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Abstract: Recent improvements in remote sensing technologies have boosted building detection
techniques from rough classifications using moderate resolution imagery to precise extraction from
high-resolution imagery. Shadows frequently emerge in high-resolution urban images. To exploit
shadow information, we developed a novel building detection and classification algorithm for images
of urban areas with large-size shadows, employing only the visible spectral bands to determine the
height levels of buildings. The proposed method, building general-classified by height (BGCH),
calculates shadow orientation, detects buildings using seed-blocks, and classifies the buildings into
different height groups. Our proposed approach was tested on complex urban scenes from Toronto
and Beijing. The experimental results illustrate that our proposed method accurately and efficiently
detects and classifies buildings by their height levels; the building detection rate exceeded 95%. The
precision of classification by height levels was over 90%. This novel building-height-level detection
method provides rich information at low cost and is suitable for further city scene analysis, flood
disaster risk assessment, population estimation, and building change detection applications.

Keywords: building detection; building classification; building height estimation; shadow detection;
urban analysis; morphology; high resolution image

1. Introduction

Precise building information is increasingly required for urban monitoring [1,2], urban
planning [3,4], and population estimation [5,6]. Remote sensing technology is a cost-
optimal, efficient, and popular way to acquire large-scale urban information [2,3,6–10].
Over the years, remote sensing data acquisition capacities have greatly improved in both
spatial and temporal resolution. High spatial-resolution images provide a basis to study
the urban details of an area, such as buildings. However, it also creates new problems such
as limited spectral resolution, high heterogeneity, and shadows. In fact, a large number
of urban high spatial resolution images, such as those obtained from Google Earth, exist
without parameters for solar zenith angles, exhibiting large-area shadows and RGB bands.
Thus, building detection is a topic of interest in high resolution imagery research [10].

Many effective algorithms have been proposed for building information extraction.
These building detection methods can be roughly classified into two groups: two-dimensional
(2D) and three-dimension (3D) building detection methods. The 2D methods generally ex-
tract buildings using brightness, shape, texture, and concomitant shadows [11–20]. Huang
and Zhang [11] developed a morphological building index (MBI) to extract buildings
using brightness, size, and shape. However, the MBI method cannot easily distinguish
buildings from bare soil and roads, and it fails to detect dark and heterogeneous roofs.
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Peng et. al. [21] applied and improved the snake model in initial seeds selection and the
external energy function to extract buildings. In 2010, Ahmadi et al. [22] proposed a new
active contour model based on level set formulation, avoiding initial curves.

Shadow information is frequently used in building detection. Ok et al. [18] intro-
duced a fuzzy landscape generation method to model the relationship between buildings
and their shadows and then used GrabCut partitioning to locate regions with buildings.
Chaudhuri et al. [19] employed morphology and internal gray variance to describe build-
ing edges and their accompanying shadows to extract buildings. Guo and Du [20] used
shadows to verify the existence of buildings and confirm building candidates. Huang
and Zhang [23] added concomitant shadows of buildings to improve detection accuracy.
In 3D building detection methods, height information can facilitate building extraction.
The earliest 3D methods for building detection focused on a monocular aerial image with
detailed tilt angle, swing angle, and sun altitude [24,25], then calculated the building height
according to the shadows and angles. Thus, shadows not only help to extract buildings,
but also provide useful information to infer the height of buildings.

In recent years, new remote sensing technologies have emerged to monitor cities.
light detection and ranging (LiDAR) is a popular way to obtain the height information for
ground objects, and buildings are extracted based on height [26–29]. Stereo imagery and
photogrammetry are applied to building detection, but with more precise and detailed
information requirements [30]. Generally, in almost all 2D building detection methods,
the results are visualized as binary, separating areas into built-up and not-built-up
zones. Urban scenes, however, have become more complex, with denser buildings and
population. Hence, binary building detection results might not meet the requirements
to detect and describe buildings of different appearances and shapes. The 3D building
extraction methods yield height information that can provide a more detailed description
of buildings. However, more information, data sources, time, and production costs are
required, and the coverage of interest area remains limited. Furthermore, the historical
data suitable for 3D methods is less extensive than the data available for analysis with
2D methods. Thus, building detection in two dimensions remains the preferred method
in many urban application scenarios.

