where empty or discontinuous samples may exist in
the data. The study carried out by the author of [23] explores critical node detection and
introduces a novel centrality measure, known as isolating centrality, to identify nodes that
significantly impact network connectedness. The paper emphasizes the importance of
accurately identifying critical nodes for ensuring network reliability and provides a com-
parative analysis of centrality measures’ performance. It also investigates the correlation
between leverage centrality and critical nodes, showcasing the effectiveness of the proposed
centrality measure. However, it is worth noting that the effectiveness of this proposed
measure is influenced by the structure of the nodes’ neighborhood, especially in detecting
critical nodes that segregate the network into connected components. This dependency
might limit its effectiveness in certain low-density topologies. The authors of [24] focus
on seed node selection in online social networks (OSNs) for information propagation and
influence maximization. The study explores various centrality measures, such as clustering
coefficients and node degree, to identify influential seed nodes. It considers Twitter as
a platform for opinion generation and discusses the relevance of centrality measures as
seed nodes in large-scale networks. The study also conducts a comparative analysis using
benchmark similarity measures to assess the effectiveness of different centrality measures in
seed node selection. The study acknowledges that the effectiveness of seed node selection
is influenced by the network’s structure. Certain propagation approaches, like Random
Walk, are affected by local clustering. This sensitivity to network structure implies that the
effectiveness of the proposed approach could vary significantly in network topologies with
insufficient connections.

In summary, these works propose or utilize specific centrality measures to assess the
importance of nodes in a network, hence their focus on identifying influential or critical
nodes within the network as shown in Table 1. These nodes are deemed essential for
information propagation and can play a crucial role in maximizing information coverage
within the network. However, the objective is not always to maximize the pathways
through which information circulates. In communication networks, it is preferable to
maintain low overhead values to avoid unnecessary consumption of memory resources
in intermediary devices forwarding data to their destinations. Furthermore, these works
exhibit a certain dependence on network topology, implying that effectiveness could vary
in cases of low connection density, as observed in opportunistic networks.

Based on the aforementioned concerns, this research paper aims to identify and rank
hub nodes using a dynamic network model to analyze how device connections evolve over
time. For that, the behavior of a DSCN is gathered by a progression of graphs as the devices
connect and disconnect throughout the network operation. First, we introduce a novel
local centrality metric, Dynamic Degree centrality, as we believe that both the number of
neighbors and the frequency of connections with them serve as valuable cues of a node’s
importance in the network.

This metric seamlessly integrates both factors, effectively gauging the node’s centrality
based on the progression of its connections and contact frequency with neighboring nodes.
Furthermore, we have developed a closeness centrality measure to address the potential im-
pact of longer forwarding delays on storage capacity utilization (network overhead) and its
subsequent influence on data forwarding likelihood. To quantify a device’s global centrality,
we propose the Dynamic Closeness centrality based on the temporal evolution network
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model, which considers forwarding overhead. We also propose the Social-based Closeness
Centrality Metric, which considers social relations to provide an effective centrality metric
to ensure that data are carried and forwarded by relay devices with a high likelihood of
reaching the destination host. This is because social relations and behaviors among wireless
users are typically long-term characteristics and less fluctuating than device mobility. Thus,
to assess the usefulness of our suggested centrality metrics and to examine the properties
of the centrality distribution applied to various Quality of Service (QoS) measurements, we
evaluate the results of experiments run on real-world datasets.

Table 1. Comparison of related works on the detection of the most influential nodes in a network.

Study Objective Methodology Key Findings

[20] Detection of influential nodes in
dynamic weighted networks.

Time-ordered weighted graph
models with Opshal’s algorithms,

considering temporal aspects.

New hybrid centrality measure:
Temporal Closeness-Closeness measure.

[21] Identification of
influential spreaders.

Integrate degree, constraint
coefficient, and k-shell for a

comprehensive assessment of
node importance.

Centripetal centrality as an effective
measure to identify influential nodes.

[22]
Prediction of the dynamics and

evolution of a
social network.

Two-layer HMM to model
individual and group dynamics.

MONDE, demonstrating prediction
accuracy rates for dynamics and

evolution in social networks.

[23] Detection of critical nodes of
networks.

Compare centrality
measures’ effectiveness.

Isolating centrality as an effective
measure for identifying critical nodes.

[24] Correlation between seed node
detection and information flow.

Investigate different centrality
measures for seed node detection.

Emphasize the impact of network
structure on seed node selection.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the dynamic network model used. The proposed local and global influence metrics are
described in detail in Section 3. In Section 4, we present the experimental results of all
the proposed centrality metrics, including a comparative analysis of different QoS metrics.
Finally, we offer conclusions in Section 5.

2. Model and Method

In this part, we first use the dynamic network model to show how the topological
structures of DSCNs are constantly evolving. Using this model as a guide, we look at peo-
ple’s social connections and movement patterns to create new interpretations of traditional
influence measurements that are based on the network’s dynamic.

A graph G is made up of a limited number of nodes (V) and edges (E). Since there
cannot be an empty set of nodes, V 6= ∅, and thus V = {v1, v2, . . . , vn}. Pairs of nodes(
vi, vj

)
that represent some sort of connection pattern between nodes make up the collection

of edges E. The terms nearby and neighboring are used to describe two nodes connected
by an edge. The network is referred to as undirected if the edges are unordered, where(
vi, vj

)
=
(
vj, vi

)
.

If there is a relationship between the nodes vi, vj, then an adjacency matrix M with
elements mij = 1 and 0 otherwise can be used to fully describe network G. Unweighted
or binary networks are examples of this. In general, G is characterized using an adjacency
matrix, where mij ≥ 1 if there is an edge between nodes vi, vj, and 0 otherwise, where the
edges contain a numerical value measuring a feature of the edge. A network G is also
considered to be connected if, for every pair of distinct nodes vi, vj, there is a route from vi
to vj; otherwise, it is said to be unconnected [25]. However, complex networks are a special
kind of graph in which the nodes and edges have complicated organizational structures
and non-trivial topological properties. Since these networks contain complicated patterns
and features, the interactions between the pieces in this situation are not clear-cut or simple.
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Dynamic Model of a Complex Network

A Dynamic Complex Network (DCN) is made up of several nodes, which stand in for
individual devices, and edges, which represent the connections or temporal interactions
between them. Traditional static complex network models cannot adequately capture such
dynamic evolution since the topology and device placements coevolve over time. The
time-ordered network was suggested by the authors of [17] to transform a dynamic network
into a static network with directed flows. The authors of [26] analyzed the uniformity of
device behavior over time. We build upon their work and propose a dynamic network
model that captures the evolving nature of a DCN. Our objective is to predict the behavioral
trends of devices in the network and measure their QoS parameters. The authors of [26]
rely on Shannon entropy to verify the uniformity of device behavior, whereas we go further
by conducting regression studies to analyze not only uniformity but also the trend of
node behavior and directly apply it to QoS metrics in opportunistic networks with low
connection density.

By considering the temporal sequence, length, and correlations between connections
or devices happening at various moments in time, our model seeks to give a clear and
thorough framework for understanding the evolutionary patterns of the network. Our
model illustrates the evolution of interactions between devices in a DCN over a certain time
period by using a series of snapshots. We shall outline the basic concepts of the dynamic
network model in the parts below:

Define a finite set of devices V (nodes) and a set of connections E (edges) between
these devices. The connections between devices are assumed to take place over a time span
T. We use L to denote the duration of each spatial snapshot (or time window size), and
FT = T

L represents the number of spatial snapshots during the time span T. The dynamics
of the network can be subsequently described by GT = (VT , ET , MT),

where

VT ⊆ V is the collection of all networked devices throughout the duration of T.
ET ⊆ E is the set of edges that stands for connections between devices throughout the

course of time T.
MT is a sequence of connectivity matrices that record contact events of devices during

the time span T.
A discretized collection of static complex networks, GT =

{
G1, G2, . . . , GFT

}
, can

be used to simulate a DCN. In this model, the edges in each connection matrix are not
binary as they are in the adjacency matrix of an unweighted graph. The connectivity
matrix’s edge weights, which range from 0 to FT , indicate how frequently points of
contact occur.

