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Abstract: Walnut shell–kernel separation is an essential step in the deep processing of walnut. It is a
crucial factor that prevents the increase in the added value and industrial development of walnuts.
This study proposes a walnut shell–kernel detection method based on YOLOX deep learning using
machine vision and deep-learning technology to address common issues, such as incomplete shell–
kernel separation in the current airflow screening, high costs and the low efficiency of manually
assisted screening. A dataset was produced using Labelme by acquiring walnut shell and kernel
images following shellshock. This dataset was transformed into the COCO dataset format. Next,
110 epochs of training were performed on the network. When the intersection over the union
threshold was 0.5, the average precision (AP), the average recall rate (AR), the model size, and
floating point operations per second were 96.3%, 84.7%, 99 MB, and 351.9, respectively. Compared
with YOLOv3, Faster Region-based Convolutional Neural Network (Faster R-CNN), and Single Shot
MultiBox Detector algorithms (SSD), the AP value of the proposed algorithm was increased by 2.1%,
1.3%, and 3.4%, respectively. Similarly, the AR was increased by 10%, 2.3%, and 9%, respectively.
Meanwhile, walnut shell–kernel detection was performed under different situations, such as distinct
species, supplementary lighting, or shielding conditions. This model exhibits high recognition
and positioning precision under different walnut species, supplementary lighting, and shielding
conditions. It has high robustness. Moreover, the small size of this model is beneficial for migration
applications. This study’s results can provide some technological references to develop faster walnut
shell–kernel separation methods.

Keywords: walnut; shell–kernel separation; YOLOX; target recognition

1. Introduction

Walnut shell–kernel separation is a critical procedure in the deep processing of wal-
nuts and is a vital link to advance the industrial chain and added value of walnuts [1,2].
Following the mechanical breaking of the walnut, it is impossible to completely separate
the shell and kernel during cleaning due to the complicated structure of mixtures and
diversified forms [3]. Manual intervention is needed in the walnut selection. It incurs high
costs and low efficiency [4], thereby restricting the development of the walnut industry.
Shell–kernel recognition is one of the crucial technologies to realise intelligent shell–kernel
selection. Analysing walnut shell–kernel detection algorithms based on deep learning is
critical for achieving intelligent and mechanical walnut shell–kernel separation.
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Walnut shell–kernel separation is a process that separates shell–kernel mixtures ac-
quired after shell breaking by the shell-breaking device and collects walnut kernels. Many
enterprises still adopt the manual selection technique, which has high labour intensity and
separation costs [5]. Several Chinese and foreign scholars have conducted abundant inves-
tigations on the shell–kernel separation method of nuts. For instance, Krishnan et al. [6]
proposed the magnetic shell–kernel separation technique according to their differences in
magnetic conductance. However, fresh impurities were introduced into the separation pro-
cess, necessitating further separation. Moreover, it was easy to contaminate kernels. Wang
et al. [7] invented an electrostatic shell–kernel separation machine for nuts and successfully
realised the shell–kernel separation of nuts based on their different dielectric properties.
Moreover, there was no mechanical force on the shell and kernel during separation, without
the restriction of particle size, shape and proportion. They provided a novel solution to the
shell–kernel separation of nuts. Nevertheless, these methods presented various challenges,
such as complicated separation processes, high costs, low efficiency, and poor guarantee of
food quality and safety, among others. Hence, their promotion was challenging. The air-
flow selection method has a simple device structure and good separation effect and solves
existing problems to a large extent. It is a commonly used method in walnut shell–kernel
separation. Liu et al. [8], Cao et al. [9], and Li et al. [10] investigated walnut shell–kernel
separation based on airflow separation and achieved a relatively good effect. Due to the
impact of diversified sizes, shapes and windward areas, the walnut shells and kernels
have complicated and changing motions in the airflow field, thus making it arduous to
achieve thorough separation. In particular, some overlapping aerodynamic characteristics
exist between walnut shells and kernels, thereby increasing the separation difficulty and
restricting the improvement of the shell–kernel separation effect. Recently, the development
of computer technology and machine vision technology provided novel solutions to walnut
shell–kernel separation. Wang et al. [11] designed a pecan shell–kernel separation system
based on a fuzzy clustering algorithm and separated shells and kernels after breaking
using the fuzzy clustering algorithm. Their results demonstrated that the walnut kernel
recognition rate of the system was higher than 83%. Jiang et al. [4] classified shells and
kernels of black walnuts based on hyperspectral fluorescence imaging technology; the
recognition rate could reach 90.3%. Jin et al. [12] designed an intelligent black walnut
shell–kernel recognition system that acquired relatively high separation precision and
calculation speed. It had some application potential in the field of walnut shell–kernel
separation. However, it is hard to create high-efficiency applications of conventional image
recognition technology in complicated actual production due to its detailed processing,
low recognition precision, and requests for the manual extraction of target features [13,14].
With quick recognition, small model volume and stronger timeliness, the target detection
algorithm based on YOLO can achieve end-to-end detection. Moreover, it has good feature
extraction and generalisation abilities [15,16]. This algorithm is becoming an essential tool
for the online detection and target recognition of agricultural products. For instance, Yao
et al. [17] and Xiao et al. [18] used YOLOv5 and YOLOv8 target recognition algorithms,
respectively, to conduct a real-time detection of fruit maturity. The results demonstrated
that these models exhibited fast and accurate recognition. Wang et al. [19] used the YOLOv5
algorithm for the real-time recognition of apple stem and calyx, laying the foundation for
the automation of fruit loading and packaging systems. Wu et al. [20] applied the deep
convolutional neural network algorithm to detect walnut shell kernels, achieving good
recognition results when the shell kernels were dispersed and classified. Meng et al. [21]
detected tea buds amidst complex backgrounds using the YOLOv7 algorithm, providing
a theoretical basis for intelligent tea picking. In addition, Zhang et al. [22] used YOLOX
to achieve high-precision detection and counting of winter jujube, testing the method’s
accuracy and effectiveness under different scales and scenarios. The results indicated
that the algorithm had strong robustness under scenarios with shadows, coverage, and
incomplete contours. These studies collectively demonstrate the success of YOLO-based
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target detection in recognition tasks, providing a reference for the development of walnut
shell kernel separation technology.

