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Abstract: The assessment of the future thermodynamics performance of a retrofitted heat and power
production unit is prone to many uncertainties due to the large number of parameters involved in the
modeling of all its components. To carry out uncertainty quantification analysis, alternatives to the
traditional Monte Carlo method must be used due to the large stochastic dimension of the problem.
In this paper, sparse polynomial chaos expansion (SPCE) is applied to the retrofit of a large coal-
fired power plant into a biomass-fired combined heat and power unit to quantify the main drivers
and the overall uncertainty on the plant’s performance. The thermodynamic model encompasses
over 180 components and 1500 parameters. A methodology combining the use of SPCE and expert
judgment is proposed to narrow down the sources of uncertainty and deliver reliable probability
distributions for the main key performance indicators (KPIs). The impact of the uncertainties on
each input parameter vary with the considered KPI and its assessment through the computation of
Sobol’ indices. For both coal and biomass operations, the most impactful input parameters are the
composition of the fuel and its heating value. The uncertainty on the performance and steam quality
parameters is not much affected by the retrofit. Key furnace parameters exhibit a skewed probability
distribution with large uncertainties, which is a strong attention point in terms of boiler operation
and maintenance.

Keywords: uncertainty quantification; biomass; retrofit; CHP

1. Introduction

Worldwide, many scientists are conducting research on new electricity production
methods, such as solar [1], wind [1], hydro [1], tidal [1], algae [2], bio-fuel [3], geothermal [4],
etc., as well as on energy storage [5,6], such as carbon capture and storage (CCS) [7] and
carbon capture and utilization (CCU) [8] to decrease the impact of electricity production
on the climate [9,10] and the resulting global temperature increasing [11]. Currently, a
substantial part of our electricity is still produced with coal-fired power plants [12]. Could
these existing assets be converted to biomass to decrease their CO2 emissions and contribute
to mitigating climate change? Such a conversion would indeed result in a short-term,
significant reduction of their CO2 footprint [13]. Later, when more intermittent renewable
energy is available, grid stability can be perpetuated using biomass fired power plants as
back up for wind and solar energy. Although it sometimes remains a controversial topic,
which falls out of the scope of this work, studies have confirmed the potential contribution
of such retrofits to global CO2 emission reduction policies [14–16].
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While co-firing of biomass with fossil fuels is intensely researched nowadays [17–19],
it is more difficult to find studies about full coal-to-biomass conversions [20–22]. Assessing
the future thermodynamics performance of retrofitted heat and power production plants is,
however, not straightforward. It requires a detailed modeling of complex processes and
their components. In this paper, the impact on the performance of a retrofit of a coal-fired
power plant into a biomass combined heat and power (CHP) and the working method is
discussed.

In [23], we modeled and optimised the retrofit of a large-scale ultra-supercritical (USC)
coal-fired power plant into a biomass-fired CHP unit using a deterministic thermodynamic
model made of 180 components, 285 links, and 1500 variables. Key performance indicators
(KPIs) were defined and assessed. A shortcoming of the deterministic comparison between
100% coal and 100% biomass CHP for different loads and different temperatures of the
heat-to-heat clients is that uncertainties were not taken into account.

A widely employed technique for uncertainty quantification (UQ) is the fundamental
Monte Carlo simulation method. This approach involves the random generation of scenar-
ios based on input parameter distributions until a sufficient quantity, typically ranging from
104 to 105, of output values is accumulated. This dataset serves as a robust statistical distri-
bution of potential outcomes [24]. However, this method encounters challenges when the
system model requires more than a few seconds to produce results for each scenario [25].

To enhance computational efficiency, surrogate-assisted UQ leverages a surrogate
model of the system. This surrogate model simplifies the system’s representation within the
bounds defined by the various input parameter distributions. Examples of surrogate models
encompass Kriging [26], support vector machines [27], analysis of variance (ANOVA) [28],
and polynomial chaos expansion (PCE) [29]. PCE, for example, enables the analytical
derivation of distribution parameters and sensitivity indices, such as Sobol’ indices, from
the surrogate model’s coefficients. Ref. [30] describes a probabilistic comparison between
an USC coal-fired power plant before and after a conversion to biomass. In this paper,
the possibility of uncertainty quantification (UQ) polynomial chaos expansion (PCE) is
investigated to avoid the issue of unknown parameters. PCE was applied on two unknown
parameters related to heat transfer in the furnace of the boiler.

In traditional PCE, the truncation set contains multivariate polynomials, many of
which represent interactions between input variables. However, in engineering scenarios,
high-interaction term coefficients (those representing interactions between multiple uncer-
tain parameters) are often negligible, as physical phenomena are primarily driven by main
effects and low-order interactions [31]. Consequently, determining these high-interaction
coefficients through deterministic model evaluations is inefficient. In the truncation scheme,
a substantial number of coefficients correspond to high-interaction terms in the PCE. For
instance, in a case with a stochastic dimension of 50 and a maximum polynomial degree
of 3, the number of terms in A50,3 is 23,426. Within this set, only 150 polynomials depend
on a single random parameter (univariate polynomials), which is less than 1% of the total.
Accordingly, many coefficients can be considered negligible and should not significantly
impact the computational cost of constructing the PCE, aligning with the sparsity-of-effect
principle [32]. In line with this principle, sparse PCE methods have been developed to
identify significant coefficients a priori [33].

Initially, sparse PCE algorithms emerged within the context of compressive sens-
ing [34]. Compressive sensing methods enabled the retrieval of a sparse solution with
fewer design samples than basis functions [33]. Regression-based sparse PCE was first
introduced using a forward–backward selection procedure [32]. An alternative trunca-
tion scheme was proposed by [35], where only multivariate polynomials dependent on
a limited number of input parameters are included. The number of input parameters
on which multivariate polynomials may depend is a user-defined constant established
a priori. A more relevant approach is least-angle regression (LAR) [35], which utilizes
a hyperbolic truncation scheme to exclude terms with high-interaction order. Recently,
Abraham et al. [36] introduced a stepwise regression method that adaptively determines
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significant terms from the basis functions pool, promising improved sparsity and accuracy
in sparse PCE compared to LAR.