For the sake of clarity, we provide the following example in Figure 1, where the
network’s aggregated view is represented by GT . In this scenario, two devices are said to
be connected if they have made contact within a time interval ti. The network snapshots
are denoted as {G1, G2, . . . , G10}. All information from both geographical and temporal
data is included in this network’s representation. Figure 2 displays the connection matrixes
in order.

The connectivity matrix is symmetric since each snapshot is an undirected graph with
a connection between devices denoting the presence of a contact link in both directions.
For instance, the weight of MAC in M1 is 0, indicating that device A and device C did not
make contact during time unit t1. One link between device A and device C was represented
by the weight of MAC in M8, which is 1, during the time unit t8.

The costs of the routes between a source and a destination in the domain GT can
be represented as a function of delay,

{
δijxij

}
tij

, if the objective is to minimize the mes-

sage delivery delay, or as a function of load,
{

λxij
}

tij
, if the objective is to minimize

the overhead.
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The Delay matrix (D) of existing routes between a source device s and a destination
device d in the domain GT can be obtained as follows:

D(s, d) =
|V|−1

∑
i=1

|V|

∑
j=2

{
δijxij

}
tij

(1)

The Load matrix (L) of all existing routes between a source device s and a destination
device d in the domain GT can be obtained as follows:

L(s, d) =
|V|−1

∑
i=1

|V|

∑
j=2

{
λxij

}
tij
+ λ (2)

where

δij represents the forwarding delay from device i to device j.
λ represents the message size.
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xij = 1 if devices {i, j} contact at any time and that link is used in a route between the
source device s and the destination d (i.e., device i decides to forward a copy of the message
to device j).
xij = 0 if devices {i, j} do not connect or if the link is not used in any route between the
source device s and destination d.
tij represents the encounter time of device i and device j.

We suggest the Dynamic Shortest Path Method, drawing on the aforementioned
factors. This approach aims to achieve a compromise between decreasing communication
costs, guaranteeing equitable load distribution, and obtaining the ideal delivery delay. To
do this, we employ a tuning parameter α that enables the three factors to be considered
when determining the optimum route between source and destination nodes. The variables
{α1, α2, α3} can also be changed depending on the analysis to give the three variables
different relative weights. Next, we list the equations that describe the dynamic shortest
path approach that is suggested:

- Delivery Delay:

α1min(D(s, d)) = α1min

(|V|−1

∑
i=1

|V|

∑
j=2

{
δijxij

}
tij

)
(3)

- Load Balancing:

α2min

 1

∑
|V|−1
i=1 ∑

|V|
j=2 xij

|V|−1

∑
i=1

|V|

∑
j=2

{δijxij

}
tij
− 1

∑
|V|−1
i=1 ∑

|V|
j=2 xij

|V|−1

∑
i=1

|V|

∑
j=2

{
δijxij

}
tij

2


1/2

(4)

- Communication Overhead:

α3min(L(s, d)) = α3min

(|V|−1

∑
i=1

|V|

∑
j=2

({
λxij

}
tij

)
+ λ

)
(5)

subject to the following restrictions:

δij > 0, ∀i, j ∈ V
λ > 0
xij ∈ {0, 1}, ∀i, j ∈ V

∑
|V|
j=2 x1j = 1 (the shortest path only uses one link from the source device).

∑
|V|−1
i=1 xi|V| = 1 (the shortest path only uses one link to the destination device).

∑
|V|−1
i=1 xik = ∑

|V|
j=2 xkj, ∀ k ∈ {2, 3, . . . |V| − 1} (in the shortest path, if a link arriving at

device k is used, then a single link leaving k will be used).
t1,2 ≤ t2,3 ≤ . . . ≤ t(T−1),T ≤ (represents the connections of intermediary devices based on
the time order).

The example of Figure 3 lists the values of the three variables for the four pathways
(in different colors) from device A to device B depending on the time order to demonstrate
the efficacy of the suggested strategy.
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- Number of Paths between devices A and B is p(A, B) = ∑
|V|−1
i=1 Mi

T(A, B) = 4.

- Delay matrix: D(A, B) = ∑
|V|−1
i=1 ∑

|V|
j=2

{
δijxij

}
tij
=

{A, B} ⇒ δABxAB = 10t seconds
{A, C, B} ⇒ δACxAC + δCBxCB = 3t + 4t = 7t seconds
{A, D, B} ⇒ δADxAD + δDBxDB = 2t + 5t = 7t seconds

{A, E, F, B} ⇒ δAExAE + δEFxEF + δFBxFB = 4t + 2t + t = 7t seconds

- Load balancing (LB):

{A, B} ⇒ LB =
(

1
1

(
(10t− 10t)2

))1/2

= 0t seconds

{A, C, B} ⇒ LB =
(

1
2

(
(3t− 3.5t)2 + (4t− 3.5t)2

))1/2

= 0.5t seconds

{A, D, B} ⇒ LB =
(

1
2

(
(2t− 3.5t)2 + (5t− 3.5t)2

))1/2

= 1.5t seconds

{A, E, F, B} ⇒ LB =
(

1
3

(
(4t− 2.33t)2 + (2t− 2.33t)2 + (1t− 2.33t)2

))1/2

=

= 1.5764t seconds

- Load matrix: L(A, B) = ∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij

)
+ λ =

{A, B} ⇒ load = λxAB + λ = 2λ bytes

{A, C, B} ⇒ load = λxAC + λxCB + λ = 3λ bytes

{A, D, B} ⇒ load = λxAD + λxDB + λ = 3λ bytes

{A, E, F, B} ⇒ load = λxAE + λxEF + λxFB + λ = 4λ bytes

As shown in Table 2 considering the influence of delivery delay, communication
overhead, and load balancing on routing performances, we observe that there are three
paths with the shortest delivery delay (7t) from device A to device B: {A, C, B}, {A, D, B}
and {A, E, F, B}. However, the length of paths {A, C, B} and {A, D, B} is shorter than that of
path {A, E, F, B}. Moreover, the longest forwarding delay of the path {A, C, B} is three time
periods, from t = 4 to t = 6 (load balancing = 0.5t), which is shorter than that of path {A, D,
B}, with four time periods, from t = 3 to t = 6 (load balancing = 1.5t), so {A, C, B} have better
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load balancing. Finally, we observe that path {A, B} has the shortest hop number but the
longest delivery delay (10t). In summary, path {A, C, B} is the best path from device A to
device B considering the trade-off between delivery delay, communication overhead, and
load balancing.

Table 2. Dynamic shortest path identification from device A to device B.

Title 1 Latency Load Balancing Overhead

{A, B} 10t 0t 2λ
{A, C, B} 7t 0.5t 3λ
{A, D, B} 7t 1.5t 3λ

{A, E, F, B} 7t 1.5764t 4λ

Using flooding or epidemic routing, device B should receive 4 copies of the message.
One from device A at time t = 10 and three copies from C, D and F at t = 7, assuming a

total load of CO − pABλ + λ = ∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij
+ λ

)
− pABλ + λ = 12λ − 4λ +

λ = 9λ bytes.
However, by selecting the best route, overhead improvement can be obtained as

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij
+ λ

)
− pABλ + λ − min

(
∑
|V|−1
i=1 ∑

|V|
j=2

{
λxij

}
tij
+ λ

)
= 6λ bytes,

which is an improvement of 33%.