This study proposed a fast walnut shell–kernel detection algorithm based on YOLOX
to address the failure of complete shell–kernel separation after airflow selection. To verify
the detection effect of the proposed algorithm in walnut shells-kernels, the images of
shell–kernel mixtures that have not been separated and have disordered distribution
after breaking walnuts were labelled. It achieved fast and accurate walnut shell–kernel
detection based on the YOLOX target detection network, aiming for a fast, high-efficiency,
lightweight walnut shell–kernel detection model. Moreover, the same dataset was selected
for comparison with YOLOv3, Faster Region-based Convolutional Neural Network (Faster
R-CNN), and the Single Shot MultiBox Detector algorithms (SSD) network models. This
study provides references to investigate the walnut shell–kernel separation technology and
research and development of online separation devices.

2. Materials and Methods
2.1. Materials
2.1.1. Data Acquisition and Processing of Walnut Shells and Kernels

Different species of walnuts have significant differences in appearance. For example,
Wen 185 Walnut has thin pericarps and smooth shells. Yunnan Juglans sigillata has an
obovate kernel with flat surfaces at two ends and wrinkles on the surface (Figure 1). These
factors may influence the walnut shell–kernel recognition effect. Two major species (Yunnan
Juglans sigillata and Wen 185 Walnut) in the primary producing areas of walnut in China
were selected to obtain target detection models applicable to different walnut species. After
breaking, the samples of walnut-shell–kernel mixtures were prepared. Using the Nikon
D3500 camera, a total of 2753 photos were captured at the same height and background. The
pictures were taken at a resolution of 3904 pixels × 2928 pixels in March 2023. The quality
of the photos was primarily evaluated based on traditional personal perception [23,24],
which generally met the practical criteria for shell and kernel separation conditions.
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Figure 1. Different walnut species. (a) Yunnan Juglans sigillata. (b) Wen 185.

During walnut shell–kernel detection, numerous factors, such as walnut species,
illumination, and shell–kernel distribution, may generate differences in walnut shell–kernel
pictures and thereby influence their recognition effect (Figure 2). Walnut shell–kernel
images under different scenes were collected. To obtain the optimal model for walnut
shell–kernel target detection, the images of shells and kernels of Yunnan Juglans sigillata
and Wen 185 Walnut under natural light and supplementary light, with and without mutual
shielding, were collected in this study.

2.1.2. Dataset Preparation

A total of 2753 images were collected in this study. The walnut shell and kernel datasets
were manually labelled using Labelme-master (Labelme-master 5.1.1, USA), during which
the label frames selected the minimum enclosing rectangles of walnut shells and kernels.
Label documents in the JSON format were produced. Because this study focused on walnut
shell–kernel recognition, the images were only divided into shells, kernels and background
while making labels. Only the shell and kernel must be labelled, whereas other parts of
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the image were labelled as background automatically using Labelme. Later, the JSON data
were transformed into data in the COCO format.
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Figure 2. Images of walnut shell–kernels under different scenes: (a) natural light, (b) supplementary
light, (c) with mutual shielding, and (d) without shielding.

