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Abstract: In recent years, advancements in Intelligent and Connected Vehicles (ICVs) have led to a
significant increase in the amount of information to the driver through Human–Machine Interfaces
(HMIs). To prevent driver cognitive overload, the development of Adaptive HMIs (A-HMIs) has
emerged. Indeed, A-HMIs regulate information flows by dynamically adapting the presentation to
suit the contextual driving conditions. This paper presents a novel methodology, based on multi-
objective optimization, that offers a more generalized design approach for adaptive strategies in
A-HMIs. The proposed methodology is specifically tailored for designing an A-HMI that, by con-
tinuously monitoring the Driver–Vehicle–Environment (DVE) system, schedules actions requested
by applications and selects appropriate presentation modalities to suit the current state of the DVE.
The problem to derive these adaptive strategies is formulated as an optimization task where the ob-
jective is to find a set of rules to manage information flow between vehicle and driver that minimizes
both the driver’s workload and the queuing of actions. To achieve these goals, the methodology
evaluates through two indexes how applications’ requests impact the driver’s cognitive load and the
waiting queue for actions. The optimization procedure has been solved offline to define adaptive
strategies for scheduling five application requests, i.e., forward collision warning, system interaction,
turn indicators, infotainment volume increase, and phone calls. A theoretical analysis has demon-
strated the effectiveness of the proposed framework in optimizing the prioritization strategy for
actions requested by applications. By adopting this approach, the design of rules for the scheduling
process of the A-HMI architecture is significantly streamlined while gaining adaptive capabilities to
prevent driver cognitive overload.

Keywords: adaptive human–machine interface; intelligent and connected vehicle; multi-objective
optimization

1. Introduction

The future Intelligent Transportation Systems (ITSs) hold the potential to revolution-
ize mobility, offering an integrated and sustainable solution to modern transportation
challenges [1]. They are envisioned as dynamic eco-systems consisting of various vehicles
and distributed services, controlled by computing devices. These sophisticated frameworks
promote efficient information exchange and collaboration among vehicles, road infrastructure,
individuals, and cloud-based platforms [2]. At the core of these visionary transportation sys-
tems lies the concept of Intelligent and Connected Vehicles (ICVs). Empowered with advanced
onboard sensors, controllers, and actuators, ICVs have garnered significant attention and
recognition in both research and industrial domains [3]. Indeed, ICVs play a pivotal role
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in ensuring safe, comfortable, and energy-efficient transportation [4] through the utiliza-
tion of cutting-edge technologies. These technologies encompass complex environmental
awareness [5], intelligent decision-making, and collaborative control mechanisms [6]. The
ICVs hinge on the convergence of two fundamental technologies: Autonomous Driving
(AD) and vehicular networking. The first has laid the groundwork for the new generation
of Autonomous Vehicles (AVs). These AVs possess the ability to autonomously perceive
their surroundings and to realize automatic driving, all solely by onboard sensors and
control systems [7]. In contrast, Connected Vehicles (CVs) leverage network systems to
augment their environmental perception, enabling advanced decision-making control [8].
Through a strategic combination of vehicle-to-X communication and in-vehicle sensors,
ICVs gain an empowered perception of their surroundings, beyond the constraints of
traditional onboard sensors [9]. This synergistic combination of AV and CV capabilities
has swiftly emerged as the dominant developmental paradigm for ICVs [10]. Contextually,
the networking and intellectualization in vehicles have given rise to a new dimension
of interaction between humans and cars [11]. This paradigm shift creates promising op-
portunities for the innovative development of Human–Machine Interfaces (HMIs). HMI
technology plays a key role as the medium of interaction between drivers and ICVs. Across
the industry, and the research community, there is a collective commitment to advancing
integrated interfaces capable of seamlessly receiving, storing, processing, and presenting
information effectively [12]. The trajectory of HMI interfaces demonstrates a discernible
trend characterized by cross-modal fusion and the progressive expansion of the interaction
area. This trend emphasizes the harmonious integration of diverse sensory inputs and the
broadening of the scope of interactions between users and ICVs. As ongoing advancements
in HMI technology unfold, the ultimate goal is to create intuitive, user-friendly interfaces
that elevate the overall driving experience, promoting heightened safety, efficiency, and
connectivity [13]. The achievement of this multi-dimensional human–vehicle interaction
has been made possible by the recent advancements in Adaptive HMI (A-HMI) [14].

1.1. Overview of A-HMIs in ICVs

A-HMIs are designed with a primary purpose in mind: to provide a natural and
intuitive means of facilitating complex digital operations within vehicles. Adaptivity refers
to the system’s ability to dynamically respond in diverse ways, tailored to individual
situations and users, achieved by continuously tracking and sensing information about
their users, current tasks, and the environment [15]. For this purpose, A-HMI encompasses
a range of input and output functions. On the input side, a diverse array of channels,
such as microphones, cameras, and touch screens, are seamlessly integrated to collect and
interpret human behavioral characteristics (eye movement, pose, voice, gesture, gaze, etc.)
and physiological signals (electroencephalogram, heart rate, etc.) [16]. Through robust data
analysis and fusion with information obtained via AD and vehicular networking technolo-
gies, these multi-modal interactive inputs are harnessed to enhance the user experience [17].
By leveraging comprehensive knowledge about the current driving situation, both context-
aware information temporal management and modality manipulation strategies come into
play [18]. These encompass message prioritization and modality selection, intelligently
reducing the flow of information while ensuring an optimal and appropriate presentation.
Indeed, interactive output is also diversified to establish feedback through various sensory
modalities. These include tactile sensations, auditory cues, olfactory responses, gravity bal-
ance, temperature changes, and more [19]. Such diverse feedback mechanisms enable ICVs
to deliver a comprehensive and engaging interaction experience to users. By capitalizing on
the complementary advantages and disadvantages of different interfaces, A-HMI addresses
the diverse interaction demands in ICVs effectively. For instance, auditory and tactile
interfaces empower drivers to perform interactive tasks without being overly dependent
on visual cues [20].
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1.2. A-HMIs as a Solution to Reduce Driver Distraction

One of the key accomplishments of A-HMI lies in its significant contribution to reduc-
ing the workload and distractions faced by drivers by effectively addressing the challenges
posed by the abundant and diverse information generated by In-Vehicle Information Sys-
tems (IVIS), Advanced Driver Assistance Systems (ADAS) [21], and nomadic devices [22].
Indeed, except for fully AVs, drivers are still expected to uphold attention towards the
driving environment and be prepared to assume control of the driving task if the situation
demands [23]. However, too much information causes cognitive overload, resulting in
drivers disengaging from the driving task [24]. A-HMI, by carefully managing the infor-
mation flows to the driver, are capable of mitigating issues of cognitive overload and
distraction [13]. More specifically, A-HMIs exhibit the ability to adjust amount and format of
information conveyed to the driver, contingent upon the driver’s cognitive focus level or the
cognitive demands of the surrounding environment [25]. Examples of this functionality encom-
pass actions such as suspending phone calls during challenging driving scenarios or enhancing
the prominence of alerts when the driver’s distraction level is assessed to be high [26].