In this paper, the performance of the USC coal-fired power plant at 100% load (current
situation) is compared with the low temperature biomass CHP at 80% load (best case in [23])
using the stepwise sparse PCE algorithm proposed by Abraham et al. [36]. The goal of this
paper is to address this question: “How can the performance of complex thermodynamic
systems be evaluated under uncertainty?”. The following are the next steps:

1. The definition of a methodology to apply advanced uncertainty quantification tech-
niques to process modeling involving large numbers of parameters and several KPIs.

2. Apply this methodology to the case of a retrofitted, large biomass CHP unit.
3. Investigation of the limits of uncertainty quantification (UQ) polynomial chaos expan-

sion (PCE) and, finally, sparse PCE.
4. Investigation of the most important parameters to model both cases.

Currently, the coal-fired power plant runs at base load as much as possible; therefore,
the studied load for the coal-based operation is 100%. The research in [23] revealed that
running the biomass CHP system at 80% load, with a CHP efficiency of 67%, is the most
effective mode of operation. This will also be the preferred operating mode after conversion,
and in this study the load of the biomass-based operation will be 80%.

2. Materials and Methods
2.1. Thermodynamic Modeling and Validation

The power plant considered in this study is an USC coal-fired power plant located in
the Netherlands and commissioned in 2015. The 730 MWe power plant has a net electrical
efficiency of 45%. The power plant is fed with coal that will be crushed in one of the four
roller mills. When the particles of the coal are little enough they will be taken by the primary
air to one of the four low-NOx burners in the burner row of that mill. Thus, there are four
burner rows of four burners in an opposed-type arrangement in this 1550 MWth boiler.
The combustion air is pressurized by two forced-draught (FD) fans and passes through a
rotary air preheater to recuperate energy from the flue gasses. After combustion, the flue
gasses are forced through a state-of-the-art flue gas treatment (FGT) system by an induced
draught (ID) fan. The FGT exists for a selective catalytic reduction (SCR) denitrification
system, an electrostatic precipitator (ESP) to remove the dust, and a wet scrubber to reduce
the SOx emissions. The USC boiler contains an economizer, three super heaters, and two
reheaters, and the walls are the evaporator (“evaporator ” is the customary term for the
radiative heat exchanger in the furnace, although the cycle is supercritical in this case and,
therefore, does not present an evaporation phase as such). The feedwater that arrives in the
economizer comes from the condenser, and between the condenser and the economizer, the
feedwater flows through five low-pressure preheaters, a deaerator, and three high-pressure
preheaters. The feedwater is pressurized by several pumps after the condenser and after
the deaerator. The steam, 252.2 bar and 600 ◦C, coming from the outlet of the super heaters,
flows through a high-pressure steam turbine. In the reheaters, the steam still has a pressure
of 61 bar and is upgraded to 620 ◦C before the steam is led to the intermediate pressure
steam turbine. After the intermediate pressure steam turbine, the steam flows to one of the
two double-flow low-pressure steam turbines. Afterwards, the used steam is condensed in
one of the two water-cooled condensers. In total, there are nine extractions out of the steam
turbines to heat the feedwater in the preheaters. The water steam cycle is visualized in a
simplified overview in Figure 1.
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Figure 1. Simplified schematic of the steam cycle [23].

The power plant is modeled with Thermoflex®. Thermoflex® is a high-fidelity fully
flexible engineering software application for modeling and simulating the thermodynamic
behavior of power production facilities (CCGT, CFPP, nuclear, renewables, etc.) and is the
most flexible and adaptable package of Thermoflow®. The software is state-of-the-art heat
and mass balance software featuring a graphical user interface. In the design mode, the
model can be made by using the over two hundred different predefined components. After
component selection and connection, the default values of the components can be adapted
and Thermoflex® computes the full heat and mass balance and the performances of the
entire system, based on a series of thermodynamic design assumptions. Switching to the
next mode, Thermoflex® translates the initial basic thermodynamic design assumptions
into physical realistic components. Afterwards the model can be frozen in off-design mode
and static simulations can be performed. The software calculates first all the pressures in
the system, and when an equilibrium is reached, all the flows will be calculated followed
by all the other parameters. With the ELINK application, the model can be made quasi-
dynamic [23,30,37]. The basic model illustrated in Figure 1 corresponds to the current,
coal-based operation, while the extended model illustrated in Figure 2 also comprises the
additional steam extractions from the three tapping points (outlet HP, outlet IP, and LP
turbines) to an intermediate closed loop via heat exchangers (elements 9 to 11) required
for combined heat and power (CHP) production. This intermediate loop in turns delivers
heat to the heat clients (element 12). The model will be used to simulate the following
operational modes:

1. The current situation: the fuel is coal; the power plant runs base load.
2. Potential new situation: the fuel is biomass; the power plant runs at a boiler load of

80%, and there is low-temperature heat extraction in the CHP extension.

Figure 2. Overview CHP.
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The biomass used is steam-exploded pellets, because the structure is comparable
with coal, and only a new classifier and an ATEX fuel system will be needed, while
for traditional white pellets, heavier modifications of the storage, handling, and milling
systems are required. This results in a lower investment cost to retrofit the power plant.
Compared with white pellets, the other advantages of steam-exploded pellets are the
higher lower heating value (LHV) and the fact that they are hydrophobic [38–40]. On the
other hand, there is the higher price of the steam-exploded pellets. Whether these higher
operational costs can be counterbalanced by the reduced investment costs is a function
of the operation of the power plant: a low capacity factor will indeed favor the option of
lower investments and higher operational costs. A part of the higher operational costs can
be regained by the additional production of heat and valuable chemical compounds during
pellet production [41]. Although the higher LHV of steam-exploded pellets (20,060 kJ/kg)
is still significantly lower than the LHV of coal (24,221 kJ/kg).

In the previous works [23,30], we developed thermodynamic models of the coal-fired
power plant using Thermoflex®. First, the coal-fired power plant was modeled at base load
and validated against the official acceptance test. This model was then used to build several
other models for the lower loads, which were validated against performance test conducted
by the experts of the power plant around the time of the acceptance test. Using the available
operational data gathered over 5 years of operation, the aging was implemented in the
base case model and validated against performance tests executed by the power plant
experts. Later on, the same aging was implemented in the lower load models. Afterwards,
the fuel of the models was changed from coal to biomass and the results were validated
against biomass co-firing test runs. In [30], the thermodynamic models are used to study
the impact of furnace heat transfer parameter uncertainties with UQ PCE, and it is shown
that experimental results are within the calculated uncertainty bounds. These models are
used as the basis for this study.