2.1.3. Test Conditions

The training and test of research models of Yunnan Juglans sigillata and Wen 185
were conducted under the same conditions. The hardware setting of the device was 12th
Gen Intel(R) Core(TM) i7-12700H 2.70 GHz, 11 GB NVIDIA GeForce RTX 2050Ti as CPU,
16 GB memory, and 64-bit Windows 11 system. The PyTorch deep-learning framework was
applied, and the PyCharm programming platform was used.

2.2. Methods
2.2.1. Walnut Shell–Kernel Recognition Algorithm Based on YOLOX

YOLO (You Only Look Once) is an object recognition and positioning algorithm based
on deep neural networks. It is an end-to-end real-time object detection system that treats
the object detection task as a regression problem. YOLO series algorithms are favoured by
engineering researchers for their fast response, high accuracy, simple structure, and easy
deployment. The YOLOX model has improved and optimised based on the YOLO v5 net-
work model from three aspects: decoupled head layer, data enhancement and anchor-free.
Additionally, the model has been widely used due to its high accuracy and efficiency [25,26].
Unlike Faster R-CNN, YOLO can predict several candidate frames simultaneously. Based
on the idea of regression, it directly detects target positions and classifies target objects via
the first-order network [27,28]. Compared with a series of target detection algorithms like
R-FCN and Faster R-CNN, YOLO has an outstanding characteristic of high operational
speed and can meet end-to-end training and real-time detection [29]. In this test, walnut
shell–kernel detection was realised based on the YOLOX deep convolutional neural net-
work model, and the optimal model was achieved via 110 epochs of training. The validity
and adaptation of the model were verified by comparing evaluation metrics.

2.2.2. YOLOX Network Structure

YOLOX uses the overall layout of the YOLO series, and its network structure mainly
comprises Input, Backbone network, Neck network and Prediction [25,26]. Figure 3 shows
the structure of YOLOX. Similar to YOLOv4 and YOLOv5, the Input applies the Mosaic data
enhancement mode. Images were spliced after stacking, scaling, tailoring, and arranging
different images [30]. The optimal anchoring frame value of the dataset was calculated
automatically. The Backbone primarily consists of Focus and CSP. Based on YOLOv4-
tiny, it realised a cross-stage local fusion network. In YOLOX, the input images are first
cut into pieces in Focus, and the original input is divided into two branches using the
GSPDarknet structure for convolutional operation and N residual block operation. Later,
the branches were joined [31]. This action effectively relieves the vanishing gradient
problem and decreases the number of network parameters. Moreover, it not only shortens
the calculation time but also increases precision. The spatial pyramid pooling structure
was applied at the position of the Backbone output, and the maximum pooling feature
extraction was conducted by pooling nuclei with different sizes. This enhances the reception
field of convolutional kernels effectively and is conducive to extracting richer local feature
information [32]. The Neck comprises feature pyramid networks (FPN) + path aggregation
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network (PAN). From top to bottom, FPN integrates the deep layer features with superficial
layer features by upsampling. It is mainly used to transfer semantic features. From bottom
to top, PAN transfers superficial layer features to deep layers and integrates them. It is
primarily used to transfer positioning information [33]. The prediction of YOLOX changed
Yolohead into Decoupled Head [25] and realised regression and classification in two parts.
Regression and classification are integrated during prediction. Moreover, the convergence
rate and precision of the algorithm are improved.
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2.2.3. Evaluation Metrics

To verify practicability and detection effect of the YOLOX model, the same dataset was
selected for comparison with YOLOv3, Faster R-CNN and SSD network model. Average
precisions (AP50, AP75, and APs) at the intersection over union (IOU) = 0.50, IOU = 0.75 and
IOU = 0.50:0.95 and average recall (AR) at IOU = 0.50:0.95 were selected as the evaluation
metrics of performances of the walnut shell–kernel detection training model.

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)

AP =
∫ 1

0
P(R)dR (3)

where P refers to precision and R is recall. TP means the number of accurately predicted
positive samples. FP is the quantity of wrongly predicted positive samples. FN is the
quantity of wrongly predicted negative real samples.
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3. Results and Analysis
3.1. Model Training

In this study, 110 training epochs were performed on the dataset. Figure 4 shows the
network training results. From the beginning to the 25th epoch of training, the learning
efficiency of the model was high, and the loss curve demonstrated a high convergence
rate. At about the 750th iteration, the learning efficiency of the model reached saturation
gradually, and the loss fluctuated at about 1.4. The AP (IOU = 0.5) was 96.3% for the
final training model, and the AR was 84.7%. The AP (IOU = 0.75) was 92.4%, and the AP
(IOU = 0.50:0.95) was 80.6%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 13 
 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

(2) 

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0

𝑑𝑅 
(3) 

where P refers to precision and R is recall. TP means the number of accurately predicted 

positive samples. FP is the quantity of wrongly predicted positive samples. FN is the 

quantity of wrongly predicted negative real samples. 