1.2.1. Related Work

Drawing from a literature review, eight strategies have been commonly employed
to exploit adaptive functions in A-HMIs [26]. These strategies can be categorized into
two groups, each addressing different aspects of attention management. The first focuses
on optimizing attentional demands to prevent overload or underload. Within this category,
there are five strategies, i.e., Limiting, Simplifying, Filtering, Delaying, and Activating.
The first strategy involves limiting access to functions of non-driving tasks to prevent
distractions, particularly during high-demand situations [13]. In the Simplifying approach,
displays and alerts are simplified to reduce workload. This simplification may entail, for ex-
ample, increasing text size or combining alerts into a single summary alert [27]. In contrast,
the Filtering strategy is designed to allow only critical alerts and notifications to reach the
driver during demanding scenarios [28]. The delaying strategy involves postponing alerts,
notifications, etc. when drivers are experiencing high workload conditions [29]. On the
other hand, the last strategy is employed in situations characterized by underload, typically
by initiating a non-driving task to increase driver workload [30]. The remaining three strate-
gies, i.e., Advancing, Supplementing, and Augmenting, fall under the second category
that aims to redirect the driver’s focus back to the driving task. The Advancing approach
involves the adjustment of alert timing and issuing alerts prior to their standard timing,
shifting the driver’s attention back to the driving task [31]. In contrast, the Supplementing
strategy serves to complement existing warnings by supplying extra warnings when the
driver’s attention is compromised [32]. Finally, within the Augmenting strategy, alerts are
modified, for example, utilizing different sensory modalities, to increase awareness [33].

A-HMIs generally achieve their adaptability by employing one or a combination of
these strategies. For instance, in [34], a sophisticated workload management system has
been implemented to suppress non-essential messages during challenging driving sce-
narios, allowing the driver to concentrate on resolving the situation without unnecessary
distractions. An additional innovative approach for information management has been
developed in [35], focusing on the scheduling of driver warning messages. This method
presents a compelling solution by formulating the message scheduling as a resource-
constrained scheduling problem. This problem encompasses a dynamic set of presentation
requests, contending for limited resources, and incorporates modifying actions as conflict
resolution strategies. These strategies include postponing, preponing, shortening, canceling
tasks, and switching resources. To effectively address the scheduling problem, a transfor-
mation into a tree search problem is executed. The work presented in [36], following the
blackboard design pattern, introduces an A-HMI architecture that offers an integration
of multiple strategies to manipulate and adapt in-vehicle information flow, depending
on the driving context. An innovative fusion strategy for messages is a key highlight of
this architecture, built on a taxonomic message model. This sophisticated fusion strategy
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facilitates the combination of two or more low-level messages, resulting in the creation of
a higher-level message. Noteworthy research on information management can be found
in [37]. It presents the Interaction and Communication Assistant (ICA) system, which is a
highly advanced approach to efficiently manage information through continuous moni-
toring of the driver, vehicle, and environment. In the ICA system, access to Input/Output
(I/O) devices is granted through a request-response mechanism. Applications interact
with the ICA by submitting access requests, and in response, the ICA provides an as-
signed channel through a suitable reply. To optimize system efficiency, the ICA prioritizes
and schedules requests, employing concatenated rules-based decision modules to select
appropriate modalities and channels.

In addition to adaptation strategies, A-HMIs can also be categorized into several
Levels of Adaptive Sensitive Responses (LASR) [22]. The LASR framework outlines 5 levels
of adaptivity, from a level 0, where no adaptivity is present, to a level 4, representing
systems that can make connections between system behavior, context, user reactions, and
even infer mood, emotional state, or personality [38]. Between these, in LASR 1, responses
are managed by saved adaptations based on user selections. Within LASR 2, the system
reacts according to predefined rules [39]. Finally, LASR 3 refers to systems that adapt based
on real-time rules learned in the vehicle. With respect to these categorizations, a recent
study demonstrated that a significant proportion of users may prefer A-HMIs falling under
LASR 2 [22]. This makes A-HMIs driven by predefined rules worthy of research.

1.2.2. Research Gaps

Despite the fact that A-HMIs that react according to predefined rules have been
demonstrated as particularly suited for guiding and interpreting adaptation in the context
of automotive A-HMIs [40], it is essential to acknowledge the well-known issue associated
with these adaptive functions. Indeed, the development of this kind of A-HMI requires
comprehensive strategies to cope with all diverse tasks involved in the information man-
agement process [41]. These strategies are essential to establish resilient adaptive functions
that significantly enhance driver–vehicle interactions. Notably, the brittleness of A-HMIs
becomes evident when confronted with missing or unexpected input values, potentially
affecting the system’s adaptability and robustness [42]. This issue is made frequent by the
vast number of potential driving conditions and the extensive information that needs to be
managed within the context of new ICVs [16]. To tackle these limitations effectively, it is
essential to move beyond the conventional empirical approach to A-HMI development,
which heavily relies on the competences of expert pools [43]. Instead, it is essential to
adopt novel frameworks for optimizing adaptation functions in A-HMIs, promoting the
establishment of a more generalized and adaptable design approach. By embracing these
innovative optimization approaches [44,45], A-HMI technology could achieve heightened
effectiveness and performance, ultimately elevating the overall driving experience and
enhancing safety for all users, as investigated in other application fields [46].

1.3. Objectives and Scope of the Study

Based on the aforementioned facts, this work introduces a novel methodology aimed
at addressing the optimization problem inherent in designing rules for A-HMIs based
on adaptive predefined strategies. Specifically, the methodology proposes a formal and
generalized approach, leveraging the multi-objective optimization to define strategies
for human–machine adaptation. To enhance clarity of the study, this methodology is
applied to tackle and solve the problem of estimating adaptation rules to be used in a
Filtering strategy. A theoretical analysis has demonstrated the effectiveness of the proposed
framework. Indeed, by embracing this novel approach, the design of adaptive strategies
in A-HMIs can be automatized. This automated approach expedites the development of
highly efficient and effective A-HMI systems, streamlining the development process.

Finally, the article is organized as follows. Section 2 focuses on the description of
an A-HMI architecture whose optimization is addressed with the proposed methodology.
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Section 3 presents the problem statement. The proposed multi-objective optimization
methodology to define adaptive strategies for A-HMI is suggested in Section 4. Section 5
discloses the implementation of the introduced approach in a case study and analyzes
results obtained. Conclusions are drawn in Section 6.

2. System Architecture

This study focuses on an A-HMI whose architecture concept is depicted in Figure 1.
It is functionally characterized by the following key features:

• Multi-modal HMIs, i.e., I/O devices shared by different ADAS and IVIS, such as
Liquid Crystal Displays (LCD), Head-Up Displays (HUD), speech I/O, haptic I/O.

• An Information Management System (IMS), the control authority of the A-HMI,
i.e., a centralized intelligence that performs information prioritization and scheduling.

• A gateway to connect nomadic devices to the in-vehicle system for sharing data,
applications, and I/O devices. Thus, the functionality of the nomadic devices can be
used by the in-vehicle system and vice versa.

• A system for real-time monitoring of driver and driving situation to assess information
about Driver, Vehicle, and Environment (DVE status recognition and monitoring).