3. Influence Metrics

Node centrality or impact is the process of classifying nodes or devices in a network
according to their importance or effect. This statistic evaluates a device’s significance or
effect on the network as a whole. There are several ways to determine device centrality, and
each one takes a different strategy to pinpoint the most important nodes. These methods
are intended to identify the importance and function of each device inside the network.
Our goal is to order the network nodes according to their impact, allowing for the creation
of new routing protocols that improve the QoS of the network. We can increase QoS levels
by using just the most powerful nodes for data forwarding.

Degree and Closeness are two conventionally used common centrality measurements.
While the Closeness metric considers the global topological information, Degree centrality
is based on local topological information and assesses the node’s local importance in the
network. These influence measures are defined as follows for a network G = (V, E):

3.1. Local Influence

To determine a node’s local influence, it is straightforward to assess the centrality
of the node within the network. The quantity of direct connections a node has to other
nodes determines its degree of centrality. The following is the mathematical formula for
determining the degree centrality of a given node j:

1. If it is an unweighted and undirected network,

D(j) =
|V|

∑
i

xij (6)

where xij = xji = 1 if and only if nodes i and j are connected; xij = xji = 0 otherwise.

2. If it is a weighted and undirected network,

D(j) =
|V|

∑
i

ωijxij (7)

where
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ωij = ωji = 1 is the cost of the link (i, j).
xij = xji = 1 if and only if nodes i and j are connected; xij = xji = 0 otherwise.

Dynamic Degree Metric

Since nodes in static binary networks may only be either linked or disconnected, the
traditional degree centrality statistic was initially created for those types of networks. The
interactions between nodes in DSCN networks are not binary, though, and the topology of
these networks is continually changing. Individuals in DSCNs often have a small number
of regular connections in addition to sporadic encounters. Connections made often have
a tendency to be stronger than those made infrequently. As a result, if a person interacts
with their neighbors regularly and has a larger number of neighbors, they are more likely
to be able to engage with new individuals. Therefore, it is crucial to consider the following
three behavioral traits in DSCNs in order to effectively evaluate a device’s local influence:
a large number of neighbors, a high number of neighbor contact instances, and a positive
evolution in the frequency of neighbor contact over time.

Regression analysis is a commonly used method for investigating data distribution
patterns in the fields of information science and statistical modeling [27,28]. This theory
has been used by us to investigate the connections between the temporal changes in the
connection time distributions among devices.

Considering a device v which has ∑
|V|
k=1,k 6=v{xvk}T connections with neighbors during

the time span T, ∑
|V|
k=1,k 6=v{xvk}ti

is the number of neighbors of v during the snapshot ti and

∑
|V|
k=1,k 6=v{ϕvkxvk}T is the frequency of contact times between device v and its neighbors

during the time span T. Then, the evolution trend of connections of device v during the
time span T is defined as follows:

τD(v) =
FT∑T

i=1

(
ti∑
|V|
k=1,k 6=v{xvk}ti

)
−∑T

i=1 ti∑T
i=1

(
∑
|V|
k=1,k 6=v{xvk}ti

)
FT∑T

i=1 t2
i −

(
∑T

i=1 ti

)2 (8)

The device tends to increase the frequency of interaction with its neighbors over the
time period T if the value of τT(v) is positive. An equitable distribution of contact frequency
with a specific node’s neighbors is indicated by a value of 0, while a negative value denotes
a reduction in contact frequency over time. Therefore, devices will have a more favorable
contact dynamic if they have more neighbors and increased contact probabilities with those
neighbors. For that, we propose the Dynamic Degree metric of a device v (DTE(v)), which
takes into account the following properties, as more interactions with neighbors lead to
stronger links with them:

DTE(v) = ατD(v) + (1− α)
FT

∑
i=1

∑FT
i=1{xvk}ti

− F−1
T ∑FT

k=1,k 6=v{ϕvkxvk}T(
F−1

T ∑FT
i=1

(
∑
|V|
k=1,k 6=v{xvk}tj

− F−1
T ∑

|V|
k=1,k 6=v{ϕvkxvk}T

)2
)1/2

(9)

The user-defined parameter value α ∈ [0, 1] regulates the importance or weight of
connection evolution and the frequency of contact moments. Please note that this value
adheres to a zero-sum condition, meaning that increasing the weight of one element would
inherently decrease the weight of the other factor. If significant patterns of growth or decline
in the metric’s values are observed, then α→ 1 . If the data show uniform distributions
across time, α→ 0 .

3.2. Global Influence

A typical global centrality metric known as ‘Closeness’ uses the shortest routes to
calculate distances between each node and every other node in the network. However, due
to the specific characteristics of DSCNs, this statistic often results in inaccurate estimates.
To address these issues, we have developed a unique approach to calculating the shortest
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paths that more accurately represents the information propagation patterns within DSCNs
over time. With this approach, we subsequently formulated a refined definition of the
global influence measure, accounting for these distinctive qualities of DSCNs.

The frequent partitioning of topologies and intermittent connections that characterize
DSCNs often lead to higher storage capacity utilization. The constrained storage space on
a device can present a hurdle for efficient routing, particularly if it receives messages more
quickly than it can transmit them to the next relay device. This situation can result in uneven
load balancing, which significantly impacts the overall routing efficiency within DSCNs.
Furthermore, employing an excessive number of devices as relays for a message can
introduce unnecessary communication overhead, exacerbating routing performance issues.
Hence, achieving a balance between delivery delay, load distribution, and communication
overhead becomes imperative when making routing decisions in DSCNs.

3.2.1. Dynamic Closeness Metric

One centrality measure that relies on distance is Closeness. It is determined by
averaging the shortest distances (involving the fewest nodes, thus minimizing overhead)
from a specific node to all other nodes in the network. This is equivalent to summing the
shortest distances (dshort) and dividing by the number of nodes (referred to as the network
order, denoted as |V|), minus one, as node j itself is excluded from this calculation:

Average path lengths(v) =
∑
|V|−1
k=1,k 6=v min(D(v,k))

|V|−1 =

=
∑
|V|−1
k=1,k 6=v min

(
∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tij

)
+λ

)
|V|−1

(10)

where xij = 1 if the link {i, j} is used in a route between the source node v and the destination
node k and xij = 0 otherwise.

The lower the above value, the closer a node is to the center of the network. For this
reason, closeness is defined as the reciprocal of Equation (10), so that the more centered a
node v is in the network, the higher its closeness metric is:

CCLO(v) =
|V| − 1

∑
|V|−1
k=1,k 6=v min

(
∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij

)
+ λ

) (11)

The Closeness measure in the network is strongly related to the rate of information
propagation between devices as well as the timeframes at which messages are transmitted
over the network. This metric offers a means to evaluate how accessible a device is within
the network.