In building height estimation by shadows, many high-level remote sensing products
are already calibrated; the parameters, such as digital orthophoto products and images
from Google Earth indicating the solar altitude and sun height, are lost. This means that
shadow direction cannot be calculated with parameters taken directly from the image. Most
recently, Qi et al. [31] proposed building height estimation using shadows from Google
Earth images, with some provided building heights as a references. Liasis and Sravrou [32]
also applied shadow length, combined with predefined shadow length, or estimated solar
elevation angle to estimate building height.

As shadows can still roughly differentiate the height of the buildings without re-
lated angle data or some building heights, we propose a building detection and height-
classification algorithm that mines shadow information from images with large-area shad-
ows, requiring only RGB information. The mined shadow information includes the shadow
size, shadow edge, shadow direction, and shadow length. We use the shadow size and edge
to determine the shadow direction and then generate seed-blocks based on the shadow
direction. Aided by shadow length and its distribution, our method semi-automatically
groups buildings into three layers: low-rise buildings, middle rise-buildings, and high-rise
buildings, labeling them in different colors; this information can be applied to flood disaster
risk assessment, population estimation, and building change detection.

The main differences between the proposed algorithm and the previous 2D building
detection methods are as follows:

1. As a method for urban images with large-area shadows, it fully utilizes the shadow
information to detect and classify buildings.
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2. There are lower requirements for image quality, as only RGB band information is used
to extract buildings and classify them by height levels. The information of reference
height or related angle information is not required.

3. The proposed approach could use seed-blocks to detect buildings with high precision
and a low missed detection rate.

This study consists of six main sections. The first includes a literature review of the
subject of the study, the second details the study areas, the third introduces the methodology,
the forth shows the results and an analysis, the fifth comprises the discussion regarding
errors and applications, and the last presents the conclusion.

2. Experimental Data and Study Areas

Urban scenes in different regions have different appearances related to variation in
cultural, social, and economic development patterns. We selected two sites with different
layouts: Toronto, Canada, and Beijing, China. Both sites reflect complex urban scenes,
including buildings at different heights, and different seasons. To verify the adaptability of
the proposed method, the experimental data was collected from Google Earth. The details
of the experimental data are shown in Table 1.

Table 1. Study site imagery information.

Site Location Source Date Resolution Size Coordinate (Center)

1 Yorkville, Toronto,
Canada Google Earth 26 May 2015 0.7 m 1078 × 912 43◦40′23.07′′ N 79◦23′27.20′′ E

2 Chaoyang District,
Beijing, China Google earth 12 December 2003 1.21 m 1480 × 1087 39◦56′11.69′′ N 116◦26′08.85′′ E

Table 1 shows basic information about the imagery for the cities of Toronto and
Beijing. The images were obtained from different scenes at different resolutions to test the
robustness of our proposed approach. The acquisition time of the data from Google Earth is
accurate to one day. As the images in the experiments reflect different sizes, we resampled
them and arranged them side by side in Figure 1.
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Figure 1. Original images of the study sites: (a) dense building areas in Toronto, Canada; (b) dense
building areas in Beijing, China.

Figure 1a shows the urban scene in Toronto in summer. Most of the tall buildings
lie from the center to the right of the image, while the residential areas are located in the
center-left of the image. The vegetation is spread over the entire image, as seen in Figure 1a.
Figure 1b shows Beijing in winter. High-rise buildings lie along the street and in the center.
The vegetation is very limited in the scene because of the season and location.

3. Methodology

The aim of this paper is to fully mine shadow information to detect and classify
buildings according to height level in an urban high-resolution image with large-area
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shadows. The key steps in this process are introduced in this section, including shadow
obtaining, shadow direction acquisition, building detection, and height classification. A
flowchart of our method is shown in Figure 2.
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Figure 2. Flowchart of hierarchical building detection based on mining shadow information from
single urban high-resolution remote sensing imagery.

As shown in Figure 2, we first obtain the shadows and apply a morphological open
operation to disconnect them from each other. Large-sized shadows are filtered out, and
shadow edges are used to acquire the shadow direction. Based on shadow direction,
seed-blocks are generated in locations where buildings are likely located. Overlapping
objects with color and texture features similar to those of the seed-blocks in reliable areas
are recognized as buildings. We judge building height levels based on the shadow length,
labeling each height group in different colors.