Scenarios that the A-HMI should address are defined using two parameters [47]: (i) ac-
tions; (ii) Driver–Vehicle–Environment (DVE) conditions. The actions represent an event by
an application, i.e., component offering a specific functionality to the user (such as naviga-
tion, phone, lane departure warning, forward collision warning, etc.), classified into priority
classes on the basis of their importance for the driver. In contrast, the DVE conditions are
discrete values representing the current state of driver, vehicle, and environment perceived
by a DVE state recognition and monitoring system, which give a description regarding
the driver’s ability and availability to drive the vehicle. It is precisely the perception of
the current driving scenario and its impact on the driver which enable the adaptive func-
tions of A-HMI according to the driving conditions. Indeed, the DVE state, together with
the applications and their priority classes as well, are considered in the problem-solving
process of the IMS control framework to assign priorities to each output request from the
applications, to schedule their presentation, and to select modality, channel, and layout for
the outputs. The DVE state recognition and monitoring system and the IMS, which are the
composing modules of the A-HMI, are detailed in the following.

DVE State Recognition and Monitoring System Information Management System

…

Environment

Driver

Vehicle

Sensors

&

Perception

Filter

&

Queue

Modality

&

Channel

App. 1

App. 2

App. m

…

DVE 1

DVE 2

DVE n

Instrument cluster system, Infotainment system state, Vibrotactile 

feedback, Ambient lighting, (Indication, notification, etc.)

Figure 1. A-HMI system architecture concept.

2.1. DVE State Recognition and Monitoring System

Introduction of DVE status recognition and monitoring technologies into automotive
HMIs helps to improve the safety and reliability of vehicles by recognizing the status
of driver, vehicle, and surrounding environment. In particular, recent rapid advances
in intelligent computing platforms have promoted the development of complex multi-
sensor computing systems for active perception of driver’s status [48], including cognitive
load [49], secondary activities [50], emotion [51], positions [52], fatigue [53,54], etc.
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To totally assess danger of driving conditions, these systems usually estimate the risks
related to traffic and environmental factors as well [55,56]. An example of this advanced
approach for DVE monitoring has been proposed by the AIDE (Adaptive Integrated
Driver–vehicle interfacE) project (2004–2008) [37]. Here, a set of five modules, each of them
designed to address a different dimension of the DVE state, i.e., Traffic and Environment
Risk Assessment module, Driver Characteristic module, Driver Availability Estimator
module, Driver State Degradation module, and Cockpit Activity Assessment module,
derive a complete set of information (summarized in many parameters) about driver,
vehicle, and environment conditions.

In this study, the A-HMI includes a non-invasive and low-cost DVE state recognition
and monitoring system that, by common in-vehicle sensors, computes in real-time a set
of five DVE parameters needed to enable adaptive management functions of the A-HMI.
These give an abstract discrete representation of the environment, drivers, and vehicle
state perceived, which is a key driving factor to estimate drivers’ ability to process actions
requested by applications, which could be a potential source of distraction. The five
DVE parameters are defined as follows.

• DVE 1 ∈ B = {0, 1}: driver’s eyes off the road (0—No, driver is currently looking at
the road ahead; 1—Yes, driver is currently looking at something other than the road
ahead). Calculated by using driver head and eye movements and vehicle speed as input
data, it gives a discrete representation of driver cognitive load or shift of visual attention
away from the road ahead, induced by an external event or a secondary task.

• DVE 2 ∈ B = {0, 1}: driver impairment (0—Normal, alert and few driving errors;
1—Dangerous, drowsy with some driving errors, critical driving time, and long trip
duration). Driver state of drowsiness is calculated based on lane positioning, driving
time, and PERCLOS [57–59] (the percentage of eyelid closure over the pupil over time)
detected by an in-cabin camera with a face-mesh technique. It describes the physical
ability of the driver to drive (fatigue, sleepiness, etc.).

• DVE 3 ∈ B = {0, 1}: traffic risk (0—Low, no risk of collision with any other vehicle in
path; 1—High, there is a risk of collision with other vehicles in path). This parameter
represents the level of risk concerning the traffic density. It is driven by traffic risk
established by Forward Collision Warning (FCW). Specifically, FCW warning sets the
traffic risk to 1, otherwise it assumes value 0.

• DVE 4 ∈ B = {0, 1}: environment risk low visibility (0—Low, no risk associated with
low environment visibility; 1—High, there is a risk for low environment visibility).
Poor weather conditions (rain, fog, etc.) and unlit roads detected from the vehicle’s
indicators and controls (e.g., wipers, rain detection sensor, fog lights, etc., and dipped
headlights, high beams, etc., respectively), along with road and traffic attributes
(e.g., high traffic density and high curvature of road until a certain distance ahead
of the vehicle), are used to assess risk for low environment visibility [47]. At the
current state of implementation, this parameter gives a discrete representation of the
environmental conditions estimated only from wiper actuation state and rain detection
sensor. In particular, if the wiper is active or the rain detection is true, as there is low
visibility due to rain, this parameter is set to 1. Otherwise, it is set to 0.

• DVE 5 ∈ B = {0, 1}: environment risk low audibility (0—Low, no risk associated
with low audibility of warning stimuli by the environment and vehicle safety critical
systems; 1—High, there is a risk for low audibility). It describes the in-cabin noise
level that is monitored by a microphone. High noise level sets the environment risk
low audibility to 1, otherwise, it is set to 0.

Each of these 5 parameters can assumes 2 possible values ∈ B = {0, 1}, therefore, the
DVE conditions set is composed by 32 states

(
25 combinations of the DVE parameters

)
.

All measured inputs for the DVE parameters calculation are read from CAN-bus (Controller
Area Network) sequentially, and they are updated according to a sampling time of 33 ms.
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2.2. Information Management System

The IMS is the control authority of the A-HMI, as it coordinates the information flow
between vehicle and driver and manages visual, auditory, and haptic channels shared
among various applications, according to driving safety criteria [43]. The generic applica-
tion request, encoded as a vector that specifies the action and the priority class, is processed
by the IMS. Specifically, taking into account the DVE state, the IMS performs the following
adaptive decision-management functions [60]:

• change of output modality and channel (displays, audio devices, etc.);
• change of physical layout (color, font, format, etc.);
• I/O action coordination based on prioritization, i.e., termination, interruption, retar-

dation, resumption, or suppression of output messages.

The IMS reply, formulated as a vector as well, sets out the outcome of the request
(accepted or delayed), the selected channel(s), and the provision modality for the submitted
request, suitably adapted for duration, enhancement, and simplification of DVE actual
state, as indicated by the IMS rules. From the management of global information flow
perspective, the IMS avoids conflicts and overload of information by queuing application
messages appropriately on the basis of DVE state information. The control cycle of the IMS
consists of a two-stage process, whose computational logic is implemented in two modules,
respectively: (1) Filter and Queue; (2) Modality and Channel. Each module exploits a rules-
based logic, developed according to its specific target, by using the requested action vector,
the DVE state, and the channels status as inputs of the logic.

2.2.1. Filter and Queue Module

The Filter and Queue module accomplishes action prioritization and scheduling.
The core of this module is built by a rules-based strategy, which is responsible for the
manipulation of the flow of the messages. Application request(s) (messages, notifications,
etc. to the driver) are filtered dynamically due to their base priority. The filtering is based
on a truth table that describes a strategy, defined according to safety relevance criteria,
of prioritization and scheduling of application requests to be forwarded to the driver on
the basis of current DVE state [37]. It is precisely the dependency by actual DVE state
that makes the filtering a dynamic process. This module includes the rules to enable or
postpone the presentation of the incoming actions: negative outcome of the IMS means that
the action will be queued; in contrast, with a positive outcome, we proceed to the Modality
and Channel module.