The steam turbine was originally designed to allow steam extraction for district heating
(DH) purposes. Three extraction points are available: from the HP turbine outlet (cold
reheat line), from the IP turbine outlet, and from the LP turbine. The latter extraction
point is specifically designed for large flow rates, unlike the four other conventional steam
extraction points from the LP turbine delivering heat to the feedwater preheaters in order
to increase the efficiency of the steam cycle. The design of the turbine is such that it can
deliver 150 MWth of thermal power to a DH network at maximum continuous rate (MCR)
load, assuming a supply temperature to the network of 180 ◦C and a return temperature
of 80 ◦C [23]. Nevertheless, the limitation of maximum steam extraction of 150 MWth is
not taken into account for this study. The conditions of the extracted steam and returned
condensate can be found in Table 1 and results in a supply and return temperature for the
external heat client of 70 ◦C and 30 ◦C, respectively [23].

Table 1. Conditions of the extracted steam and the returned condensate.

Extraction Pressure [bar] Temperature [◦C] Flow [kg/s] Enthalpy [kJ/kg]

LP extraction 3.07 278 44 3025

Return 1.67 49.75 44 208.4

IP extraction 5.275 339.2 31 3145

Return 13.8 1 110.5 31 464.4

HP extraction 50.68 393.9 104 3180

Return 49.69 151.1 104 639.8
1 The return pressure is higher than the extraction pressure because there is a pump in the process return system.
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2.2. Uncertainty Characterization
2.2.1. Selection of Uncertain Input Parameters

In the process of configuring the power plant simulations using Thermoflex®, a com-
prehensive set of inputs is necessitated. While some of these inputs are mandatory, others
remain optional as they are initialized with default values by the software. In collaboration
with the power plant experts, a detailed analysis of all 1500 of input parameters inherent to
the model was conducted. This analysis started by removing certain hardware parameters
(e.g., materials of tubes in the heat exchangers, length and amount of tubes in the boiler,
setpoints, design values such as deaerator and condenser pressure, etc.) from the list of
all 1500 input parameters. Next, the independence of the uncertain input parameters was
checked. The parameters that are dependent on each other were removed after they were
grouped into one overall uncertainty parameter. Finally, the input parameters affecting
only the low load have been removed. This analysis led to the identification of all pa-
rameters that are subject to uncertainty due to inherent variability or lack of information,
and associated with appropriate probability distributions, including uniform, logarithmic,
and n-logarithmic distributions. The prescribed distributions were delineated by their
respective ranges, occasionally augmented by lower and upper bounds depending on the
inherent characteristics of the distribution. For the current situation with coal, the final list
contains 242 parameters and for the biomass case, 243 parameters were detected. A more
detailed description of the most impactful parameters is provided in Section 3.1, and the
comprehensive list with all the parameters is available in the Supplementary Materials.

2.2.2. Selection of Outputs

Numerous potential output parameters were available for selection; however, the
interdependence between different outputs, as well as their reliance on shared input pa-
rameters, necessitated a discerning approach. Consequently, outputs were chosen that
provide insight on power plant performance as parameters and parameters of intrinsic
importance to the power plant and its operation but that are not, difficult or only indirectly
measurable. So the selected output parameters are divided in three groups: plant perfor-
mance indicators, steam quality indicators, and furnace operation indicators. The selection
of the output parameters can be found in Table 2. The first trio of parameters, namely gross
power, gross efficiency, and CHP efficiency, is an obvious choice. These output parameters
provide a good picture of the impact of the retrofit on the power plant performance and
are indispensable for estimating both the financial implications as well as the generation
of electricity and heat after the conversion. The next two parameters are the pressure and
flow of the steam leaving the boiler and entering the high-pressure steam turbine. These
two output parameters provide better insights into the quality of high-pressure steam
and the potential capacity loss of the boiler and steam turbine due to changes in fuel type
and different LHV due to fuel source modifications. The last three output parameters are
adiabatic flame temperature, furnace exit gas temperature (FEGT) and effective radiation
temperature. These parameters are important because they are difficult or impossible to
measure [42]; nevertheless, these parameters significantly affect combustion dynamics and
kinetics within the boiler, especially in the case of a fuel retrofit. These parameters influence
factors such as soot formation and the distribution of heat exchange mechanisms, more
precisely, the interaction between radiation and convection. The soot formation will initiate
slagging and fouling issues which are very undesirable because coal and biomass fired
power plants are very sensitive to it [43,44].
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Table 2. Selected outputs.

# Output Output Variable Description Unit

Plant performance indicators

1 Plant gross power MW
2 Plant gross electric efficiency %
3 Plant CHP efficiency %

Steam quality indicators

4 Live steam pressure bar
5 Live steam flow rate kg/s

Furnace operation indicators

6 Adiabatic flame temperature ◦C
7 Furnace exit gas temperature (FEGT) ◦C
8 Effective radiation temperature ◦C

2.3. Uncertainty Quantification

Once the distributions for the input parameters are set (Section 2.2.1), uncertainty
quantification (UQ) comes into play. It involves carrying over these input distributions
through the system model and gauging the uncertainty in a specific output (Section 2.2.2).

In light of the considerable time cost associated with model evaluation (approximately
90 s) and the substantial number of uncertainties (243), we have opted for an approach
that employs sparse polynomial chaos expansion. This method helps us propagate uncer-
tainty, calculate statistical moments, and find global sensitivity indices (Sobol’ indices) for
indicators of the plant’s performance [36]. The Python-based RHEIA framework is used to
connect the developed Thermoflex® models to the relevant robust optimization algorithms
described below [45].

2.3.1. Construction of the PCE

Like in a conventional PCE [25], the surrogate model (MPCE) replicates the relation be-
tween the input parameters and the output parameter of interest defined in the Thermoflex®

model (M). This PCE representation consists of a truncated series of multivariate orthonor-
mal polynomials Ψ weighted by coefficients u:

MPCE(ξ) =
P

∑
i = 0

uiΨi(ξ) ≈ M(ξ), (1)

where ξ = (ξ1, ξ2, . . . ξn) represents the vector of the independent random parameters, and
d corresponds to the number of input distributions. Typically, the number of multivariate
polynomials in the series is limited by the maximum total degree of the multivariate
polynomials (p) and the number of uncertain parameters (d). The number of multivariate
polynomials that correspond to an order below or equal to the limiting order p equals:

P + 1 =

(
p + d

p

)
=

(d + p)!
d!p!