3.1. Shadow Detection

In urban areas, the majority of objects that create shadows are buildings. Therefore,
shadow information is frequently used to extract buildings from high-resolution images.
We employ information from shadows to detect buildings in urban areas. A variety of
shadow detection algorithms have been proposed in previous works [15,33–35]. In our
work, we used the existing shadow detection methods at the object level [15] and pixel
level [33]. The shadow detection result is recorded as SHa. Any shadow detection method
can be used, as long as the shadow detection results are highly accurate.
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3.2. Shadow Direction Acquisition

Shadow direction indicates the location relationship between buildings and their shad-
ows. As high-level, high-resolution image products are already calibrated, the parameters
that indicate the solar altitude and sun height are the default. This means that shadow
direction cannot be calculated with parameters taken directly from the image. This step
obtains the shadow direction by the area and shape of the shadows. Since an image covers
a certain area at similar times, the direction of the shadows in a single high-resolution
image can be regarded as the same.

3.2.1. Shadow Filtered by Area

Large-area shadows appear in the cloud-free image for two reasons. First, a low solar
attitude and high-rise buildings generate large shadows. Second, a dense arrangement of
buildings may cause shadows to connect into large continuous areas. Our objective is to
screen out the shadows generated by high-rise buildings, as the edges of which can indicate
shadow angles. The shadow angle θ refers to the angle between the shadow orientation
and the north–south axis, where θ ∈ [−90◦, 90◦]. The two steps to obtain the shadow angle
are as follows.

A morphological opening operation is applied to separate all the shadows. An open
operation effect depends on the structuring element (SE) and its size. As the large-size
shadows are the targets, the structuring size must be a relatively large value to separate
large, conjoined shadows, maintaining the shape of single shadows. The disk was chosen
as the SE. The shadow result after open operation is called SHb.

Set a threshold A for the area to extract the large-area shadows from high buildings.
Filtered shadow results were recorded as SHc. To simplify the operation and ensure a
correct result for the shadow angle, we chose three thresholds. There is a large range for
threshold choices, so we chose those around the top 8% value in the descending order
of the area as the middle threshold A2. And the other two thresholds A1 and A3 are
defined as:

A1 = A2–a (1)

A3 = A2 + a (2)

In Equations (1) and (2), the value of a depends on the image resolution, usually set
from 100 to 1500 pixels. Usually, all of A1, A2 and A3 are useful for large-area shadow
extraction, as shown in Figure 3. The threshold could also be set manually and empirically.

3.2.2. Estimating the Shadow Angle

Because the high-rise building shadows most likely exhibit shadow angles with long
straight lines, here, two typical and effective algorithms were introduced to find these line
features: the Canny edge detector [36] and random sample consensus (RANSAC) [37]. We
detected shadow edges on SHc with the Canny edge detector, and the result was recorded
as EG. After Canny edge detection, each connected domain in EG was set as a unit. We
used RANSAC to detect inliers in every unit. The inliers are the points that can be fitted to
the line, and the outliers are the points not on the line. Next, we set the length thresholds of
the line. Empirically, we set two length thresholds according to the resolution and shadow
size, recorded as L1 and L2. Figure 3 shows the results of different area thresholds and
different lengths of lines. At last, we count the number of lines at each angle obtained by
RANSAC for different area thresholds and for different lengths of lines, as shown in the
histograms in Figure 4. We sum up the proportions in every case; the angle that has the
largest value is the shadow angle θ.
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Figure 3. Results (SHc, EG, line detection) of different area thresholds and different lengths of lines.
(a) Results of SHc, EG, and line detection when the area equal to 1000 pixels. (b) Results of SHc, EG,
and line detection when the area equal to 2000 pixels. (c) Results of SHc, EG, and line detection when
the area equal to 3000 pixels, the larger shadows marked as green letters A, B are corresponding to
the original parts of the Toronto scene marked in A, B in Figure 4, respectively.
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Figure 3 illustrates the process of shadow angle detection; the corresponding original
image is shown in Figure 2a. In this example, the morphological structure is the disk for
the shadow detection result, and the open operation size for SE is 7. The remaining shadow
results are shown in the second column in Figure 3; the area thresholds were 1000, 2000,
and 3000 pixels respectively. The last two columns display the RANSAC line detection
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results with different length thresholds. The angles of the lines in different cases are seen
in Figure 4. The original scenes in the green boxes A and B in Figure 3c correspond to the
partial original images A and B in Figure 4. When comparing the shadow angle value and
the true shadow angle in Figure 4, the proposed method correctly obtained the shadow
angle. Combining Figures 3 and 4, we found that the larger the area and length threshold
chosen, the fewer lines remained, and the larger the proportion of the true shadow angle. If
a is set as 500 pixels, or the A2 is set as 1500 pixels, the correct shadow angle can still be
determined. Hence, this method is robust for shadow angles.