2.2.2. Modality and Channel Module

The Modality and Channel module defines the suitable mode and adequate style of
information presentation to the driver in order to minimize distraction effects. For ex-
ample, in visually challenging situations due to high traffic density and/or poor weather
conditions, visual presentation of information should be avoided. Furthermore, under
illuminated conditions, visual messages are hard to perceive, and, therefore, auditory
warnings should be preferred. Equivalently, in noisy environments, visual presentation
should be preferred, as audio information could be missed by the driver. Similarly to Filter
and Queue, this module uses a truth table to select the most suited modality in which the
application requests should be provided to the driver on the basis of current DVE state [37].
A channel selector is also involved to choose the output channel, solving conflicting channel
requests through preemption of high-priority requests over low-priority requests.

3. Problem Statement

The objective of the A-HMI is to provide a substantial contribution to:

• using all I/O on ADAS, IVIS, and nomadic devices safely;
• keeping driver’s workload at a level that does not affect a safe driving performance;
• avoiding interference of multiple information sources;
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• minimizing demanding interactions for the driver;
• decreasing the interaction complexity, according to the DVE state, via reconfiguration

of the infotainment system;
• reducing response time for decision making.

All these objectives are driven by the design of the IMS, which performs the man-
agement functions of the A-HMI, i.e., meta-functions responsible for managing ADAS,
IVIS, and nomadic devices with respect to their interaction with the driver (e.g., the block
on phone calls in demanding driving situations). The definition of the relevant driving
scenarios is the first step for the IMS design, which, as already mentioned, is formalized
using the actions and DVE conditions. The actions are classified into a set of five priority
classes, as follows.

• W: safety critical warnings (FCW, lane keeping, etc.).
• D: system interaction, etc.
• OP1: mandatory messages or important info related to the driving task (turn immedi-

ately notification, driver status, etc.).
• OP2: temporary info related to the driving task, requiring an action in the near future

(high engine temperature, low oil pressure, etc.), or messages related to infotain-
ment system.

• OP3: permanent status info related to the driving task, not requiring an action in the
near future, or output messages related to secondary tasks (incoming phone call, chat
notification, etc.).

Concerning the DVE conditions, as described in Section 2.1, they can be discretely
represented by several parameters. The IMS decision-management process also takes into
account the length of the actions’ waiting queue through the parameter LQue, described
as follows.

• LQue ∈ B = {0, 1}: queue state (0—Low, no waiting queue for message, notifications,
indications, etc.; 1—High, there is a waiting queue).

When receiving a request vector from the applications with instruction about actions
that have to be dispatched, the IMS applies in sequence:

1. the strategy implemented in the Filter and Queue module, described in Section 2.2.1,
that is based on truth tables describing prioritization rules for applications’ requests
as functions of DVE states;

2. the rules implemented in the Modality and Channel module, described in Section 2.2.2,
which, too, are founded on truth tables containing criteria for selecting representation
modality of messages, notifications, indications, etc. suited to DVE states.

Therefore, to schedule output requests from the applications, and to select modality,
channel, and layout for their presentation, a key task concerns the design of truth tables.

This study proposes a methodology to derive truth tables for the Filter and Queue
module, which can be easily extended to also define truth tables for the Modality and
Channel module. A general formulation of a truth table is represented in Table 1 for
scheduling actions (messages/notifications/indications to be forwarded to the driver) on
the basis of n ∈ R DVE parameters (DVE 1, . . . , DVE n), queue state (LQue), and m ∈ R
application requests (App. 1, . . . , App. m).

More specifically, for prioritization purpose, action-specific logical expressions (truth
functions) fi(DVE 1, . . . , DVE n, LQue, App. 1, . . . , App. m), with i ∈ {1, . . . , m} the
number of actions, sets out functional values in the Boolean domain fi ∈ B = {0, 1} for
each combination of truth values taken by the n + 1+ m variables (the arity of the function),
i.e., DVE 1, . . . , DVE n, LQue, App. 1, . . . , App. m, which, too, are defined in the Boolean
domain B. Through these functional values, the truth table, based on current DVE states,
suggests if messages could be forwarded to the driver (value 1) or not (value 0).

The information management process must consider, therefore, n + 1 + m parameters
among DVE states, queue length, and applications requests, each of them with two possible
discrete values ∈ {0, 1}, whose combination gives rise to 2n+1+m possible driving scenarios.
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Furthermore, for a specific driving scenario, i.e., considering a single set of values for the
n DVE states and queue length, there are 2m + 2m−1 + . . . + 20 possible outcomes for
scheduling the m actions. Herein, there are 2n+1(2m + 2m−1 + . . . + 20) total cases to be
investigated in order to optimize the logical expressions fi and to derive the truth table.
The design of the truth tables employed in the rules-based strategies of IMSs is in general
carried out empirically, starting with the analysis of [43]:

• collection of solutions to relevant driving scenarios and to different use cases;
• requirements of the A-HMI and other indications coming from the technical literature

state-of-the-art;
• the perceived effects assessing proposals of HMI adaptation, made by a pool of experts.

Since the decision-management process generally covers a large number of possible
driving scenarios, a formal and generalized method to define truth tables for the filtering
processes is needed. In the next section, a methodology to develop truth tables for IMS’s
Filter and Queue module is presented.

Table 1. Truth table for prioritization of actions.

Outcome of
Requests

DVE, Queue,
Application

Requests

DVE 1

. . .

DVE n

LQue

App. 1

. . .

App. m

App. 1 f1(DVE 1, . . . , DVE n, LQue, App. 1, . . . , App. m) : Bn+1+m → B

. . . . . .

App. m fm(DVE 1, . . . , DVE n, LQue, App. 1, . . . , App. m) : Bn+1+m → B

4. Design of an Optimization Framework for the IMS

In this section, the methodology proposed for tackling and solving the offline truth
tables estimation problem is detailed. As mentioned, a generalized approach is derived
to define truth tables to be used in the Filter and Queue module for prioritization of ac-
tions. In particular, the estimation problem is formulated as an optimization task where
the objective is to find a set of rules to manage information flow between vehicle and
driver that minimizes both the driver workload and the queuing of the undelivered mes-
sages/notifications/indications to the driver. In this optimization task, whose overall
scheme is depicted in Figure 2, the evaluation of the effects of application requests on driver
cognitive load and on actions waiting queue plays a key role. Herein, two indexes JDw(x)
and JAq(x), on the basis of actual DVE states and messages to be forwarded to the driver, are
used to estimate the driver workload and actions queue, respectively. These two indexes are
exploited to identify the functional values of truth tables by searching the xi ∈ B action-specific
multipliers, with i ∈ {1, . . . , m}, belonging in a vector of decision variables x ∈ Bm, which
simultaneously minimize JDw(x) and JAq(x). These are two conflicting objectives that make
the process a multi-objective optimization problem, addressed in the next sections.