. (2)

The number of terms (P + 1) in the truncated series using the conventional truncation
scheme increases dramatically when d > 10 (i.e., curse-of-dimensionality) [25]. To illustrate,
for d = 243 and a limiting degree p of 2 and 3, the number of multivariate polynomials in
the series equals 29,890 and 2,450,980, respectively.

Each multivariate polynomial in the series is accompanied by a coefficient. To quantify
the values of these coefficients, a regression method is adopted [25]. To acquire a well-posed
least-square minimization, the empirical rule of thumb is to have a number of training
samples equal to at least two times the number of coefficients [25]. As these training
samples are evaluated in the true simulation model (M), the construction of a PCE using
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the conventional truncation scheme becomes computationally intractable (i.e., roughly
7 years for p = 3 without parallelization).

2.3.2. Sparse Polynomial Chaos Expansion

Not all uncertain input parameters carry equal weight in influencing the variance of
the output. This inherent sparsity in the relationship between inputs and outputs can result
in a substantial reduction in the number of terms needed in the expansion. Moreover, many
models exhibit a pattern where they can be effectively represented by main effects and low-
order interactions, adhering to the sparsity of effects principle. Consequently, a significant
portion of coefficients in the polynomial chaos expansion (PCE) may approximate to
zero [36].

To address this challenge and mitigate the computational cost associated with con-
structing a conventional PCE, an approach is to detect non-negligible terms in the PCE
before its actual construction. To this end, we employed the sparse polynomial chaos
expansion (sparse PCE) algorithm, as described in Abraham et al.’s work [36]. This ap-
proach efficiently identifies and retains the most influential terms, substantially reducing
the computational burden while maintaining the accuracy necessary for robust uncertainty
quantification. Hence, this algorithm focuses on retaining only the most impactful coef-
ficients and their associated polynomials in the truncated series. For a comprehensive
visual representation of this method, readers can refer to the schematic diagram available
in Abraham et al.’s work [36].

The initial step of the algorithm involves creating an initial design of experiment,
denoted as χ = [ξ1, ξ2, ..., ξn], where the user-defined constant n determines its size. The
experiment’s design is evaluated using the true model, and the resulting output for the
quantity of interest is stored in y = [y1, y2, ..., yn]

T . In the first forward step, the algorithm
creates and evaluates P + 1 independent one-predictor regression models using individual
basis functions. The assessment is performed by solving a least-squares problem.

To select the preferred basis function Ψj∗ out of the P + 1 one-predictor regression
models, the following criterion is applied:

j ∗ = argmaxj
|ûj|√

Var
[
ûj
] , j = 0, ..., P, (3)

where ûj represents the estimate of the coefficient and Var
[
ûj
]

corresponds to its variance.
This criterion favors coefficients with high weights (i.e., high estimates) in most of the
samples (i.e., low variances), as they carry the most significant information. This selection
procedure ensures effectiveness and robustness. The best-performing one-predictor model
is stored in the final regression model, and it is removed from the pool of basis functions.
The residual ê is updated based on the difference between the deterministic model results
y and the results from the final regression model at the design of experiment points ŷ:

ê = y− ŷ. (4)

Following the first forward step, the stepwise regression algorithm enters a forward–
backward loop. The forward step is similar to the first forward step, except that the
one-predictor regression models are fitted on the residual êi at iteration i. This fitting on the
residual enables the models to capture the effects that are still missing in the final regression
model. After each forward step, a backward step is initiated. In this backward step, the
confidence intervals of the regression coefficients included in the regression model are
evaluated to determine if the importance of the coefficients already in the model is affected
by the entry of a new coefficient. The confidence interval is computed as follows:

ui ∈
[

ûi ± z[1− α/2]
√

Var(ûi)

]
, (5)
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where Var(ûi) represents the i-th diagonal term of Var(û), z[1− α/2] is the 1− α/2 quantile
of the standard normal distribution, and α is set to 0.05. If a confidence interval includes 0,
the corresponding coefficient is removed from the model, and the residual is updated. This
process is repeated until the maximum number of iterations is reached. For further details
on this sparse PCE method, refer to Abraham et al. [36].

2.3.3. Error Estimation

To estimate the error of the PCE, we employ leave-one-out (LOO) cross-validation.
In LOO, one sample x(i) is excluded from the set of n random samples, and the PCE is
constructed without this sample’s information, denoted asMPCE\i. The residual error at
that point is defined as the difference between the result from the actual modelM and the
result from the PCE without the information on that pointMPCE\i:

∆i = M
(

x(i)
)
−MPCE\i

(
x(i)
)

. (6)

The residual error can be quantified by leaving out each sample, one at a time, from
the set of samples to construct the PCE. Since n samples are present in the set, the LOO
error corresponds to the sum of the n residual errors:

ELOO =
1
n ∑

i=1
n∆2

i . (7)

Hence, this technique consistently leaves one sample out during each iteration and
constructs a PCE surrogate model with one fewer samples. This meticulous process ensures
that our PCE surrogate model is rigorously validated against test data that were not utilized
during the training phase. However, this approach involves constructing n PCEs, which
can be computationally demanding in large stochastic dimensions. However, based on
algebraic derivations [25], the LOO error can be quantified using the i-th diagonal terms in
the matrix A

(
AT A

)−1 AT. Eventually, the LOO error is given by

ELOO =
1
n

n

∑
i=1

(M(x(i))−MPCE(x(i))
1− hi

)
. (8)

It should be noted that in this formulation, MPCE is constructed based on the full
experimental design (i.e., n samples). The LOO error can be normalized by dividing it by
the variance of the model outputs Var[y].

2.3.4. Post-Processing

The statistical moments can be derived from the PCE coefficients analytically, i.e., no
more model evaluations are required. To illustrate, the mean µPCE and standard deviation
σPCE are derived as follows (higher moments could also be obtained):

µPCE = u0, (9)

σ2 PCE = ∑
α∈A,α 6=0

u2
α. (10)

Next to the statistical moments, the Sobol’ indices (i.e., global sensitivity indices) can be
derived from the PCE coefficients as well. The Sobol’ indices represent the decomposition
into fractions of the variance of the quantity of interest, for which each fraction is allocated
to a random input parameter (first order) or a set of random input parameters (higher
order). The total-order Sobol’ indices (ST

i ) are quantified as follows:

ST
i = ∑

α∈AT
i

u2
α/

P

∑
i=1

u2
i AT

i = {α ∈ A|αi > 0}, (11)
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where A is the set of all the PCE coefficients and αi represents the coefficient related to
uncertain parameter i.