3.2.3. Shadow Direction Confirmation

To confirm shadow direction, we first check the latitude and the collection date of an
image to determine the shadow directly. Table 2 shows the general shadow directions at
different times and locations.

Table 2. Shadow direction.

Latitude (◦)
Date −90~−23.5 −23.5~0 0~23.5 23.5~90

21 May/22 May~21 June/22 June south south uncertain north
21 June/22 June~22 September/23 September south south uncertain north

22 September/23 September~22 December/23 December south uncertain north north
22 December/23 December~21 May/22 May south uncertain north north

In Table 2, shadow direction is roughly south, north or uncertain, using Table 2 and θ,
the shadow direction can be confirmed. If the image belongs to the uncertain cases, we use
the gray and topological features to ascertain the direction, as shown in Figure 5.
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Figure 5. Diagram of shadow direction confirmation.

In Figure 5, θ refers to shadow angle without direction, and areas (B1, B2) are extracted
at the sides of the shadow on the shadow angle of SHc. A shadow direction candidate
α1 and α2 are the two directions of a shadow angle. If the building is on the B1 side, the
shadow direction is α2. If the building is on the B1 side, the shadow direction is α1. To
ascertain the shadow direction in this case, we make gray value comparison between the
B1s and B2s:

f (B) =
{

1, GB1 > GB2
0, GB1 < GB2

(3)

M =
N

∑
i=1

f (B) (4)

α =

{
α1, M < N/2
α2, M > N/2

(5)

In Equation (3), GB1 is the average gray value of B1, and GB2 is the average gray value
of B2. In Equation (4), shadow direction is α and α ∈ [−180◦, 180◦]. In Equation (5), N
represents all the shadows involved in the calculations. In theory, it is unlikely that M = N/2.
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If M = N/2, obtain another area threshold and repeat this step. Lastly, a manual sampling
check is applied in the event that an extreme case occurs; for example, if θ equals 0.

3.3. Building Detection

Shadows could provide location and height information for building detection. With
the assistance of shadow information, buildings are detected and classified into three layers:
low-rise buildings, medium-rise buildings, and high-rise buildings. The processes contain
seed-block generation, reliable areas setting, building detection, and building height-
classification. Reliable areas refer to the areas that have a high possibility of containing
buildings; and the fractal net evolution approach (FNEA) [38], widely used in object-
oriented image analysis, is employed for segmentation.

3.3.1. Seed-Block Generation

A seed-block is a block that functions like a seed, a part of a building that could
provide information about location, brightness, and even shape for building detection. The
process of seed-block generation is shown in Figure 6.
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In Figure 6a, the blue line has a direction opposite to the shadow direction, and the
orange sector region is blue-line-centered and 5◦ on both sides. There is a one-to-one
correspondence sector region for the points on the shadow edges. The sector regions are
examined to detect the borderlines. If the entire sector region is out of the shadow region,
the corresponding shadow edge point is regarded as the borderline between shadows and
buildings. If the sector region partially falls into the shadow region, the corresponding
edge point is regarded as a normal edge point and is left out. In Figure 6b, the points on the
borderline between a shadow and a building are shifted slightly in the direction opposite of
the shadow. The seed-block is composed of that area that is circled by the shifted line and
the original borderline. It is located along the edge between the shadow and the building.

Objects other than buildings that generate shadows may be mistaken for buildings.
Errors are mainly the result of trees. Trees can complicate building detection in urban areas.
Trees have different side effects on building detection. In the growing season, trees create a
large amount of shadows, which could also generate seed-blocks in building detection. To
solve this problem, we detect vegetation areas and then delete the seed-blocks that fall into
the vegetation areas; color vegetation indices [39] were used for vegetation detection. In the
fall foliage season, trees without leaves have a limited effect on building detection using
their shadows. However, vegetation could still have an effect stemming from their color. In
some remote sensing images, vegetation might exhibit low brightness, so some trees are
recognized as shadows and are hard to detect. In this case, we check the brightness for
every seed-block and delete the seed-blocks with low brightness.
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3.3.2. Set Reliable Areas for Buildings

According to the shadow direction and the borderline between a building and its
shadow, a reliable area is generated using the following rules. The diagrams for each rule
are shown in Figure 7.
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Rule 1: Two borderlines exist in vertical angles, and two lines have similar length
(the difference is less than a half-length of the shorter line). Shift the lines in the shadow
direction with a very short distance, and extend the lines on the other side, creating parallel
lines. The reliable area is shown in Figure 7a. The extended length is no longer than
one-third the length of the original borderline.