4.1. Driver Workload Index

The main objective of the IMS’s Filter and Queue module is to schedule application
requests in order to avoid driver cognitive overload. To achieve this goal, the truth tables
used in the filtering process for the prioritization of actions must be derived to minimize
the driver’s level of workload associated with forwarding application requests to the driver.
To optimize the filtering process, a methodology to assess driving workload in several
conditions is essential. Many studies have focused on evaluating the driver’s resources
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allocated to a driving task [61,62]. These have shown that driver workload has three main
features. First, drivers are capable of reporting the task demands on separate workload
dimensions (perceptual, cognitive, and motor dimensions) [63]. Second, age differences
significantly affect driver workload [64]. Third, performance measurements may estimate
workload only partially because of the potential dissociation of performance and mental
workload [65]. In accordance with these three properties, a workload assessment method is
expected to capture the multi-dimensional property of the cognitive load and to account
for driver age differences. Among several techniques to assess the level of the driver’s
workload, subjective methods are the most frequently used in practice [66]: they make
use of driver’s reports concerning subjective judgments of the effort and expenditure
that was experienced during the task [67]. The most popular subjective method is the
National Aeronautic and Space Administration Task Load indeX (NASA-TLX) [68], which
was originally designed for aviation pilots. It assesses the workload through six rating
scales, i.e., mental demand, physical demand, temporal demand, performance, effort,
and frustration levels. The Driving Activity Load Index (DALI) [69] is a technique for
workload estimation obtained by revising the NASA-TLX to specifically adapt it to the car
driving task. Similarly to NASA-TLX, the DALI estimation is based on six rating scales,
where, however, the main factors composing the workload score were chosen to be more
adapted to the car driving context. In particular, workload dimensions of the DALI are
effort of attention, visual demand, auditory demand, temporal demand, interference, and
situational stress.

In this study, the DALI method is used to evaluate offline the workload under various
complexities of the driving context. More specifically, several driving conditions are set
up to induce on purpose various levels of workload for the driver, i.e., with and without
secondary activities, under several different states of the driver–vehicle–environment
system, and by varying application requests. During each driving condition, subjective
measures are executed to assess the magnitude of the six factors on a scale. Then, the levels
of workloads are quantified by comparing the sets of six factors evaluated in the tested
driving conditions. In doing so, relative weights on driver workload between various
DVE states

(
cDVE j, with j ∈ {1, . . . , n}

)
and several applications requests

(
cApp. i, with

i ∈ {1, . . . , m}
)

are computed. Identification of these relative weights is a preliminary step
to calculate the driver workload index JDw(x). Indeed, it is defined as a weighted sum of
the DVE parameters

(
DVE j, with j ∈ {1, . . . , n}

)
and application request

(
App. i, with

i ∈ {1, . . . , m}
)

contributions on driver cognitive load:

K =
n

∑
j=1

DVE j · cDVE j (1)

JDw = K ·
m

∑
i=1

xi ·App. i · cApp. i (2)

where each decision variable xi assumes a value ∈ {0, 1} that determines if the multiplied
action (App. i) is executed or not.

4.2. Actions Queue Index

Application requests are classified into a set of priority classes (W, D, OP1, OP2, and
OP3, described in Section 3) on the basis of their relevance regarding safety, mobility, and
the impact on the level of driver cognitive load [34]. Every one of these three dimensions is
ranked by its magnitude (from ‘low’ to ‘high’) given a-priori statically [36]. Hence, their
combination can be interpreted as an indicator for the base priority of an application request.
For example, the priority of a turn indicator’s request is described by:

• safety relevance = high;
• mobility relevance = medium;
• workload impact = medium.
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A comparison between the base priority of several possible application requests allows
us to determine their relative weights on the actions queue

(
pApp. i, with i ∈ {1, . . . , m}

)
.

More specifically, each action weight represents the relative effect on waiting queue derived
by not executing the action and queuing it. Through these, the actions queue index can be
calculated as a weighted sum of the application requests’

(
App. i, with i ∈ {1, . . . , m}

)
contributions to the queue:

JAq =
m

∑
i=1

(
pApp. i · cos(xi) ·App. i

)
+
[
LQue ·

(
pQ, App. i · cos(xi) ·App. i

)]
(3)

Moreover, when a long waiting queue is assessed (LQue = 1), to each application
request is associated a multiplier pQ, App. i, with i ∈ {1, . . . , m}, that increases the cost of
not executing the corresponding action.

4.3. Multi-Variable Multi-Objective Optimization

As mentioned, to simultaneously achieve the two conflicting goals of minimizing both
the driver workload level and the length of actions waiting queue, the truth table estimation
problem is formulated as a multi-objective optimization process. More specifically, a multi-
variable multi-objective optimization process has been proposed according to the scheme
represented in Figure 2, which is defined as follows [70]:

min J(X) = min
(
JDw(X), JAq(X)

)
(4)

where X ∈ Bm×2(n+1+m)
is a space of decision variables, J(X) : Bm×2(n+1+m) → R2×2(n+1+m)

is a space of objectives, JDw(X) : Bm×2(n+1+m) → R2(n+1+m)
is a vector of driver workload

indexes, and JAq(X) : Bm×2(n+1+m) → R2(n+1+m)
is a vector of actions queue length indexes.

In this process, the inputs are distinguished in:

• n + 1 + m parameters that describe the driving scenario, i.e., DVE 1, . . . , DVE n, LQue,
App. 1, . . . , App. m;

• m decision variables xi ∈ B, each of them associated with one of the m application
requests App. i, and determines if the corresponding action is executed (xi = 1) or
not (xi = 0).

Input parameters

Decisional variables 

vector 𝐱

• Multiplier 𝑥1
• Multiplier 𝑥2

• Multiplier 𝑥𝑚

…

DVE parameters:

• DVE 1

• DVE n

Queue state:

• LQue

Application requests:

• App. 1

• App. m

Driver workload and 

actions queue estimation 

Output parameters

Objective functions

minimize:

• 𝐽𝐷𝑤 𝐱
• 𝐽𝐴𝑞 𝐱

NSGA-II

• Driver workload 

index, 𝐽𝐷𝑤 𝐱

• Actions queue 

index, 𝐽𝐴𝑞 𝐱

…
…

Figure 2. Scheme of the multi-variable multi-objective optimization.

From these inputs, driver workload level and length of action waiting queue are estimated
by leveraging the two indexes JDw(x) and JAq(x) described in Sections 4.1 and 4.2, respectively.
The objective of the proposed optimization procedure is to find, for each of 2n+1+m possible
driving scenarios, a vector of decision variables x = [x1, . . . , xm]

T that simultaneously mini-
mizes the two indexes JDw(x) and JAq(x). The trade-off between these two conflicting goals
can be optimized by exploiting a Non-dominated Sorting Genetic Algorithm II (NSGA-II) [71]
in order to search the optimal decision variables. The NSGA-II, first, randomly initializes a
parent population of individuals. All individuals are then sorted into different front levels,
and to each front level is assigned a rank, which equals its non-domination level. In the
same front level, the location of the finite number of solutions is expected to be distributed
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uniformly. Therefore, the crowding distance criterion is adopted to select solutions by
evaluating the local aggregation of individuals. Since extreme points are desired to be
kept every generation, they are assigned a crowding distance to the maximum value. After
sorting, the selection operator, crossover operator, and mutation operator are implemented
to generate the offspring population. Thereafter, the new parent population is generated
by being filled with non-dominated solutions. Then, the optimization is completed by the
iterative application of the procedure until the number of maximum generation is reached.

At each iteration step, a space of decision variables X is determined, containing the decision
variable vectors xµ of the 2(n+1+m) possible driving scenarios, with µ ∈

{
1, . . . , 2(n+1+m)

}
.