3. Results and Analysis 

3.1. Model Training 

In this study, 110 training epochs were performed on the dataset. Figure 4 shows the 

network training results. From the beginning to the 25th epoch of training, the learning 

efficiency of the model was high, and the loss curve demonstrated a high convergence 

rate. At about the 750th iteration, the learning efficiency of the model reached saturation 

gradually, and the loss fluctuated at about 1.4. The AP (IOU = 0.5) was 96.3% for the final 

training model, and the AR was 84.7%. The AP (IOU = 0.75) was 92.4%, and the AP (IOU 

= 0.50:0.95) was 80.6%. 

  

Figure 4. Training results. 

3.2. Detection Results 

In total, 550 walnut shell–kernel images in the test set were selected to verify the va-

lidity of the YOLOX network under different walnut shell–kernel detection scenes. Ac-

cording to test results, the AP50 and AR of YOLOX were 97.2% and 84.7% with respect to 

different walnut shell–kernel separations, respectively. The floating point operations per 

second (FLOPs) were 351.9, and the model size was 99 MB. The model presented high 

detection precision and speed and was robust under mutual shell–kernel shielding and 

illumination. Figure 5 shows the detection results. The confidence of detection results is 

presented above the detection frame. In Figure 5, all species of walnut shells and kernels 

could be recognised accurately, and the confidence is higher than 0.90. This outcome 

demonstrates that the proposed algorithm can effectively distinguish walnut shells and 

kernels in the mixture under different scenes with relatively high detection confidence. 

Figure 4. Training results.

3.2. Detection Results

In total, 550 walnut shell–kernel images in the test set were selected to verify the
validity of the YOLOX network under different walnut shell–kernel detection scenes.
According to test results, the AP50 and AR of YOLOX were 97.2% and 84.7% with respect
to different walnut shell–kernel separations, respectively. The floating point operations
per second (FLOPs) were 351.9, and the model size was 99 MB. The model presented high
detection precision and speed and was robust under mutual shell–kernel shielding and
illumination. Figure 5 shows the detection results. The confidence of detection results is
presented above the detection frame. In Figure 5, all species of walnut shells and kernels
could be recognised accurately, and the confidence is higher than 0.90. This outcome
demonstrates that the proposed algorithm can effectively distinguish walnut shells and
kernels in the mixture under different scenes with relatively high detection confidence.
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3.3. Performance Comparison of Several Target Detection Algorithms

To evaluate the walnut shell–kernel detection effect of the YOLOX network, the walnut
shell and kernel training sets were trained based on YOLOv3, SSD [27], and Faster R-CNN
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target detection algorithms under the same conditions. The number of training epochs was
set at 110. Moreover, the performance of the above four detection algorithms was evaluated
using the test set. The visual confusion matrix of performance comparison and evaluation
metrics of the detection model at IOU = 0.5 are shown in Figure 6 and Table 1, respectively.
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Table 1. Performance comparison of several target detection algorithms.

Algorithm Model
Size/MB FLOPs AP50(%) AP75(%) APs(%) AR(%)

YOLOX 99 351.9 96.3 92.4 80.6 84.7
YOLOv3 61.53 193.87 94.2 83.7 68.5 74.7

Faster-RCNN 98.85 427.07 95 89.1 76.7 82.4
SSD 3.04 7.02 92.9 82.6 70.9 75.7

Table 2 shows that the YOLOX model side is basically equivalent to the Faster R-CNN
target detection algorithm and is larger than YOLOv3 and SSD target detection algorithms.
Compared with YOLOv3, Faster R-CNN, and SSD target detection algorithms, the AP of
YOLOX at IOU = 0.50 is increased by 2.1%, 1.3%, and 3.4%, and the AR is increased by
10%, 2.3%, and 9%, respectively. The AP at IOU = 0.50:0.95 is increased by 12.1%, 3.9%, and
9.8%, respectively.
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Table 2. Detection results of several algorithms under different conditions.