Rule 2: Only one main borderline exists, as shown in Figure 7b. The lines in different
angles are short. Shift the main line in the shadow direction with a short distance, extend
the line on both sides, and create parallel lines in the vertical direction of the extended
line. The shifted lines and the vertical parallel lines comprise the reliable area, as shown
in Figure 7b. Considered as general cases, the length of the extended lines depends on
resolution; usually, the border-extended line is set to less than 10 pixels. The length of the
vertical parallel lines is no more than three times that of the main border line.

Rule 3: If the reliable areas contact each other, or if one reliable area contains another,
find the combined reliable area, as shown in Figure 7c.

3.4. Building Height-Classification

The length of the shadows accompanying buildings reflects the height of the buildings.
According to shadow length, we classify the building into three height groups: low-rise
buildings, medium-rise buildings, and high-rise buildings. To measure the shadow length,
we rotated the image θ degrees clockwise, when θ is not less than 0, and rotate the image
θ degrees counterclockwise, when θ is less than 0. Then we calculate the length using a
horizontal scanning line and record the length of the scanned parts of the shadows. The
scanning density is one pixel. The threshold can be manually set as required, such as for
flood disaster risk assessment, which can be applied to estimate the number of people who
could survive in the event that the buildings were flooded.

To measure the shadow length, we rotate the image θ degree clockwise, when θ is not
less than 0, and rotate the image θ degree counterclockwise when θ is less than 0. Next, we
calculate the length using a horizontal scanning line and record the length of the scanned
parts of the shadows. The scanning density is one pixel, and the longest length of the
neighboring n lines is the recorded length. n depends on the resolution and n ∈ [0, 5].
Finally, we judge the height level according to the shadow length. Figure 8 illustrates the
length measurement procedure. The thresholds for filtering the area and differentiating
the shadow length are determined manually and depend on the image resolution and
shadow scale.
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4. Results and Analysis
4.1. The Toronto Urban Scene

The results of the steps for building detection and classification are shown in Figure 9a–d.
The middle-step results include shadow detection, vegetation detection, and seed-block gen-
eration, excluding the tree seed-blocks, and the building detection and height-classifications
are shown in Figure 9d. We applied object-based random forest (RF) [40] to detect the
buildings for comparison. The RF result for the buildings is shown in Figure 9e. Figure 9f
shows the buildings after excluding road areas misjudged as buildings.

Figure 9a,b shows the results of shadow detection and vegetation detection. After
shadow detection and vegetation detection, we acquired seed-blocks from the opposite side
of the shadow and excluded the tree effect, as shown in Figure 9c. The seed-blocks provided
accurate information for buildings. To exclude the tree effect, the seed-blocks that fell in the
vegetation areas were deleted. Figure 9d shows the final result for buildings in different
height levels. The final result also reveals that the majority of buildings with middle
and high height levels are on the right side of the image, and the small, low buildings
were located mainly in the center left of the result. Comparing Figure 9d and original
image in Figure 1a, the results are in accordance with the buildings in the original image.
This illustrates that shadow length is useful information when judging the height level
of buildings.

We also quantitatively estimate the accuracy of our results. For the Toronto scene, the
true buildings that we extracted are based on the same segmentation FNEA as our method.
As we used multi-scale segmentation, the final result was estimated in pixels. WH shows
that the building object is judged at the incorrect height level. The analysis of the precision,
recall, omission, and false alarm rates are defined in Ref. [41] and shown in Table 3.
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Figure 9. Steps and results for the building detection and height-classification method: (a) shadow
detection result; (b) vegetation detection result; (c) result of seed-block generation; (d) building
detection and height-classification result; (e) binary result of building detection with RF; (f) binary
result of building detection after road removal.

Table 3. Accuracy estimation.

Method Target Precision Recall Omission False Alarm WH 1

Random Forest(Sampling
ratio 35%)

buildings 72.5% 73.4% 26.6% 27.5% -

buildings
(road removed) 78.2% 73.4% 26.6% 21.8% -

Proposed method buildings 98.6% 89.8% 10.2% 1.7% 3%
1 WH refers to building objects judged at the incorrect height level.