The quality of each searched decision variables vector xµ is then evaluated by the two in-
dexes JDw and JAq to be minimized. Repeating this evaluation over the whole space of deci-
sion variables, two vectors of driver workload indexes and actions queue length indexes,
JDw(X) and JAq(X), respectively, are determined. In doing so, a 2× 2(n+1+m)-dimensional
hyperspace of objectives J(X) is constructed. Among the non-dominated solutions of the
Pareto front, optimal solutions are identified according to the criterion of minimum distance
to the origin of the objectives hyperspace by normalizing the objective functions.

5. Results and Analysis

In this section, we evaluate if the proposed optimization framework, described in
Section 4, could be successfully used to derive truth tables for scheduling application
requests in order to minimize both the driver workload and the queuing of actions. The
analysis concerns with the development of the truth table are represented in Table 2. This
truth table is suitable for scheduling of m = 5 application requests, each of them belonging
to one of the priority classes listed in Section 3: FCW ∈W; system interaction ∈ D; turn
indicators ∈ OP1; volume increase of infotainment system ∈ OP2; phone call ∈ OP3.

Specifically, the truth table is carried out by defining five truth functions fi, with
i ∈ {1, . . . , 5}, which suggest if the application requests could be executed or not. In this
decision process are involved 11 parameters: n = 5 DVE parameters, i.e., DVE 1 , DVE 2,
DVE 3, DVE 4, and DVE 5, measured by the status recognition and monitoring system,
that, as described in Section 2.1, allow us to represent 32 possible DVE states; queue
length parameter LQue; and m = 5 application requests (App. 1 = FCW, App. 2 = system
interaction, App. 3 = turn indicators, App. 4 = volume increase, App. 5 = phone call) to
take into account multiple and simultaneous actions.

5.1. Implementation of the Optimization Framework

As mentioned, the 11 inputs in the optimization problem have discrete values in the
Boolean domain. Herein, the truth table complies with 211 possible driving scenarios.
As mentioned in Section 2.1, the parameter DVE 3, on the basis of FCW status, gives a
discrete evaluation of collision risk with other vehicles. By this direct relationship between
the DVE 3 and the App. 1, the variables of the decision problem are reduced to 10, and the
number of scenarios decreases in turn. Moreover, considering that for high risk of collision
with other vehicles in path, no messages, notifications, indication, etc. can be delivered to the
driver, the decision problem can be further simplified. Indeed, to an FCW warning status, and
therefore to a traffic risk (DVE 3) set to 1, the IMS can only formulate a reply that commands to
deliver the warning alone. Hence, the possible driving scenarios can be reduced to 1 + 29.

To impose no notifications to the driver when FCW is enabled, the coefficient cDVE 3 in
Equations (1)–(3) assumes a value two orders of magnitude greater than other coefficients
in the same equations (cDVE 3 = 1000), and the Expression (2) of the driver workload index
is reformulated as follows:

K =(DVE 1 · cDVE 1) + (DVE 2 · cDVE 2) + (DVE 3 · 1000)

+ (DVE 4 · cDVE 4) + (DVE 5 · cDVE 5)
(5)
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JDw = (DVE 3 · 1000) + K ·
5

∑
i=2

xi ·App. i · cApp. i (6)

Moreover, the optimization problem is subject to an inequality constraint defined as:

(JDw − 1000) ·DVE 3 ≤ 0 (7)

that forces optimization to suppress all the notifications during FCW state.

Table 2. Truth table for scheduling: FCW; system interaction; turn indicators; volume increase of
infotainment system; phone call.

Outcome of
Request

DVE and
Application

Request

DVE 1

DVE 2

DVE 3

DVE 4

DVE 5

LQue

App. 1 = FCW

App. 2 = system interaction

App. 3 = turn indicators

App. 4 = volume increase

App. 5 = phone call

FCW f1(DVE 1, . . . , DVE 5, LQue, App. 1, . . . , App. 5) : B11 → B

system interaction f2(DVE 1, . . . , DVE 5, LQue, App. 1, . . . , App. 5) : B11 → B

turn indicators f3(DVE 1, . . . , DVE 5, LQue, App. 1, . . . , App. 5) : B11 → B

volume increase f4(DVE 1, . . . , DVE 5, LQue, App. 1, . . . , App. 5) : B11 → B

phone call f5(DVE 1, . . . , DVE 5, LQue, App. 1, . . . , App. 5) : B11 → B

The truth table derived must address 1+ 29 possible different driving scenarios. Such a
finite number of scenarios can be solved offline using the proposed optimization approach.
As described in [72,73], the exploited optimization procedure, implemented in Python en-
vironment (see Supplementary Materials Pseudocode S1), by leveraging the NSGA-II, can
search the driver workload index JDw and the action queue index JAq optimal parameters.
These two indexes are characterized by 10 inputs and 21 coefficients. The 10 inputs (DVE 1,
. . . , DVE 5, LQue, App. 2, . . . , App. 5) are used to take into account possible driving sce-
narios addressed by the truth table. The 21 coefficients consist of 9 weights to consider
effects of DVE parameters and application requests on driver workload

(
cDVE j and cApp. i,

respectively
)

, 8 weights on impact of application requests on actions queue
(

pApp. i and
pQ, App. i

)
, and 4 decision variables (xi ∈ B) to be identified. More specifically, the four

decision variables, which indicate if the corresponding four actions are executed, are tuned
during the optimization process to minimize both the driver cognitive load and messages
queue. The population size, which is the parameters space of potential solutions in which
the NSGA-II searches the optimal value of these unknown parameters, is set according to the
technical literature to 1000. Regarding, instead, the crossover and the mutation, the simulated
binary crossover method and the polynomial mutation are implemented (for details about the
mentioned techniques see [74]).

Table 3 reports the weights used to calculate the driver workload and action queue
indexes, evaluated following the procedures described in Sections 4.1 and 4.2, respectively.
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Table 3. Weights of driver workload and action queue indexes.

Coefficient Value Coefficient Value

cDVE 1 10 [-] pApp. 2 5 [-]
cDVE 2 20 [-] pApp. 3 4 [-]
cDVE 4 10 [-] pApp. 4 3 [-]
cDVE 5 2 [-] pApp. 5 2 [-]
cApp. 2 2 [-] pQ, App. 2 4 [-]
cApp. 3 1.5 [-] pQ, App. 3 4 [-]
cApp. 4 1 [-] pQ, App. 4 3 [-]
cApp. 5 2 [-] pQ, App. 5 2 [-]

Implementation of the Optimized Filtering Strategy

The optimized truth table served as the foundation for the development of the project
demonstrator, as depicted in Figure 3. This is an intelligent system that, by collecting and
processing information from various sources, is capable of prioritizing safety, customization,
and distraction-free interaction for drivers. It was instrumental in developing a multi-modal
A-HMI for the concept car named “Kinecar” [75], an innovative project spearheaded by
Kineton. In this communication framework, applications convey their requests via Ethernet
and CAN-bus to the Kinecar IVIS, equipped with a 15-inch display and based on the
Renesas R-Car-H3e board. Within this framework, the A-HMI manages these requests using
a request-response mechanism. Notably, the IVIS engages in Ethernet-based interactions
with the Camera Control Unit (CCU), which is driven by the Nvidia Jetson AGX Xavier
platform. The CCU plays as the central intelligent system of the whole setup, responsible
for executing both the IMS and the DVE state recognition and monitoring system, detailed
in Section 2. More specifically, the CCU’s operations include running monitoring system
modules, crucial for evaluating the five DVE parameters (described in Section 2.1) related
to traffic and environmental conditions [55,56], driver distraction [76] and PERCLOS [77].
These evaluations are carried out by processing measurements from a driver monitoring
camera and a forward-facing camera, both received via USB. Subsequently, the CCU,
utilizing the DVE parameters, filters these requests based on the previously optimized
offline truth table, effectively scheduling the necessary actions.