2.3.5. Characterization

The sparse PCE methodology is governed by two user-defined parameters: the total
degree of multivariate polynomials and the number of training samples. The determination
of both these parameters follows the approach proposed by Abraham et al. [36]. Initially,
the process begins with setting the total degree parameter to p = 1 and then gradually
increasing the number of training points. For each set of training points, a sparse PCE is
systematically constructed, and subsequently, the LOO error is assessed. This iterative
procedure continues until the LOO error reaches a point of convergence or until all multi-
variate polynomials from the pool of basis functions limited by p = 1 (as per Equation (2))
are incorporated into the PCE. Should the LOO error exceed a predefined threshold, the
total degree parameter is incremented to p = 2, thereby introducing additional polynomi-
als into the basis function pool. This iterative process continues until the combination of
polynomial order and the number of training samples yields an LOO error that falls below
the established threshold.

In this work, we selected a limiting polynomial degree p = 3, in combination with a
design of experiment of 5000 training points (χ) to reach an LOO error below 1% for all
outputs of interest (see Section 2.2.2). This accuracy corresponds to the accuracy of the PCE
model achieved in previous work of these authors [30], where a LOO error below 1% is
achieved for p = 3 on the same power plant simulation model. However, the number of
training samples required is significantly higher (5000, as opposed to 20 in [30]), and, as
in this work, the number of uncertain parameters is several orders of magnitude higher
(243, as opposed to 2). In addition, the gain in computational efficiency by applying
sparse PCE instead of the conventional PCE is similar to the one obtained in a recent
application to a renewable energy system [46]. To illustrate the evolution of the LOO error
with respect to the number of training samples, the evolution of the LOO error and the
statistical moments of the coal-fired power plant gross power quantified by the sparse
PCE (µPCE and σ2 PCE) with respect to the size of the design of experiment are presented in
Figure 3 and Figure 4, respectively. The figures with all the LOO errors can be found in the
Supplementary Materials.
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3. Results and Discussion
3.1. General Summary of the Results

Using a quasi-random Sobol’ sampling, 5000 training samples are generated on
the 242 uncertain parameters for coal-based operation and 243 uncertain parameters for
biomass-based operation, while the other parameters are consider fixed. These samples are
simulated with the Thermoflex® models. In the course of the study, a relevant observation
emerged: not all output parameters depend (equally) on the same input parameters. This
insight highlights the need to conduct specific analyses for each individual output, given
the varying sensitivities to underlying input parameters. Therefore, SPCE surrogate models
for each output parameter have been constructed using the deterministic response of the
Thermoflex® simulations. The summary of the comparison between coal 100% load and
biomass CHP 80% load of the resulting means and standard deviations can be found in
Table 3.

Table 3. Summary of the resulting means and standard deviations of the simulations of the power
plant before and after the conversion.

Output Coal Biomass Unit

Plant gross power mean 703 382 MW
std 17.2 15.9 MW

Plant gross electric efficiency mean 45.4 30.8 %
std 1.1 1.3 %

Plant CHP efficiency mean 41.5 65.3 %
std 1.4 1.5 %

Live steam pressure mean 235 185 bar
std 14.2 7.9 bar

Live steam flow rate mean 543 411 kg/s
std 53.1 21.7 kg/s

Adiabatic flame temperature mean 2026 1839 ◦C
std 327 279 ◦C

FEGT mean 1276 1132 ◦C
std 73.6 52.8 ◦C

Effective radiation temperature mean 1655 1489 ◦C
std 201 166 ◦C
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There are 18 input parameters with Sobol’ index (impact) above 1% for at least one
of the output parameters for both scenarios, and 17 of the 18 impactful input parameters
are the same for both fuels (see Table 4). The order of importance of the input parameters
per output parameter are shown in Table 5 for coal and in Table 6 for biomass and will be
discussed in Section 3.2.

Table 4. Input parameters with Sobol’ index above 1% for at least one output.

Fuel

Solid-fuel-weight percent of moisture
Solid-fuel-weight percent of ash
Solid-fuel-weight percent of C
Solid-fuel-weight percent of H

Solid-fuel-weight percent of S (only for coal)
Solid-fuel-specified LHV @ 25C

Furnace

Evaporator steam outlet temperature
Flue gas O2 content

Waterwall radiant flux correction factor
Carbon-to-soot conversion rate

Ash emissivity exponent correction factor
Ash particle mean diameter

Non-uniform radiant flux factor
Radiant cooler: minor heat loss

Gas/air side convective heat transfer coefficient adjustment factor—SH1
Gas/air side convective heat transfer coefficient adjustment factor—SH2
Gas/air side convective heat transfer coefficient adjustment factor—SH3

Combustion air

Rotary air heater: cleanliness factor

Water/steam

High-pressure preheater 3: condensing zone heat transfer coefficient correction factor (only for
biomass)

The fuel parameter ‘weight percent of S’ has a significant impact only in the case of coal,
and the parameter ‘high-pressure preheater 3: condensing zone heat transfer coefficient
correction factor’ has a significant impact only in the case of biomass.

3.2. Analysis Outputs

In this paragraph, for all the outputs, the effects of converting the power plant from
coal to biomass CHP are discussed.

3.2.1. Plant Performance Indicators
Plant Gross Power

The gross power is of course the main parameter to study. As expected and in line with
the choice to optimize the global CHP efficiency after the retrofit (see Section 2.1 and [30]),
the mean decreases from 703 MW to 382 MW (see Figure 5). The standard deviation is rather
low and has a negligible decrease from 17.17 MW for coal to 15.95 MW for biomass (see
Figure 5); thus, the expected power is not more uncertain after the retrofit. Nevertheless,
the relative standard deviation (mean versus standard deviation) of biomass is higher than
the relative standard deviation of coal, which is in line with what was observed in [30].
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Figure 5. Gross power: Coal: mean = 703.2 MW, standard deviation = 17.1 MW. Biomass: mean =
382.3 MW, standard deviation = 15.8 MW.

Figure 5. Gross power. Coal: mean = 703.2 MW, standard deviation = 17.1 MW. Biomass: mean = 382.3 MW,
standard deviation = 15.8 MW.