In Table 3, the precision of the related parameters of buildings and impervious ground
were both below 80%. With the help of shadow, we can make a distinction between
buildings and impervious ground, to a great extent. According to true building data, the
recall of complete building extraction reaches 89.8%, while the false detection and incorrect
height judgment were less than 0.5%, with a total precision of about 98%. The omission
of building detection was over 10% due to the buildings fell in the shadows. This means
that the building detection recall will rise to 94% when ignoring the buildings located in
shadows. The accuracy of the height judgment was 97% in visual interpretation; thus,
shadow information is reliable when used to roughly estimate the height levels of buildings.

4.2. The Beijing Urban Scene

A set of experiments in Beijing demonstrate building detection and height-classification
using shadow information at the pixel level. The building detection results and subsequent
analysis are visualized in Figure 10.
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Figure 10. Building detection and classification in the Beijing scene. (a) Length measurement of
the shadows—red represents the long length; yellow represents the middle length. (b) Results of
seed-blocks generation. (c) Building detection and classification results. (d) Building detection results,
with errors marked in boxes, blue boxes: parts of buildings’ surroundings were incorrectly regarded
as buildings when the surroundings were combined into the same object; the green boxes: parts of
buildings in low brightness caused by shadows cannot be recognized. (e) Accuracy estimation of
building detection, the red box: omissions stem from low-height buildings in shadows (circled in red
boxes); the green box: omissions because low-rise buldings are next to trees (circled in green boxes),
omissions because of the buildings on the edges of the image. (f) Binary results of building detection
for the proposed method.

The original image is shown in Figure 1b. The results of the length measurements of
the shadows are shown in Figure 10a—red represents the long length; yellow represents
the middle length. Figure 10b shows the results of seed-blocks generation. The building
detection and height-classification results are shown in Figure 10c, from which we can see
that most buildings have been accurately detected and properly classified with different
height levels. The shape of the buildings is still a problem, as shown in the boxes of
Figure 10d. Considering that a building was detected correctly, regardless of the shape,
differences between the ground truth and the results from our method are marked in
different colors in Figure 10e, and the errors include omissions marked in pink, false alarms
marked in blue, and incorrect height judgments marked in green. Figure 10c,f shows a
binary image displaying only building locations. Thus, our building height-classification
results can better explain buildings in urban scenes.

For the Beijing scene, the buildings are countable in the image. We classified the
buildings into three height levels, and counted the number of buildings in each level. There
were two cases of incorrect height judgments: when the entire building is recognized at
an incorrect height level, it is recorded as WWH, and when part of building is given the
incorrect height, it is recorded as PWH. The related Beijing data is shown in Table 4.
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Table 4. Statistics of the number of buildings.

Building Class Ground Truth
Proposed Method

Correct Omission False Alarm WWH 1 PWH 2

high 63 60 2 0 2 4
middle 192 183 2 1 8 2

low 180 111 57 6 8 1
total 435 354 61 7 18 7

1 WWH refers to the entire building judged at the incorrect height level. 2 PWH refers to part of a building judged
at the incorrect height level.

In Table 4, it is revealed that the number of buildings in ground truth was 439, the
number of correctly detected and classified buildings was 354, and the number of building
detected by our method was 386. Irrespective of the height, the precision of our method
exceeded 98% in building detection. When considering the height of a building, the
precision dropped to 91.6%. The recall of the building detection was 87.1%, and went
down to 81.4% when correct height-classification was added. The precision and recall of
high and middle level buildings detection and classification were over 95%. However,
the recall of the low level buildings was only 66.8%, while the precision remained very
high, at over 90%. There were 61 undetected buildings, in which 57 undetected buildings
belonged to low level. The recall of total building detection rose to 95.4%, and reached
90.7% when considering correct height classification. The number of false alarms was
maintained in the single digits, and erroneous height judgment occurred for less than
6% of the total buildings. Therefore, shadow information is valuable and effective in
building detection and height-classification, although it is not reliable enough for detecting
low-level buildings.