Kinecar

IVIS

CCU

Other Kinecar 

components 

Forward 

facing camera

Driver monitoring 

camera

Ethernet

 + 

CAN bus

Ethernet

USB

USB

IVI = In-Vehicle Infotainment with 

15-inch Display is us based on 

Renesas R-car h3e board

CCU =  Camera Control Unit is 

based on Nvidia Jetson AGX Xavier 

CAN = Controller Area Network 

(CAN bus) 

USB = Universal Serial Bus

IVI is the infotainment system of the 

Kinecar, CCU runs forward collision 

warning, driver monitoring 

application.

IVI makes request to CCU and CCU 

filters these request based on the 

offline optimization truth-table.

Figure 3. Scheme of the physical implementation of the offline optimized truth table for the Filtering
strategy in Kinecar’s A-HMI.

5.2. Results

The number of generations in a multi-objective optimization procedure is set to
cover all possible combinations of DVE states and application requests. Solutions be-
long to the 1026-dimensional hyperspace

(
J(X) ∈ R2×513) constituting the Pareto frontier.
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Indeed, for each of the 513 input combinations, an optimal solution set of 4 decision vari-
ables is determined. In doing so, the output of the optimization process is a vector of
decision variables of dimension X ∈ B4×513. For the sake of brevity, only some sample
outputs xµ ∈ X, with µ ∈ {1, . . . , 513}, are here theoretically analyzed to highlight ef-
fectiveness of the proposed procedure to derive truth tables for scheduling application
requests. Specifically, solutions for three driving scenarios are presented below.

• Scenario 1: the Filter and Queue module must schedule the driver request to increase
the volume of the infotainment system and an incoming phone call. The decision
management process is carried out, taking into account the output from the DVE state
recognition and monitoring system, which infers a high driver workload level. The in-
put vector of this driving scenario is reported in Table 4.

• Scenario 2: wipers actuation state, measurements of rain detection sensors, and micro-
phone warn of a high level of environmental risk for both low visibility and audibility.
According to these conditions, the truth table must filter two application requests, i.e.,
activate turn indicators and an incoming phone call. Table 5 shows the corresponding
input vector.

• Scenario 3: the monitoring system detects high risk in four of the five dimensions of
the driver–vehicle–environment system, i.e., driver distraction, driver drowsiness,
environment low visibility, and environment low audibility. The IMS addresses a
complex decision management problem, where, in the high waiting queue condition,
three requests are performed, i.e., system interaction, activate turn indicators, and
increase the volume of the infotainment system. This driving scenario corresponds to
the input vector in Table 6.

Table 4. Input vector for Scenario 1.

Input (DVE Parameters) Value Input (Queue State, App. Requests) Value

DVE 1 1 [-] LQue 0 [-]
DVE 2 0 [-] App. 2 (system interaction) 0 [-]

DVE 3, App. 1 (FCW) 0 [-] App. 3 (turn indicators) 0 [-]
DVE 4 0 [-] App. 4 (volume increase) 1 [-]
DVE 5 0 [-] App. 5 (phone call) 1 [-]

Table 5. Input vector for Scenario 2.

Input (DVE Parameters) Value Input (Queue State, App. Requests) Value

DVE 1 0 [-] LQue 0 [-]
DVE 2 0 [-] App. 2 (system interaction) 0 [-]

DVE 3, App. 1 (FCW) 0 [-] App. 3 (turn indicators) 1 [-]
DVE 4 1 [-] App. 4 (volume increase) 0 [-]
DVE 5 1 [-] App. 5 (phone call) 1 [-]

Table 6. Input vector for Scenario 3.

Input (DVE Parameters) Value Input (Queue State, App. Requests) Value

DVE 1 1 [-] LQue 1 [-]
DVE 2 1 [-] App. 2 (system interaction) 1 [-]

DVE 3, App. 1 (FCW) 0 [-] App. 3 (turn indicators) 1 [-]
DVE 4 1 [-] App. 4 (volume increase) 1 [-]
DVE 5 1 [-] App. 5 (phone call) 0 [-]

From the single driving scenario perspective, the solutions of the optimization process
can be represented in scenario-specific two-dimensional surfaces. Therefore, on each of
these surfaces belong possible outcomes identified for scheduling the four actions for a
specific input vector, i.e., for a single set of DVE parameters and applications requests.
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Figure 4 shows solutions identified by the proposed optimization approach for Scenario 1
in terms of driver workload JDw(x) and actions queue JAq(x) indexes, both normalized.
Among the four feasible outcomes, the optimal output is represented by a red dot in the
figure, which corresponds to the output vector in Table 7. Since the monitoring system,
by driver head and eye movements, detects driver distraction, the truth table should suggest
to reject an incoming phone call for minimizing workload level. In contrast, to minimize
the action queue, it should allow to increase the volume of the infotainment system.
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Figure 4. Solutions for Scenario 1: black dots are feasible outcomes; red dot is the optimal output.

Table 7. Output vector for Scenario 1.

Output (Action) Value Output (Action) Value

system interaction 0 [-] volume increase 1 [-]
turn indicators 0 [-] phone call 0 [-]

Similarly, Figure 5 shows, in the plane of the normalized JDw(x) and JAq(x), four
possible outcomes for Scenario 2 calculated during the optimization process.

In addition, here, the red dot is the optimal solution, whose output vector is repre-
sented in Table 8. In visually challenging situations due to poor weather conditions and in
noisy environments, the truth table should reject an incoming phone call to avoid danger-
ous situations due to driver overload. The request to activate turn indicators, on the other
hand, should be accomplished to reduce traffic crashes risk.
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Figure 5. Solutions for Scenario 2: black dots are feasible outcomes; red dot is the optimal output.
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Table 8. Output vector for Scenario 2.

Output (Action) Value Output (Action) Value

system interaction 0 [-] volume increase 0 [-]
turn indicators 1 [-] phone call 0 [-]

Finally, Figure 6 shows optimization process results for Scenario 3, which is a chal-
lenging scenario for the decision management process. Indeed, DVE parameters show high
driver workload level, driver physical impairment affecting driving performance, as well
as poor environment visibility and audibility that decrease driver’s attention and reaction
level. Under these poor DVE conditions, the IMS must schedule many application requests
(three of four possible requests) while facing a high waiting queue for actions. All these
factors make the decision management problem complex.
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Figure 6. Solutions for Scenario 3: black dots are feasible outcomes; red dot is the optimal output.

The identified solution, in Table 9, optimizes the trade-off between driver workload
and action queue minimization. Specifically, the turn indicators request is accepted since
it is significant for traffic safety; the same response is given for the action of increase the
volume of the infotainment system in order to decrease the waiting queue. In contrast,
the truth table should reject system interaction for avoiding driver cognitive overload.

Table 9. Output vector for Scenario 3.