Let us examine an example calculation for the connected devices {A, B, C, D, F} during
G7, as shown in Figure 4.
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CCLO(A) =
6− 1

λ(2 + 3 + 1 + 3) + λ
=

5
10λ

CCLO(B) =
6− 1

λ(2 + 1 + 1 + 1) + λ
=

5
6λ

CCLO(C) =
6− 1

λ(3 + 1 + 2 + 1) + λ
=

5
8λ

CCLO(D) =
6− 1

λ(1 + 1 + 2 + 2) + λ
=

5
7λ

CCLO(F) =
6− 1

λ(3 + 1 + 1 + 2) + λ
=

5
8λ

Therefore, the ranking of nodes according to their closeness index is as follows:

Ranking = {B, D, C, F, A} (12)

Regrettably, calculating the Closeness metric (as indicated in Equation (11)) for each
node in a network requires knowledge of the distances between all pairs of vertices. In dis-
connected networks, where nodes belong to distinct components or subnetworks that lack
any larger linked subnetwork, the distance between two nodes is traditionally considered
infinite, as depicted in the example shown in Figure 1, rendering Closeness inapplicable.
As a result, the reciprocal becomes 0, and the sum in the equation (Equation (11)) diverges.
Devices often belong to various components, rendering Closeness values irrelevant for all
devices in the network except those within the largest component. Consequently, the com-
putation of the Closeness metric must exclude devices that are part of smaller components.

Through the utilization of dynamic shortest paths, we can overcome the limitation of
the conventional Closeness metric in disconnected networks. By employing a method that
accumulates the reciprocal of path costs instead of the reciprocal of the total path cost, we
can redefine the Closeness metric. This approach takes into consideration communication
costs or overhead. As a result, the Dynamic Closeness metric is defined as the sum of the
reciprocals of distances, rather than the reciprocal of the sum of distances:

CCLO(v) =
|V|

∑
k=1,k 6=v

 1

min
(

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij

)
+ λ

)
 (13)

The adoption of the Dynamic Closeness measure prevents situations where an infinite
distance dominates over other distances. Additionally, this measure can be standardized
by considering that in a network with a star topology, the maximum value is achieved by
the central node, which is equal to |V| − 1 (the longest distance possible in a network
with |V| nodes is |V| − 1, i.e., in a chain-connected network). The standardized value of
the central node in a star network is 1, while the value for the leaf nodes is

1
|V| − 1

(
1
1
+ (|V| − 2)

1
2

)
=

|V|
2(|V| − 1)

(14)

Thus, the centrality index is now defined by

CCLO(v) =
1

|V| − 1

|V|

∑
k=1,k 6=v

 1

min
(

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij

)
+ λ

)
, (15)
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subject to tk,k+1 ≤ tk+1,k+2 ≤ . . . ≤ t|V|−1,|V|.

Thus, considering (|V| − 1)−1∑
|V|
k=1,k 6=v

(
min

(
∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij

}
tij

)
+ λ

))−1
, the

closeness evolution of device v during the time span T is defined as

τC(v) =
FT∑T

l=1

(
tl(|V|−1)−1∑

|V|
k=1,k 6=v

(
min

(
∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tl

)
+λ

))−1
)

FT∑T
l=1 t2

l −(∑T
l=1 tl)

2

−
∑T

l=1 tl∑
T
l=1

(
(|V|−1)−1∑

|V|
k=1,k 6=v

(
min

(
∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tl

)
+λ

))−1
)

FT∑T
l=1 t2

l −(∑T
l=1 tl)

2

(16)

In conclusion, we put forward the Dynamic Closeness for device v (CTE(v)), which
takes into account the fluctuations in the Closeness measure, as defined:

CTE(v) = ατC(v) + (1− α)
1
FT

FT

∑
l=1

 1
|V| − 1

|V|

∑
k=1,k 6=v

 1

min
(

∑|V|−1
i=1 ∑|V|j=2

({
λxij

}
tl

)
+ λ

)
 (17)

where xij = 1 if the link {i, j} is used in any route between nodes v and k and xij = 0
otherwise.

3.2.2. Social Closeness Metric

Human social relationships typically display greater stability than transmission links
between mobile devices due to the complex network conditions present, for instance, in
Opportunistic Mobile Social Networks (OppMSNs), characterized by intermittent connec-
tivity that results in unstable end-to-end paths between devices. As a result, OppMSN
routing decisions may be made more efficient using social indicators.

It is noticed that people keep both regular and sporadic interactions within their social
surroundings. Information propagation greatly depends on the degree of contact between
nodes. If the sender often communicates with the destination device, the sender may be
aware of the times when they are most likely to run across the destination or nodes that
are very likely to cross paths with the destination in the future [29,30]. Conversely, the
likelihood of two devices knowing one another improves if they have a greater number of
friends in common.

We examine the devices’ past contacts in order to develop the Opportunistic Relation-
ship Index (ORI), a social metric that is derived from important structural characteristics
of a complex network, specifically the contact durations between devices, their shared
neighbors, and distances [31]. In order to reflect the possibility of establishing a connection
between devices v and k, the score is calculated as shown in Equation (17) for each pair of
unconnected devices v and k. In this equation, ∑T

i=1{ϕvkxvk}ti
represents the frequency of

contact occurrences between devices v and k within the time span T, and ∑
|V|−1
i=1 ∑

|V|
j=2 xij

denotes the distance matrix of existing paths between the two devices:

ORIT(v, k) =


(

T
∑

i=1
{ϕvkxvk}ti

) |Γ(v)∩Γ(k)|+1
2

if Γ(v) ∩ Γ(K) 6= 0(
T
∑

i=1
{ϕvkxvk}ti

) 1

min(∑
|V|−1
i=1 ∑

|V|
j=2 xij) otherwise,

(18)

where Γ(v) = ∑T
i=1 ∑

|V|
l=1,l 6=v{xvl}ti

and Γ(k) = ∑T
i=1 ∑

|V|
l=1,l 6=k{xkl}ti

represent the respective
sets of neighbors for devices v and k, respectively, over the time span T.

Figure 5 in this context shows the subnetwork created from Appendix A Figure A1,
only showing the four current routes connecting device A and device B, with the weights
denoting the calculated ORI.
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Then, we present the shortest path based on opportunistic relationships, which include
both opportunistic relationships and communication costs. We invert the weights to find the
path with the lowest weight since the weight denotes the ORI. We use a tuning parameter
to ensure that the ORI and the number of intermediary devices affect the choice of the best
path, incorporating both communication cost and ORI. The following is the social measure
used in Equation (18) to determine the opportunistic cost (Costopp) of a path between a
source device (s) and a destination device (d):

Costopp(s, s + 1, . . . , d) =
d−1

∑
i=s

(
1

ORIT(i, i + 1)

)α

, (19)

subject to ts,s+1 ≤ ts+1,s+2 ≤ · · · ≤ td−1,d.
The ORI between devices i and j before their interaction with the next relay device is

indicated by the symbol ORIT in Equation (18). The moment at which device i and device j
first made contact is represented by ti,j, and the sequence in which connections between
intermediary devices are made is indicated by ts,s+1 ≤ ts+1,s+2 ≤ · · · ≤ td−1,d.

We further normalize the series by dividing the geometric mean of ORIT by the highest
ORIT , as the routing choice may not function effectively with a low ORIT value across
devices. The tuning parameter is this normalized value, which enables us to gauge the
degree of dispersion between low and high ORIT values. As a result, the following is how
the definition of α is stated:

αs,s+1,...d =

(
∏d−1

i=s ORIT(i, i + 1)
) 1
|{s,d}|

max(ORIT(s, s + 1), ORIT(s + 1, s + 2), . . . , ORIT(d− 1, d))
, (20)

where |{s, d}| represents the number of hops in the path from the source device s to the
destination device d.