Plant Gross Electric Efficiency

Another important parameter is the gross efficiency. As expected, the efficiency
decreases from 45.3% to 30.8% (see Figure 6), just as for the gross power; these results are
in line with the chosen CHP operation mode (see Section 2.1 and [30]). The uncertainty
slightly increases from 1.1% to 1.3%, showing again that the overall performance of the
plant will not be more uncertain after the retrofit (see Figure 6).
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Figure 6. Gross efficiency. Coal: mean = 45.3%, standard deviation = 1.1%. Biomass: mean = 30.8%,
standard deviation = 1.3%.

Plant CHP Efficiency

The CHP efficiency increases from 41.5% to 65.3% and the standard deviation from
1.4% to 1.5% (see Figure 7). The plant CHP efficiency (ηCHP) is calculated by summing the
produced net electrical power (Pel,net) and the delivered thermal power as two equivalent
forms of energy:
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ηCHP =
Pel,net + Pth

Pf uel
[-] (12)

where Pth is the thermal power delivered to the heat client and Pf uel is the thermal power
input in the boiler, calculated as the product of the fuel flow rate and its LHV. Because the
coal-fired power plant only delivers electricity to the grid, while the biomass CHP also
delivers heat to the DH, the CHP efficiency will obviously increase after conversion. Again,
the expected performances are not much more uncertain after the retrofit.
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Figure 7. CHP efficiency. Coal: mean = 41.5%, standard deviation = 1.4%. Biomass: mean = 65.3%,
standard deviation = 1.5%.

3.2.2. Steam Quality Indicators
Live Steam Pressure

The steam pressure to the high-pressure steam turbine decreases from 235 to 182 bar
(see Figure 8). Due its lower LHV and higher moisture content, the combustion of biomass
generates relatively more flue gas than the combustion of coal. This results in a lower
adiabatic flame temperature and therefore in a less radiant heat transfer. As a consequence,
reaching the nominal steam temperature cannot be achieved without decreasing the nom-
inal steam pressure and steam flow rate. Considering the provided fuel thermal input,
the control system of the power plant is programmed to first reach the nominal steam
temperature considering the steam pressure and flow rates as secondary parameters.

While the power plant conversion from coal to biomass results in a steam pressure
decrease, the related uncertainty decreases from 14 to 8 bar (see Figure 8) due to a higher
sensitivity of this output on the composition of the fuel in the case of coal (especially on
carbon content); see Section 3.3.1, Table 5 and Section 3.3.2, Table 6. The higher sensitivity
to the LHV of biomass compared to coal does not compensate this effect.
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Figure 8. Steam pressure to high pressure steam turbine: Coal: mean = 235 bar, standard deviation =
14 bar. Biomass: mean = 185 bar, standard deviation = 8 bar.

Live steam flow rate 447

448

The same effects as for live steam pressure can be observed for live steam flow rate. 449

The steam flow to the high pressure steam turbine decreases from 542 kg/s to 410 kg/s and 450

the uncertainty from 53 kg/s to 22 kg/s, also due to a higher sensitivity of this output on 451

the composition of the fuel in the case of coal, combined with a higher impact of evaporator 452

steam outlet temperature, see Paragraph 3.3 (Table 5 and Table 6). 453

300 400 500 600 700 800

0

0.5

1

1.5

·10−2

Steam flow to high pressure steam turbine [kg/s]

Pr
ob

ab
ili

ty
de

ns
it

y
[s

/k
g]

Coal
Biomass

Figure 9. Steam flow to high pressure steam turbine: Coal: mean = 542 kg/s, standard deviation =
53 kg/s. Biomass: mean = 410 kg/s, standard deviation = 22 kg/s.

Figure 8. Steam pressure to high-pressure steam turbine. Coal: mean = 235 bar, standard devia-
tion = 14 bar. Biomass: mean = 185 bar, standard deviation = 8 bar.

Live Steam Flow Rate

The same effects as for live steam pressure can be observed for live steam flow rate.
The steam flow to the high-pressure steam turbine decreases from 542 to 410 kg/s and
the uncertainty from 53 to 22 kg/s (see Figure 9), also due to a higher sensitivity of this
output on the composition of the fuel in the case of coal, combined with a higher impact of
evaporator steam outlet temperature; see Section 3.3.1, Table 5 and Section 3.3.2, Table 6.
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Figure 9. Steam flow to high pressure steam turbine: Coal: mean = 542 kg/s, standard deviation =
53 kg/s. Biomass: mean = 410 kg/s, standard deviation = 22 kg/s.

Figure 9. Steam flow to high-pressure steam turbine. Coal: mean = 542 kg/s, standard devia-
tion = 53 kg/s. Biomass: mean = 410 kg/s, standard deviation = 22 kg/s.

3.2.3. Furnace Operation Indicators
Adiabatic Flame Temperature

The adiabatic flame temperature decreases from 2026 to 1839 ◦C, while the standard
deviation decreases from 326 to 279 ◦C (see Figure 10). The higher moisture content,
the lower LHV, and the higher amount of flue gas from biomass combustion lead to
this temperature decrease. Compared to the previous parameters, the adiabatic flame
temperature exhibits a much larger uncertainty for both coal and biomass but slightly lower
for biomass. This parameter is mainly impacted by the uncertainty on the fuel composition;
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see Section 3.3.1, Table 5 and Section 3.3.2, Table 6. The skewness of the distribution is also
more pronounced, with a tail reaching significantly higher values than the mean. This can
have important consequences for the operation and the maintenance of the boiler.
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Figure 10. Adiabatic flame temperature: Coal: mean = 2026◦C, standard deviation = 326◦C. Biomass:
mean = 1839◦C, standard deviation = 279◦C.

Figure 10. Adiabatic flame temperature. Coal: mean = 2026 ◦C, standard deviation = 326 ◦C. Biomass:
mean = 1839 ◦C, standard deviation = 279 ◦C.