Output (Action) Value Output (Action) Value

system interaction 0 [-] volume increase 1 [-]
turn indicators 1 [-] phone call 0 [-]

5.3. Discussion

This paper introduces an innovative methodology aimed at providing a more gen-
eralized and adaptable approach for designing rules driving the adaptive strategies of
A-HMIs. The primary objective of this methodology is to design an A-HMI architecture
geared towards reducing driver distraction. Within this architecture, the A-HMI effectively
manages application requests through a request-response mechanism. Various applications
submit requests for driver interaction, and these requests are overseen by the IMS. The IMS
employs a combination of rules-based strategies that allow decisions capable of minimiz-
ing driver distraction. These strategies could encompass Limiting, Simplifying, Filtering,
Delaying, Activating, Advancing, Supplementing, and Augmenting, among others [26].
Such rules-based strategies are implemented using truth tables. These truth tables take as
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input requests of the applications and the DVE parameters, generating action-management
decisions as output. DVE parameters are assessed through a DVE state recognition and
monitoring system, which processes data from in-vehicle sensors and cameras. It is this
dependence on the current DVE state that contributes to endowing the strategies with
adaptability [37]. At the core of the proposed methodology to design rules for adaptiv-
ity strategies lies the application of multi-objective optimization. Using this optimization
methodology, this study is focused on designing a truth table specifically tailored for a
Filtering strategy. According to this strategy, the truth table has been designed for optimiz-
ing attentional demands to mitigate overload or underload. The overarching goals of this
optimization endeavor were twofold: to minimize the driver’s cognitive workload and
reduce actions queuing. To achieve these objectives, a crucial component of the optimiza-
tion process was the comprehensive evaluation of how requests of applications impact
the driver’s cognitive load and the queue of pending actions. To facilitate this assessment,
two indexes were introduced, grounded in the actual state of the DVE and requests of the
applications. These indexes serve as invaluable tools for estimating the driver’s cogni-
tive workload and the queue of pending actions throughout the optimization procedure.
The proposed approach has undergone evaluation through a case study, with the objective
of formulating a truth table tailored for scheduling five application requests: FCW, system
interaction, turn indicators, volume adjustment of the infotainment system, and phone
calls. These requests are inputs of the truth table, together with the five DVE parameters
assessed via the DVE state recognition and monitoring system. Additionally, the IMS
decision-making process takes into account the length of the action waiting queue, as repre-
sented by the parameter LQue. Collectively, these elements contribute to the development
of a truth table characterized by 11 inputs, each with discrete values within the Boolean
domain. Notably, this truth table encompasses 211 = 2048 potential driving scenarios.
It is important to note that, considering the simplifications outlined in Section 5.1, the
truth table condenses to encompass 1 + 29 = 513 feasible driving scenarios. Furthermore,
for each distinct DVE system state and queue length, there exist 25 + 24 + . . . + 20 = 63
plausible outcomes concerning the scheduling of the five actions. Consequently, the total
cases to be investigated for optimizing the 513 possible outcomes of the truth table amount
to 24+1(25 + 24 + . . . + 20) = 2016. The study’s results theoretically demonstrated the
remarkable capability of the proposed optimization framework in automatically addressing
this large amount of feasible driving scenarios. This capability has enabled the derivation
of an effective strategy for prioritizing actions requested by applications. Compared to
existing methodologies documented in the technical literature [25,28,39], the proposed
approach has significantly streamlined the design of rules driving the Filtering strategy
within the A-HMI architecture. Notably, it has endowed the system with adaptive capabil-
ities, effectively mitigating driver cognitive overload. Indeed, many known approaches
for designing predefined rules for adaptive strategies heavily rely on empirical methods,
leaning on the competences of expert pools [43]. However, when facing a large number of
possible driving scenarios and in-vehicle applications to be managed, this conventional
approach proves to be complex and time-consuming. The process of deriving truth tables,
in particular, escalates in complexity as the number of DVE parameters and application
requests to be managed increase. More specifically, the total cases to be investigated for
optimizing the truth table exponentially increase with these two variables. This complexity
issue is compounded by the sheer volume of potential driving conditions and the extensive
data handling necessitated by new ICVs [16]. In stark contrast, our proposed optimization ap-
proach significantly simplifies the rule design process for the Filtering strategy, making A-HMI
development within the context of ICVs automatic and less labor-demanding. Furthermore,
our methodology facilitates the formulation of comprehensive strategies to effectively manage
the diverse tasks associated with the information management process [41]. It is noteworthy
that the multi-objective optimization procedure has explored all combinations of inputs,
i.e., DVE states and application requests. Specifically, for each of the 513 input combinations,
an optimal solution set of 4 decision variables, each with value in the Boolean domain, has
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been determined. Each decision variable corresponds to one of the application requests and
dictates whether the corresponding action is executed or not. Consequently, the outcome of
our optimization process is a vector of decision variables with a dimension of X ∈ B4×513.
In contrast, when adhering to conventional empirical approaches, obtaining comprehensive
strategies to cope with all diverse tasks involved in the information management process is
not a trivial task [42]. This issue accentuates a well-recognized issue of rules-based strategies.
Specifically, the brittleness of rules-based A-HMIs becomes evident when faced with missing
or unforeseen input values, which can compromise the system’s adaptability and robustness.

The main limitation of the proposed methodology pertains to the user-specific char-
acteristics of the optimized truth table. It is essential to recognize that the truth table
should exhibit adaptability over time to accommodate changes in a driver’s experience and
the effects of aging. Indeed, age differences represent one of the most significant factors
influencing driver workload. The aging process induces a deceleration in information
processing across perceptual, cognitive, and psychomotor domains for older drivers [64].
Consequently, when processing an equivalent amount of information within a defined
time period, older drivers typically experience higher levels of mental workload in contrast
to their younger counterparts. Furthermore, rules-based strategies should be attuned to
changes of individual drivers since the assessment of workload levels may diverge from
one user to another, owing to differences in the multi-dimensional properties of cognitive
load [78]. One promising solution for mitigating this limitation, which will be a focal
point of future research endeavors, consists of revolutionizing A-HMIs by applying cloud
computing and Internet of Things (IoT) technologies of ICVs [79]. By harnessing these
technologies, it can be possible to collect and transmit driver data, as well as other rel-
evant information from the vehicle and environment, to a cloud-based platform. This
platform can then be utilized to construct a comprehensive data-driven model of driver
workload [80]. Using this model, it will become feasible to dynamically assess driver
distraction and establish correlations between application requests and their impact on
workload over time.

6. Conclusions

This paper introduces an innovative methodology, based on multi-objective optimiza-
tion, to tackle the challenges of designing rules-based adaptive strategies for A-HMIs with
the objective of reducing driver distraction. Using this optimization methodology, the
study focuses on designing a truth table tailored for a Filtering strategy. More specifi-
cally, this truth table has been designed to optimize the scheduling of five application
requests: FCW, system interaction, turn indicators, volume adjustment, and phone calls.
This optimization has defined an adaptation strategy aimed at mitigating both driver’s
overload and underload, based on five DVE parameters and the length of the action wait-
ing queue. A theoretical analysis has been carried out to assess the effectiveness of the
proposed optimization framework. The results of the study have clearly demonstrated the
remarkable effectiveness of the proposed framework in optimizing the Filtering strategy for
actions requested by applications. By adopting this approach, the design of rules has been
automated and significantly streamlined while gaining adaptive capabilities to prevent
driver cognitive overload.
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