By adding considerations of the shortest pathways, social interactions between nodes,
and communication cost, we use the opportunistic-based shortest path approach to expand
the Closeness measure in this way. The Social Closeness metric (CLOopp) is calculated in
the manner described in the following:

CLOopp(v) = 1
|V|−1

|V|
∑

k=1,k 6=v

(
1

min(Costopp(v,k))

)
=

= 1
|V|−1

|V|
∑

k=1,k 6=v

(
1

min
(

∑k−1
i=v

(
1

ORIT (i,i+1)

)α)
)

,
(21)
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subject to tv,v+1 ≤ tv+1,v+2 ≤ . . . ≤ tk−1,k, in which min
(
Costopp(v, k)

)
first computes all

the paths between v and k, then calculates the Costopp of each path, and finally selects the
minimum Costopp among all.

Hence, taking into consideration the expression

(|V| − 1)−1∑
|V|
k=1,k 6=v

(
min

(
∑k−1

i=v

(
1

{ORIT(i,i+1)}ti

)α))−1

, we can evaluate a device v’s

social closeness at the specified snapshot tl . As a result, Equation (22) describes how the
social closeness of device v changed throughout time T:

τopp(v) =
FT ∑T
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(
tl (|V|−1)−1∑
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(
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(
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i=v

(
1

{ORI(i,i+1)}tl

)α)−1))
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l −(∑T

l=1 tl)
2

(22)

In conclusion, we provide the definition of the Social Closeness metric of a node v
(CTEopp(v)), which combines the dynamics of the Social Closeness metric in:

CTEopp(v) = τopp(v)α +
1

FT

FT

∑
l=1

 1
|V| − 1

|V|

∑
k=1,k 6=v

 1

min
(

∑k−1
i=v

(
1

{ORI(i,i+1)}tl

)α)

, (23)

subject to tv,v+1 ≤ tv+1,v+2 ≤ · · · ≤ tk−1,k.

4. Results and Discussion

Our goal is primarily to discuss the dataset used to assess various QoS measures
and the analytical process once we have shown the production of rankings with the most
significant nodes based on different centrality metrics. We will next go through how we
integrated these rankings into message routing.

Using a collection of Reality Mining datasets [32], the recommended algorithm’s
efficacy has been evaluated. These datasets embody a complex social system by capturing
data from 100 mobile phones over a span of 9 months. The authors demonstrate how
common Bluetooth-enabled mobile phones can be used to measure information access
and utilization in a variety of settings, detect social patterns in users’ daily activities, infer
relationships, identify socially significant locations, and model organizational patterns.

However, it is worth noting that we utilize a modified version of the Reality dataset
provided by the authors of [33]. As stated in the same reference, there is no significant
activity before and after the timestamp ranges 1,094,545,041 and 1,111,526,856. Therefore,
the simulations presented in this paper exclusively employ the data within that time
interval, as shown in Table 3.

Table 3. Characteristics of the dataset.

Feature Value

Number of devices 97
Environment Campus

Dataset duration 246 days
Dataset duration used 196 days

Encounter prob. 1st 1/4 day 0.0003
Encounter prob. 2nd 1/4 day 0.0011
Encounter prob. 3rd 1/4 day 0.0019
Encounter prob. 4th 1/4 day 0.0012

Percentage of dataset duration for the Training Graph (GT) 75%
Percentage of dataset duration for the Probe Graph (GP) 25%

Network density <0.5%
Number of contacts of the top 20 devices 4–9
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Regarding the methodology for analyzing the dataset, it has undergone processing
using a similar approach employed when implementing Machine Learning models. In this
manner, the dataset is partitioned into two distinct non-overlapping graphs known as the
training (GT) and probe (GP) graphs. The Training Graph (GT) is constructed by selecting a
subset that represents the initial 75% of node interactions within the dataset. The remaining
edges, not included in GT, constitute the Probe Graph (GP). Likewise, the edges included
in GT are denoted as ET, while those in GP are referred to as EP, i.e., E = ET + EP. It should
be noted that ET and EP are mutually exclusive; however, there may be overlapping nodes
between GT and GP. For our experiments, we have allocated 75% of the edges to ET and
the remaining 25% to EP.

The simulations have been conducted by simulating the GP (Probe Graph) with
an implementation of a total of five routing algorithms. On one hand, we include the
conventional ones typically used to evaluate QoS in OppNets, that is Spray and Wait
(S&W), Prophet versions 1 and 2, and Epidemic (four algorithms). On the other hand, we
incorporate a modified version of the S&W algorithm, which is evaluated three times based
on a parameterized ranking of the most significant nodes according to the metrics described
in the previous sections (Dynamic Degree, Dynamic Closeness, and Social Closeness), which
sums a total of five routing algorithms. The results of the simulations will be presented in
Sections 4.3.4–4.3.6.

The algorithms have been developed using The ONE (Opportunistic Network En-
vironment) simulator [34] and can be accessed from a public repository located at https:
//github.com/sito25/pubtesis.git, (accessed on 21 September 2023) under the GNU Lesser
General Public License v.3.0. This simulator is specifically designed for opportunistic
networks and was initially developed at Aalto University in 2009. The ONE provides a
wide range of capabilities, including the generation of node movements using various
models, replication of message traffic and routing, cache management, and visualization of
both mobility and message transmission through its graphical user interface. Additionally,
it offers diverse reporting options, such as node movements, message transmission, and
general statistics. Currently, it is collaboratively maintained by Aalto University and Tech-
nische Universität München, boasting a robust user community. The version utilized in our
research is 1.6.0, implemented in Java.

4.1. Network Density

As mentioned earlier, opportunistic networks are a type of low-density networks that
traditionally focus on self-organized and ad hoc mobile networks. These networks often
experience frequent disruptions, delays, and intermittent connectivity, leading to a lack
of end-to-end connections within the environment. In such scenarios, wireless devices
can temporarily store information and forward it to other devices that are more likely
to be within communication range of the intended destination when an opportunity for
connection arises.

The density of an opportunistic network is determined by the ratio of edges present
in a graph to the maximum number of edges the graph can contain. This ratio provides
a conceptual idea of the network’s connectivity in terms of link density. Specifically,
network density is defined as the ratio of the number of connections to the maximum
possible connections.

A network is considered dense when the number of links is close to the maximum
possible, where every pair of devices is connected by a single link. Conversely, a network
with few links is considered sparse. This concept provides an understanding of the level of
connectivity and density within the network [35,36]. Therefore, to determine the maximum
number of connections in the network, we can derive it as follows:

MaxConn =
|V|(|V| − 1)

2
(24)

https://github.com/sito25/pubtesis.git
https://github.com/sito25/pubtesis.git
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Let us now introduce the formula for calculating network density. The network density
is calculated by dividing the total number of connections existing in the network G(V, E)
by the maximum possible number of connections that could potentially exist within the
network. Let us examine the formula in detail:

Density =

|E|
|V|(|V|−1)

2
=

2|E|
|V|(|V| − 1)

(25)

In our study, Figure 6 displays the likelihood of the presence of complete pathways,
which is linked to the density of connections within the Reality Mining datasets. This
likelihood, denoted as P(EE), can be defined as the ratio of the number of established
end-to-end routes to the total number of possible connections.

P(EE) =

(|V|−1

∑
s=1

|V|−1

∑
d=1

|V|−1

∑
i=1

Mi
T(s, d)

)(
|V|(|V| − 1)

2

)−1
(26)
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Figure 6. End-to-end paths probability in the datasets as a function of the connection density.

Figure 6 illustrates the network structure of the used dataset, which is characterized
as a sparsely connected network with a consistent connection density among devices that
does not exceed 8.5% throughout its dynamic nature. The majority of density values are
below 1%. As a result, the upper limit for the probability of end-to-end connections remains
below 55%, with a significant concentration below 0.5%. Therefore, it is imperative to
consider that the utilized datasets define an opportunistic network with a very low density
of connections.