Furnace Exit Gas Temperature (FEGT)

The FEGT decreases from 1276 to 1131 ◦C (see Figure 11). Because the relatively higher
flue gas flow for biomass, the radiative heat transfer in the furnace will decrease, but the
convective heat transfer will increase. Nevertheless, the increased convection will not
counterbalance the decreased radiation. A lower FEGT will positively impact the risk of
slagging and fouling, which, however, mainly depends on the composition of the ash. This
expected decrease can, however, be taken into account in ash deposition risk assessments.
Also, the standard deviation is narrower for biomass (52.6 ◦C) than for coal (73.6 ◦C) (see
Figure 11). Both are also mainly affected by the uncertainty on the composition of the fuel.
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Figure 11. FEGT: Coal: mean = 1276◦C, standard deviation = 73.6◦C. Biomass: mean = 1131◦C,
standard deviation = 52.6◦C.
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Figure 11. FEGT. Coal: mean = 1276 ◦C, standard deviation = 73.6 ◦C. Biomass: mean = 1131 ◦C,
standard deviation = 52.6 ◦C.
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Effective Radiation Temperature

The effective radiation temperature decreases from 1655 to 1489 ◦C, while the uncer-
tainty decreases from 200 to 166 ◦C (see Figure 12). The effective radiation temperature is
a heat-weighted average between the adiabatic flame temperature (see Paragraph ‘Adi-
abatic Flame Temperature’ in Section 3.2.3) and the FEGT (see Paragraph ‘Furnace Exit
Gas Temperature (FEGT)’ in Section 3.2.3) [37]. This evolution can therefore be explained
by the evolution of the two previous output parameters. The probability distribution of
the adiabatic flame temperature, however, dominates and leads to a skewed distribution
with a significant standard deviation for this parameter as well. As this parameter gives an
image of the radiative heat transfer in the furnace, such a large uncertainty is concerning
in terms of operation and maintenance of the boiler. The risk of tube failure because of
excessive heat transfer is real in such large boilers. These results tend to show that the
accurate monitoring of the combustion process in the furnace is key to ensuring a smooth
operation of the power plant.
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Figure 12. Effective radiation temperature. Coal: mean = 1655 ◦C, standard deviation = 200 ◦C.
Biomass: mean = 1489 ◦C, standard deviation = 166 ◦C.

3.3. Analysis Inputs

In this section, the inputs (Table 4) will be discussed. Per input parameter ranked
above 1% in the Sobol’ analysis, a potential reason is discussed. All graphs can be found in
the Supplementary Materials.

3.3.1. Coal:

Carbon and hydrogen content in the fuel are the two most impactful input parameters
(see Table 5). Together, they have a minimum impact of 64.67% for the ‘gross power’ output
and a maximum impact of 90.35% for the ‘adiabatic flame temperature’. The next two
important input parameters are ‘evaporator steam outlet temperature’ and ‘LHV’ for the
outputs ‘gross power’ (respectively, 12.86% and 8.69%), ‘gross efficiency’ (respectively,
12.86% and 8.75%), ‘steam flow’ (respectively, 15.94% and 6.57%) and ‘CHP efficiency’
(respectively, 10.64% and 11.24%). The impact of the other input parameters for this outputs
is lower than 3%. The ‘LHV’ input is also impactful for all the other parameters (‘steam
pressure’: 7.90%, ‘adiabatic flame temperature’: 8.75%, ‘effective radiation temperature’:
8.86%, ‘FEGT’: 8.66%). The ‘steam pressure’ also depends on ‘superheater 3: gas/air side



Appl. Sci. 2023, 13, 10751 18 of 24

convective heat transfer coefficient adjustment factor’ (3.96%), while the ash percentage is
more impactful for ‘FEGT’ (5.59%). All the other inputs have an impact lower than 3%.

In general, the plant performance indicators mainly depend on the carbon and hy-
drogen content of the fuel and its LHV; also, the evaporator outlet temperature has an
impact on these outputs. The steam quality indicators are influenced by the carbon and
hydrogen content of the fuel and the live steam flow rate output also by the evaporator
outlet temperature. The furnace operation indicators are also mainly influenced by the
carbon and hydrogen content of the fuel and its LHV. Of course, it is expected that the
carbon and hydrogen content and the LHV of the fuel would have a big impact, but it
is surprising that the influence is that big compared with all the other input parameters.
The evaporator steam outlet temperature is the only other parameter that has a reasonable
impact on the output. This temperature ultimately determines the final energy content of
the steam to the steam turbines; the lower this temperature is, the lower the final steam
temperature will be, which explains why this input parameter impacts only the plant
performance indicators and the live steam pressure.

3.3.2. Biomass:

For all the biomass outputs, the three most important input parameters are carbon
and hydrogen content and the LHV of the fuel (see Table 6). For the first three outputs,
’gross power’, ’gross efficiency’ and ’CHP efficiency’, the ’LHV’ has more impact than the
’hydrogen’ input. The three parameters together have an impact of 75.99% for the ’FEGT’
output, while the impact for the ’adiabatic flame temperature’ is 98.81%. For all the others,
the sum of the impact is in between these two parameters. For the ‘FEGT’ output, the input
‘carbon-to-soot conversion rate’ parameter has an impact of 6.42%. The impact of ‘weight
percentage ash’ (4.76%), ‘waterwall radiant flux correction factor’ (4.77%) and ‘non-uniform
radiant flux factor’ (4.32%) can also have some impact but are already significantly lower.
For all the other inputs, the impact on the outputs is lower than 4%.

Comparison of the results of the Sobol’ indices for coal and biomass shows that the
carbon and hydrogen content of the fuel and the LHV of the fuel are the most impactful
input parameters for both. Only for some output parameters of coal, the evaporator steam
outlet temperature has also a certain impact, while this input parameter has no influence
on the same output parameters in the biomass case. As explained in Paragraph ‘Plant
Gross Power’ in Section 3.2.1, the nominal steam temperature cannot be achieved without
decreasing the nominal steam pressure and steam flow rate in the biomass case. It seems
that the evaporator steam outlet temperature only has influence on the output parameters
when the nominal steam parameters are reached.
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Table 5. Sobol’ indices in % of the impactful input parameters per output parameter for coal.