5. Discussion
5.1. Discussion regarding Errors

The experiments in both Toronto and Beijing illustrate that buildings and impermeable
ground are easily confused, especially in road regions. In the Toronto scene, in Table 3, the
precision of buildings increased from 72.5% to 78.2% when roads were removed. In the
Beijing scene, as shown the blue box in Figure 10d, we found that although the buildings
were discovered, parts of their surroundings were also incorrectly regarded as buildings
when the surroundings were combined into the same object. At the same time, the green
box in Figure 10d shows that parts of buildings in low brightness caused by shadows cannot
be recognized. The same thing also occurs in Toronto building detection. In Figure 10e, we
can see that omissions stem from low-height buildings in shadows (circled in red boxes),
next to trees (circled in green boxes), on the edges of images (circled in orange boxes), with
low gray value (circled in blue boxes), and with missing shadows (pink color outside the
boxes). The false alarm, caused by buses or other ground objects that creaste shadows, was
very limited and occurred in small sizes. Erroneous height judgments occur when shadows
are cut by an object like buildings, trees, misclassified bright roads, or the edge of an image.
Connected buildings at different heights might be labeled as the highest height level, which
means buildings might be classified into the incorrect height level.

The shadow information affected by trees and neighboring buildings is not very
reliable. The main problem is this regard is the low-level buildings detected with a relatively
low accuracy. A method used in Ref. [42] that detects areas with the low and dense buildings
could alleviate this problem to some extent.

5.2. Potential Application

Recently, coupled with climate change and human activities, the frequency and in-
tensity of extreme rainfall have increased, leading to mountain flooding and urban wa-
terlogging. Flooding and waterlogging disasters not only cause devastating damage to
infrastructure, but also pose great threats and damage to people’s lives and safety. When
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a flood or storm occurs, people usually flee to a high place to avoid risk. Through the
proposed method, we can quickly distinguish the buildings that can avoid disaster (tall
buildings) and the buildings that may be flooded (low buildings), assess the survival
environment when the flood occurs, and provide technical support for emergency rescue.
As shown in Figure 11 below, by combining the building height level and DEM in the
Beijing scene, we could estimate that the people living in the low buildings of the low DEM
areas (orange to red in the DEM figure) are at a relatively high risk of being inundated by
urban waterlogging.
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5.3. Discussion of Application

In our method, the shadow angle is not used to calculate the height of the buildings,
but is used to calculate the length of the shadows for classifying the buildings into different
height levels, according to the obtained shadow lengths. In practice, we suggest choosing a
building with a known height as a reference to assist in height classification and obtaining
the approximate height of the building.

In regards to computational complexity and processing time, these depend on thresh-
old selection and computer performance. Most steps, such as shadow detection, RANSAC,
etc., are simple and classical, and could be run automatically. It takes less than 3 min for
our experiments to be completed, if the proper threshold is set.

For the availability and quality of image selection, the proposed method is adapted for
high spatial resolution images, with large-scale shadows that could distinguish building
in different height levels using a visual interpreter. Both high resolution and shadows
are essential in our purposed method. The method shows relatively low sensitivity to
environmental factors such as different lighting or weather conditions because the problem
could be solved by methods of image enhancement and other ways. For example, as the
vegetation in winter is too dark to be accurately detected from the Beijing image, we did
not extract vegetation in the experiment. Instead, we eliminated the dark seed-blocks
because some dark trees were mistaken as shadows, leading to incorrect seed-blocks, while
buildings exhibited a brighter value. If the images is captured under low light conditions,
it requires enhancement, such as linear stretching, filtering, etc.

For the height level, the range of low, middle, and high height in our experiments
corresponds to 0–15 m, 15–50 m, and higher than 50 m, respectively. We also suggest
classifying the height manually, into fewer or more groups, according to the actual demand,
which we also mentioned in regards to the thresholds in this work.

6. Conclusions

We propose a novel building-detection and height-classification method using shadow
information from single high-resolution remote sensing images. To verify the proposed
method, we selected experimental sites in different layouts from Toronto and Beijing
to detect and classify the buildings into different height levels. The buildings were not
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only accurately detected, but were also properly classified at different height levels using
our method. Easily available data are adequate for our building detection and height-
classification method, as the solar angle is not required, which enables the analysis of
complex urban scenes and might be of value for other applications such as flood survival
assessment, urban change detection, and population estimation. Compared with binary
detection results from 2D building detection methods, the rough height level estimation
and building distribution results are suitable for further applications, such as city scene
analysis and building change detection.

The limitations of computational complexity and processing time, the requirements
of image selection, the sensitivity of the environments, and height thresholds should be
explored in future studies.
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