4.2. Effectiveness Analysis of the Proposed Metrics

We may examine how successfully suggested metrics capture and quantify the in-
tended attributes or characteristics of network devices by evaluating their efficacy. It
enables us to assess how well these metrics capture the underlying ideas of ranking, con-
nection, or social impact. As a result, we can evaluate their effectiveness and decide which
metrics are more appropriate for achieving our study goals. Based on their capacity to
capture the necessary elements of device centrality, these analyses aid in the selection of
the most suitable centrality metrics. We can also establish whether these metrics provide
useful information and can be relied upon when making network design decisions. For
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performance evaluation, comparative analysis, hypothesis validation, and determining
their practical relevance, evaluating the efficacy of local and global centrality measures in
the network is essential.

4.2.1. Local Metrics

We compared Dynamic Degree during the studies to two benchmark measures, namely,
Degree and Weighted Degree. Figure 7 uses the Reality Mining datasets to show the
outcomes of these studies. The top-N devices are sorted according to their Weighted Degree
and Dynamic Degree, and Figure 7a shows the plotted curves reflecting the average number
of nearby devices among those devices.
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Figure 7. Effectiveness of local metrics: (a) Number of neighboring devices among the top-N devices;
(b) average number of contacts among the top-N devices.

An effective local impact metric in Figure 7a should show a diminishing trend since
a node with strong local influence often shows a high number of nearby nodes. The
curves for the two measures shown in the picture, however, are rather near to one another.
This resemblance could result from certain traits or distinctive qualities that the dataset
itself possesses.

Figure 7b shows the plotted curves for the top-N devices ordered by their Degree and
Dynamic Degree, which reflect the average number of connections. In light of the fact that
a device with a strong local effect should interact with its neighbors often, the Dynamic
Degree curve has a smoother downward slope and performs better than the Degree metric.
Therefore, of the three influence measures, the Dynamic Degree meter performs the best
since it establishes a balance between the number of nearby devices and the frequency
of encounters.

4.2.2. Global Metrics

Using real-world datasets, we analyzed the distribution properties of suggested global
influence indicators. Figure 8 displays the Complementary Cumulative Distribution Func-
tions (CCDF) for the suggested global centralities, with the horizontal axis denoting the
order of device effect. Here, it is clear that the distributions of the Closeness measure are
not uniform when taking into account various centrality techniques. This suggests that the
selection of the centrality approach affects the measures’ distributions. These results help
us determine the best tools to increase the effectiveness of data transmission in OppMSNs.
These features can be used by routing algorithms to choose the most reliable device as a
relay. As a result, the impact measures suggest various possible contributions of the same
device to information propagation when combined with various centrality approaches.
This connection between device impact and route design, in our opinion, is a key element
in enabling effective information propagation inside OppMSNs.
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4.2.3. Correlation Analysis between Local and Global Metrics

Our goal is to study the probable association between the ranking of global influ-
ence and the ranking of local impact through time and to address the consequences of
anticipating global influence by looking at the consistency and predictability of human
social qualities.

A statistical metric used to quantify the strength of the association between the relative
changes of two variables is the correlation coefficient. It includes values between −1 and
1. A complete negative correlation is represented by a correlation coefficient of −1, and a
perfect positive correlation is represented by a correlation coefficient of 1. The absence of a
linear link between the changes in the two variables is shown by a correlation value of 0.

A statistical metric used to quantify the degree of linear association between two variables
is the Pearson correlation coefficient. This coefficient reveals the nature and strength of the
relationship, given that a change in one variable leads to a proportionate change in the other.
When there is no apparent association, the Pearson coefficient returns a value of 0.

Another correlation statistic used to assess rank correlation, which indicates the
statistical dependence between the ranks of two variables, is Spearman’s rank correlation
coefficient. The Spearman coefficient measures the extent to which the relationship between
variables can be characterized by a monotonic function, in contrast to a linear relationship
where the rate of increase or decrease is constant. Without necessarily adhering to a
consistent rate of change, it assesses how well the data align monotonically. The Spearman
correlation evaluates the monotonic relationship between two variables, whether they are
continuous or ordinal in nature, by considering the ranked values of each variable rather
than the raw data. In a monotonic relationship, one of the following is true:

• As one variable increases, the value of the other variable decreases; or
• Conversely, as one variable increases, the value of the other variable also increases.

The methods employed by the two correlation coefficients are fundamentally distinct.
While the Spearman coefficient considers both linear and monotonic correlations, the Pear-
son coefficient focuses exclusively on linear relationships between variables. Furthermore,
Spearman utilizes rank-ordered variables, whereas Pearson employs the raw data values of
the variables.

It is advisable to employ the Spearman coefficient instead of the Pearson coefficient
when a scatterplot reveals a potential link that could be either monotonic or linear. Using
the Spearman coefficient does not cause any harm, even if the data eventually demonstrate
a perfect linear relationship. Nevertheless, choosing Pearson’s coefficient might lead to
missing crucial insights that Spearman could provide in cases where the connection is not
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exactly linear. Therefore, as illustrated in Figure 9, we utilize the Spearman correlation
coefficient to analyze the relationship between the ranks of Closeness and Degree through-
out their dynamics. By establishing a consistent relative order of observations within
each variable (e.g., first, second, third, and so on), it is intuitively understandable that the
Spearman correlation between two variables becomes strong when observations possess
similar (or identical, resulting in a correlation of 1) ranks. Conversely, the correlation is low
when observations exhibit disparate ranks across the two variables (or entirely opposite
rankings, leading to a correlation of −1).

Let (x1, y1), (x2, y2), . . ., (xn, yn) represent a collection of composite rankings from two
distinct ranking lists, X and Y. The n raw scores (xi, yi are converted to ranks (
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4.3. Quality of Service Metrics Analysis

Latency, overhead, or hop count are QoS metrics that allow us to assess the perfor-
mance and efficiency of the network. By quantifying the latency, we can determine how
quickly data or messages are transmitted from the source to the destination. An over-
head calculation helps assess the additional resources or data required to support the
communication process. By quantifying overhead, we can identify potential inefficiencies
or resource-intensive aspects of the network. This information is valuable for optimizing
network performance and ensuring efficient resource utilization.

On the other hand, a hop count calculation helps evaluate the number of network
devices or “hops” required for data to travel from the source to the destination. Lower
hop counts generally imply a more direct and efficient routing path, resulting in reduced
latency and improved overall network performance.

Overall, accurate calculation and analysis of latency, overhead, and hop count are
crucial for performance evaluation, resource optimization, reliability assessment, routing
efficiency analysis, identifying areas for improvement, and making informed decisions
regarding network design and configuration.

In summary, precise calculations and analyses of latency, overhead, and hop count
are pivotal for performance evaluation, resource optimization, reliability assessment, and
routing efficiency analysis. To fulfill these requirements, we have implemented a set of
algorithms to evaluate these QoS metrics and incorporate our proposals into The ONE—an
opportunistic network simulator that is well-suited for simulating and studying such
networks, as mentioned earlier.

4.3.1. Updating Training Matrix on Contact

The analysis for the used dataset involves simulating data analysis with a similar
methodology to the one that is used to train Machine Learning models. This simulation
includes dividing the data into a training subset and a test subset. As mentioned earlier, we
allocate 75% of the simulation data to train a set of adjacency matrices. In these matrices, we
simply increment the counter for each connection between pairs of nodes (device, another
host). Algorithm 1 generates adjacency matrices that not only indicate connected nodes
but also capture the connectivity capacity of nodes, making them likely to be chosen as
message transporters to other nodes.