Plant
Gross
Power

Plant Gross
Electric

Efficiency

Plant CHP
Efficiency

Live Steam
Pressure

Live Steam
Flow Rate

Adiabatic
Flame

Temperature
FEGT

Effective
Radiation

Temperature

Fuel

Solid-fuel-weight percent of moisture 1.65 1.53
Solid-fuel-weight percent of ash 1.04 1.17 2.39 1.48 5.59 2.02
Solid-fuel-weight percent of C 37.60 38.48 39.37 44.43 40.21 53.63 44.86 53.03
Solid-fuel-weight percent of H 27.07 27.06 27.40 29.21 27.36 36.71 29.23 35.90
Solid-fuel-weight percent of S 2.60

Solid-fuel-specified LHV @ 25C 8.69 8.75 11.24 7.90 6.57 8.75 8.66 8.86

Furnace

Evaporator steam outlet temperature 12.86 12.87 10.64 1.48 15.94
Flue gas O2 content 1.02 1.11 1.08 1.09 1.05

Waterwall radiant flux correction factor 2.05
Carbon-to-soot conversion rate 2.79

Ash emissivity exponent correction factor 1.17
Ash particle mean diameter 2.11

Non-uniform radiant flux factor 2.07
Radiant cooler: minor heat loss 2.83 2.90 1.57

Gas/air side convective heat transfer
coefficient adjustment factor—SH1 1.40

Gas/air side convective heat transfer
coefficient adjustment factor—SH2 2.64 1.97 1.02 3.96 1.19

Gas/air side convective heat transfer
coefficient adjustment factor—SH3 2.98 2.42

Combustion air

Rotary air heater: cleanliness factor 2.55 2.51 1.87
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Table 6. Sobol’ indices in % of the impactful input parameters per output parameter for biomass.

Plant
Gross
Power

Plant Gross
Electric

Efficiency

Plant CHP
Efficiency

Live Steam
Pressure

Live Steam
Flow Rate

Adiabatic
Flame

Temperature
FEGT

Effective
Radiation

Temperature

Fuel

Solid-fuel-weight percent of moisture 1.04 1.08 1.26 1.00 1.14 1.41 1.40
Solid-fuel-weight percent of ash 1.93 1.41 4.77 1.75
Solid-fuel-weight percent of C 22.65 22.71 24.33 23.62 23.17 31.76 24.03 31.44
Solid-fuel-weight percent of H 38.44 38.29 37.09 36.80 37.09 45.98 32.85 44.94
Solid-fuel-specified LHV @ 25C 24.20 24.10 27.91 19.38 19.02 21.08 19.10 21.29

Furnace

Evaporator steam outlet temperature 2.19
Flue gas O2 content 1.21 1.25 1.43 1.15 1.14 1.16 1.13

Waterwall radiant flux correction factor 4.23
Carbon-to-soot conversion rate 6.43

Ash emissivity exponent correction factor 1.38
Ash particle mean diameter 2.02

Non-uniform radiant flux factor 4.32
Radiant cooler: minor heat loss 2.50 2.35 1.50

Gas/air side convective heat transfer
coefficient adjustment factor—SH1 3.05 2.48

Gas/air side convective heat transfer
coefficient adjustment factor—SH2 3.90 2.41

Gas/air side convective heat transfer
coefficient adjustment factor—SH3 1.82 1.79

Combustion air

Rotary air heater: cleanliness factor 3.19 3.16 2.16 1.15

Water/steam

High-pressure preheater 3: condensing zone
heat transfer coefficient correction factor 1.02
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3.4. Limitations of the Study

The sparse PCE method is founded on the assumption of independence among the ran-
dom input parameters. This assumption, while simplifying the mathematical framework
and computational implementation of the PCE, is a limitation when dealing with systems
or processes where input parameters are not strictly independent. However, the indepen-
dence assumption can still provide valuable insights and reasonably accurate results for
systems where correlations among input parameters are not highly significant. Moreover,
PCE can be employed as a tool for sensitivity analysis, helping to identify which input
parameters have the most influence on the system’s output, even under the independence
assumption. In situations where strong correlations among input parameters exist, more
advanced techniques, such as Copula-based modeling or surrogate modeling methods,
that can handle correlated inputs may be considered. These approaches can provide a
more accurate representation of the system’s behavior when independence among inputs
cannot be assumed. Therefore, while the independence assumption of PCE is a limitation,
its applicability and usefulness persist in various scenarios, making it a valuable tool in
uncertainty quantification and sensitivity analysis.

4. Conclusions

The conversion from a base-load coal-fired power plant into an 80%-load biomass
CHP will, as expected, result in a gross power decrease from 703 to 382 MW and a gross
electric efficiency decrease from 45.4% to 30.8%, while the CHP efficiency increases from
41.5% to 65.3%. The uncertainty of these parameters stays more or less the same before
and after the conversion. The steam quality indicators and furnace operation indicators
also decrease after conversion, and all the related standard deviations decrease too, which
shows that these parameters tend to be less uncertain for biomass than for coal combustion.
Among the furnace parameters, the adiabatic flame temperature and the effective radiation
temperature, however, show significant uncertainties and skewed probability distributions.
This is a strong attention point in terms of boiler operation and maintenance. With the
analysis of the Sobol’ indices, it is shown that only 18 of the 242 input parameters for coal
and 243 input parameters for biomass have a significant impact on the studied outputs, and
17 of the 18 impactful input parameters are the same for coal and biomass, but only 4 input
parameters strongly dominate the impact on the uncertainties for coal outputs: carbon
and hydrogen content of the fuel, LHV of the fuel, and the evaporator outlet temperature.
For biomass, only 3 high impact input parameters are observed: carbon and hydrogen
content of the fuel and LHV of the fuel. In this work, it is shown that the proposed
methodology, combining expert judgment and SPCE for numerous unknown inputs and
multiple outputs, can be used to assess the performances of complex thermodynamics
systems under uncertainty. This method can be used to avoid a lack of information for high-
fidelity simulation programs such as Thermoflex®. If the retrofits of several similar power
plants have to be modeled and simulated, the computational time can be drastically reduced
after the first power plant is calculated because attention can be focused on the important
input parameters, namely the input parameters with the highest Sobol’ indices for the
next power plants. In future works, the methodology should be applied to investigate the
impact of daily and seasonal load changes on the performance of the power plant. Given
the importance of the fuel characteristics, conversions to other bio-fuels, e-fuels, or their
mixtures could also be investigated, including in other types of thermal assets that will play
a role in future energy systems, such as combined cycles. Financial and carbon footprint
aspects could be included as well in the KPIs. The use of stochastic processes could be
investigated [47,48].
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app131910751/s1, The list of variable input parameters and the
corresponding distributions for coal and biomass, all resulting data for coal and biomass, all resulting
data of the LOOs and all the resulting Sobol indices, with supplementary graphs of the results.
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