It is important to note that matrices are calculated with a specific frequency to ensure
that different adjacency matrices are collected, reflecting the evolving connectivity of
the nodes.

Algorithm 1. Updating training matrix on contact
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Computational complexity analysis allows us to evaluate the efficiency of an algorithm
in terms of resource usage, such as time and memory [37]. By understanding the complexity,
we can estimate how the algorithm will respond to varying input sizes. In the case of
Algorithm 1, the complexity is simply O(1) because when two nodes meet each other, the
corresponding cells of the adjacency matrix (TM[N1, N2] and TM[N2, N1]) are updated,
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indicating how many times those nodes have been found throughout the considered period.
The spatial complexity, on the other hand, is determined by the need to store contact
information in an N ×N matrix, where N is the number of nodes in the topology. However,
since we also store M matrices to reflect the evolution of the adjacency matrix between
nodes, the spatial complexity turns out to be O(M × N2).

For each matrix, we generate an intermediate ranking of nodes with good connectivity.
These rankings are then combined to obtain a final ranking, as described in Section 3,
Influence Metrics, depending on the metric used. The rankings assist the routing algorithm
in determining whether to forward a new copy of the package to the identified node.

4.3.2. Calculation of Friends Nodes upon Contact

In our proposal, the concept of a friend refers to a node that has connected with
another node and is likely to reconnect within a relatively short time, based on the principle
of temporal locality. To implement this idea of temporal locality, we introduce the friend
concept, which involves setting a timer for each pair of connecting devices. This timer is
activated after the nodes establish a connection. If they reconnect before the timer expires,
we consider them friends who frequently connect. On the other hand, if the timer has
expired by the time they encounter each other again, they are still friends but do not
connect frequently.

The concept of a friend represents a list of nodes to which the given node has previously
connected. This list is closely related to the adjacency matrices described in Algorithm 1,
as both implementations rely on node connections. However, unlike the adjacency matri-
ces, the friends list is not reset with each new matrix. Instead, it is continually updated
throughout the simulation as the node forms new connections.

It is important to note that the friends list is not utilized during the training phase
(when running Algorithm 2). Instead, it is used during testing, which will be explained
further in Algorithm 3.

Moreover, the concept of a friend can be utilized to assess the extent to which these
friends adhere to the notion of temporal locality. For instance, a connection counter between
them can be employed within the context of their unexpired timer. In these simulations,
we use the concept of friends as a list of nodes to which a specific node has connected
throughout the entire simulation.

Algorithm 2. Calculation of Friend Nodes on contact
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with TM adjacency matrices during training. Instead, a friend is added to each contact in
case they both meet and connect for the first time.

4.3.3. Routing Decision on Contact

The main objective of Algorithm 3 is to determine whether node A, given the connec-
tion between nodes A and B, should send a copy of the messages it carries to node B. This
decision aims to minimize overhead. Instead of sending copies to every encountered node
B, it is preferable to choose a node with better connectivity. Such a node is more likely to
have greater access to a larger network.

Algorithm 3. Routing decision on contact
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This algorithm requires the use of different data structures to determine whether node
N1 forwards the messages in its queue to N2. Therefore, these data structures are accessed
in a single loop, where the processing of each one is decided. The time complexity is O(N).
In terms of spatial complexity, we need a list M for each node N to act as a message buffer,
and a unique list to store the ranking of nodes. Consequently, the spatial complexity is
O(N ×M).

This approach restricts the generation of message copies by node A (a finite number in
the case of S&W or unlimited in the case of Epidemic) to specific connections where node B
exhibits one of the following three characteristics:

• Node B ranks among the top positions in the ranking obtained through Algorithm
1. Being a node with good connectivity, it is more likely to successfully deliver
the packet to the intended recipient or another node that can assist in reaching the
message’s destination;

• The source and destination nodes of the message are friends. This indicates that they
have previously connected and are likely to reconnect. Therefore, node A, carrying the
message, is allowed to deliver a copy to node B;

• Node B is the intended destination of the message. In this scenario, it is logical for
node A to deliver the message to node B.

4.3.4. Packet Latency

Based on Figure 10, it becomes apparent that our algorithms achieve a decreased
average packet delay in comparison to the original Spray and Wait protocol, with an
average reduction of approximately 2% with respect to S&W and more than 10% with
respect to Epidemic or Prophets v1 and v2 protocols. By integrating equivalent buffer sizes,
minimizing overhead, and intelligent packet forwarding selection (unlike S&W, which
disseminates packets to all encountered nodes), our approach facilitates expedited packet
delivery to their intended destination.
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Figure 10. Average latency for different routing protocols, depending on the buffer size, normalized
with respect to the results of the S&W routing protocol: (a) comparison among all the analyzed
routing protocols; (b) comparison of the proposed metrics and S&W.

4.3.5. Path Length

As illustrated in Figure 11, the average number of hops taken by packets is influenced
by the node selection procedure. While this effect may not be readily apparent from the
graph, our algorithms have exhibited a slight decrease in the number of hops, surpassing
S&W by more than 3%, and significantly outperforming the Epidemic or Prophet v1 and
v2 routing protocols. This reduction in hops is accomplished through our meticulous
node selection process and the principles we employ to determine packet forwarding.
Consequently, the packets take fewer diversions along their routing path.
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Figure 11. Hop count of delivered packets for different routing protocols, depending on the buffer
size, normalized with respect to the results of the S&W routing protocol: (a) comparison among all
the analyzed routing protocols; (b) comparison of the proposed metrics and S&W.

4.3.6. Route Overhead

The execution of Algorithm 3 within the proposed routing protocol determines the
quality of the connection between the source device and destination node. This leads to a
more restricted packet transmission approach compared to S&W, Epidemic, and Prophet v1
and v2 protocols, resulting in a great reduction in overhead (more than 32% less), as shown
in Figure 12. Although the proposed algorithm retains the same number of message copies,
they are no longer forwarded to all nodes but only to those that satisfy the conditions
specified in Algorithm 3.
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4.3.7. Discussion of the Results

In the realm of networking protocols and QoS optimization, effective data transmission
and low-latency routing are of utmost importance. This study deeply delves into the
evaluation and refinement of routing algorithms to address these critical aspects, specifically
comparing the performance of our proposed algorithms against well-established ones such
as Spray and Wait, Epidemic, Prophet v1, and Prophet v2. The comparative analysis
encompasses essential metrics, including packet latency, the number of hops, and overhead.
It sheds light on the superior efficiency and effectiveness achieved by our meticulously
designed algorithms. Subsequently, the discussion encapsulates noteworthy findings
and implications of our research, illuminating the promising advancements in network
optimization and reliability.

Concerning packet latency, our algorithms significantly reduce average packet delay
compared to the original Spray and Wait protocol, with an average reduction of approx-
imately 2% compared to Spray and Wait, and more than 10% compared to Epidemic or
Prophets v1 and v2 protocols. Additionally, our algorithms demonstrate a reduction in the
number of hops, surpassing Spray and Wait by more than 3%, and significantly outper-
forming the Epidemic or Prophet v1 and v2 routing protocols. This reduction in hops is
achieved through our meticulous node selection process and the principles we employ to
determine packet forwarding. Regarding overhead, our algorithms adopt a more restricted
approach to packet transmission compared to Spray and Wait, Epidemic, and Prophet v1
and v2 protocols, resulting in a substantial reduction in overhead (more than 32% less).

In summary, our study highlights the remarkable performance enhancements achieved
by our proposed algorithms. The reductions in packet latency, number of hops, and
overhead represent significant advancements over established protocols like Spray and
Wait, Epidemic, Prophet v1, and Prophet v2. These improvements are attributed to our
meticulous node selection process and refined packet forwarding principles. The results
underscore the potential impact of our algorithms in optimizing QoS for routing in var-
ious network scenarios, emphasizing their significance in advancing network efficiency
and reliability.

5. Conclusions and Future Work

The extraction of the most influential nodes in a Complex Network is crucial for
seeking more efficient data transmission within the network, evaluating its resilience,
making better routing decisions, and gaining a deeper understanding of its dynamics. Our
study arises from the need to find metrics that measure the influence of nodes in a DSCN,
aiming to enhance the network’s QoS metrics.

Initially, we employed a network model that transformed the operation of OppMSN
over time into a discretized time series of CSNs, to analyze the network’s dynamic topology
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and the pattern of connections among devices. This approach provides a more accurate
framework to analyze the evolution of these patterns, based on regression analysis, rather
than using a single static aggregated network. In fact, the connections between devices
have been analyzed from the perspective of dynamic centrality metrics, as well as from the
perspective of a social complex network, extracting relationship patterns to detect the most
influential devices over others throughout the network’s operation.

In this study, real datasets have been used for validation to showcase the effectiveness
of the conducted experiments. The efficacy of different metrics employed on the datasets
and potential correlations between them have been verified. Finally, based on influence
dynamic rankings, our algorithms have facilitated better decision-making regarding the
selection of nodes most suitable for routing data toward their destination in the datasets,
leading to enhancements in standard QoS metrics.

Moving forward, our future work involves analyzing the evolutionary characteristics
of influence distribution using additional real datasets with more devices and enhanced
connectivity among them. Furthermore, we will explore other combinations of central-
ity metrics and similarity indices to enhance the accuracy of classifying devices in an
importance ranking. Additionally, we aim to investigate the concept of “friend” as a mea-
sure of temporal locality between each pair of nodes, evaluating its relationship with the
connection capacity of a node with others.
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Appendix A

We quantify the Dynamic Degree of the devices in the example presented in Figure 1
for clarity. The conclusions are drawn from Figure A1, where edge weights represent
contact times, and α = 0.5 is employed to give equal relative weight to the evolutionary
trend of connections and the frequency of contact times.
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DTET(A) = 0.5·0.0364 + (1− 0.5)
(5 + 1 + 7 + 3)

10
= 0.0182 + 0.8 = 0.8182
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DTET(B) = 0.5·(−0.0788) + (1− 0.5)
(4 + 1 + 2 + 4)

10
= (−0.0394) + 0.55 = 0.5106

DTET(C) = 0.5·0.1151 + (1− 0.5)
(5 + 3 + 3 + 2 + 4)

10
= 0.05755 + 0.85 = 0.90755

DTET(D) = 0.5·(−0.0788) + (1− 0.5)
(7 + 3 + 2)

10
= (−0.0394) + 0.6 = 0.5606

DTET(E) = 0.5·(−0.0182) + (1− 0.5)
(3 + 3 + 5)

10
= (−0.0091) + 0.55 = 0.5409

DTET(F) = 0.5·(−0.0545) + (1− 0.5)
(5 + 2 + 4)

10
= (−0.02725) + 0.55 = 0.52275

For instance, based on the following details, a preliminary ranking of nodes can be
established: Device A interacts with its neighbors more frequently than device B, despite
both having the same three neighbors. As a result, device A displays a higher Dynamic
Degree than device B. Similar to the previous example, device E receives a better score due
to its greater trend of contact development, even if device D contacts its neighbors more
frequently. Device C achieves a higher Dynamic Degree than Device A due to having more
neighbors and a faster rate of contact development. Consequently, the nodes are ranked as
follows according to their Dynamic Degree index: RankingDTE = {C, A, D, E, F, B}.

Let us examine now an example calculation in Figure A2, showcasing an unconnected
network during G2.
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Upon analyzing this small example, it becomes apparent that when computed on an
unconnected network, the Closeness metric tends to result in lower values, indicating the
difficulty of communication between devices belonging to different components. Addition-
ally, the devices within the same component experience an increase in their centrality, as all
values are non-zero in the calculation. Consequently, the metric places greater emphasis on
nodes that are well-connected.

Let us see the same example of calculation as before for connected devices {A, B, C, D,
F}, from G7 as shown in Figure 4, but now using the new closeness equation (Equation (15)):

CCLO(A) = lim
x→∞
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3λ
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The new ranking of devices based on their closeness index, which is determined by
using the sum of reciprocal distances instead of the reciprocal sum of distances, is in line
with the ranking obtained by using the traditional equation (Equation (11)) on a network
that is well-connected (Equation (12)):

Ranking = {B, D, C, F, A}

To maintain clarity in the example illustrated in Figure 1, we opt for a value of 0.5
when assessing the closeness of the devices. This choice ensures that the Closeness measure
and its dynamics carry equal relative weight.

CTET(A) = 0.5·0.0174 + (1− 0.5)
2.0667

(
λ−1)

10
= 0.1167λ−1

CTET(B) = 0.5·(−0.0026) + (1− 0.5)
1.43344

(
λ−1)

10
= 0.0704λ−1

CTET(C) = 0.5·0.0056 + (1− 0.5)
2.3501

(
λ−1)

10
= 0.1203λ−1

CTET(D) = 0.5·(−0.0122) + (1− 0.5)
1.9833

(
λ−1)

10
= 0.0931λ−1

CTET(E) = 0.5·(−0.0001) + (1− 0.5)
1.8167

(
λ−1)

10
= 0.0908λ−1

CTET(F) = 0.5·(−0.0065) + (1− 0.5)
1.7667

(
λ−1)

10
= 0.0851λ−1
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The new ranking of nodes according to their Dynamic Closeness index is as follows:

Ranking = {C, A, D, E, F}

The best path from device A to device B in Figure 5 is then determined using the
opportunistic-based shortest path method. Table A1 presents the findings of this investigation.
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Table A1. Results of the opportunistic social shortest path method to identify the best path from
device A to device B.

Path Latency Load
Balancing Overhead ORIT

ORIT
Balancing Costopp

{A, B} 10t 0t 2λ 12/2 0 1
{A, C, B} 7t 0.5t 3λ 52/2, 42/2 4.5 0.5226
{A, D, B} 7t 1.t 3λ 72/2, 22/2 4.5 1.0437

{A, E, F, B} 7t 1.5764t 4λ 31/3, 51/5, 41/4 1.5087 2.1408

The path {A, B} represents the shortest distance, but it possesses the lowest ORIT(A, B)
value among all routes. On the other hand, the path {A, E, F, B} has the longest path dis-
tance with a ORIT(A, E, F, B) value of 4.2362 (the sum of the three ORIT), which is the
second lowest. Comparatively, both the paths {A, C, B} and {A, D, B} share the same
path distance, with ORIT(A, C, B) = ORIT(A, D, B) = 9. However, Costopp(A, C, B) is
lower than Costopp(A, D, B). As a consequence, when both social relationships (ORIT) and
communication costs are taken into consideration, the path {A, C, B} is shown to be the
best option for moving from device A to device B.

Therefore, to obtain the ranking based on CLOopp, one must compute the CLOopp of
each node with respect to the rest:

CLOopp(A) = 1
6−1

(
1

min(Costopp(A,B))
+ 1
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+ 1
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+ 1
min(Costopp(A,E))

+ 1
min(Costopp(A,F))
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)
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)
= 2.0019
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)
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CLOopp(E) = 1
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So, the new ordered ranking of nodes based on their Social Closeness index is
as follows:

RankingCLO_opp = {A, C, D, B, F, E}
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