Algorithm Considered
Factors Sample Condition AP50 (%) APs (%) AR (%)

YOLOX

Walnut species Wen 185 96.8 80.9 84.8
Yunnan Juglans

sigillata 95.7 76.3 80.5

Light source Supplementary light 95.7 75.5 79.8
Natural light 95.9 81.3 85.2

Shielding
condition

With mutual shielding 95.8 78.1 82.0
Without shielding 96.4 79.8 83.7

YOLOv3

walnut species Wen 185 95.2 70.0 75.7
Yunnan Juglans

sigillata 94.1 65.2 71.8

Light source Supplementary light 94.2 64.6 71.4
Natural light 95.0 70.4 75.9

Shielding
condition

With mutual shielding 94.5 65.6 71.6
Without shielding 95.8 71.2 76.6

Faster
-RCNN

Walnut species Wen 185 95.4 79.3 84.3
Yunnan Juglans

sigillata 95.6 74.3 80.1

Light source Supplementary light 95.3 73.5 79.6
Natural light 95.7 79.7 84.6

Shielding
condition

With mutual shielding 95.7 75.7 81.2
Without shielding 96.4 78.8 83.8

SSD

walnut species Wen 185 94.2 72.0 76.7
Yunnan Juglans

sigillata 92.9 67.3 72.7

Light source Supplementary light 93.0 67.0 72.4
Natural light 93.6 72.0 76.5

Shielding
condition

With mutual shielding 92.8 67.1 71.9
Without shielding 96.4 78.8 83.8

The 550 images in the test set were classified according to walnut species, illumination,
and shielding conditions. Given the same test condition, the walnut shell–kernel image test
sets under different scenes were tested using the above four target detection algorithms.
Table 2 presents the test results of different algorithms.

Table 2 shows that the YOLOX detection model achieves relatively high AP and AR
values under different walnut species, illumination, and shielding conditions. The AP and
AR values of the YOLOX detection model are equivalent to those of Faster R-CNN and are
evidently superior to those of YOLOv3 and SSD models. According to the results, YOLOX
can quickly detect walnut shell–kernel in the target detection model. The YOLOX algorithm
is a relatively good selection for online walnut shell–kernel separation with considerations
to both recognition precision and detection speed.

3.4. Walnut Shell–Kernel Detection Effect Analysis under Different Scenes
3.4.1. Detection Analysis of Different Walnut Species Based on the Network Model

Shells and kernels of Wen 185 and Yunnan Juglans sigillata were detected using
the YOLOX network (Figure 7). According to detection, the AP50 values were 96.8%
and 95.7%, the AR values were 84.8% and 80.5%, and the APs values were 80.9% and
76.3%, respectively. The results demonstrated that the YOLOX network could still accu-
rately distinguish the shells and kernels of different walnut species with relatively high
detection confidence.



Appl. Sci. 2023, 13, 10685 9 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 13 
 

3.4. Walnut Shell–Kernel Detection Effect Analysis under Different Scenes 

3.4.1. Detection Analysis of Different Walnut Species Based on the Network Model 

Shells and kernels of Wen 185 and Yunnan Juglans sigillata were detected using the 

YOLOX network (Figure 7). According to detection, the AP50 values were 96.8% and 95.7%, 

the AR values were 84.8% and 80.5%, and the APs values were 80.9% and 76.3%, respectively. 

The results demonstrated that the YOLOX network could still accurately distinguish the 

shells and kernels of different walnut species with relatively high detection confidence. 

  
(a) (b) 

Figure 7. Detection effects of different walnut species. (a) Wen 185. (b) Yunnan Juglans sigillata. 

3.4.2. Walnut Shell–Kernel Detection Effect Analysis under Different Illumination  

Intensities 

To verify the walnut shell–kernel recognition effect of the model under different illu-

mination conditions, the shells and kernels of Wen 185 and Yunnan Juglans sigillata were 

tested using the YOLOX algorithm in this study. The AP50 of detection results were 95.7% 

and 95.9%. The AR values were 79.8% and 85.2%. The APs values were 75.5% and 81.3%. 

Figure 8 depicts the detection effects. To summarise, the YOLOX network can accurately 

recognise the walnut shells and kernels under different illumination conditions, with rel-

atively high detection confidence. 

  
(a) (b) 

Figure 8. Detection effects under natural light and supplementary light. (a) Natural light. (b) Sup-

plementary light. 

3.4.3. Walnut Shell–Kernel Detection Effect under Mutual Shielding 

To evaluate the walnut shell–kernel recognition effect under complicated conditions, 

the shells and kernels of Wen 185 and Yunnan Juglans sigillata with mutual shielding were 

tested using the YOLOX algorithm. The AP50 values were 95.8% and 96.4%. The AR values 

were 82% and 83.7%. The APs values were 78.1% and 79.8%. Figure 9 shows the detection 

Figure 7. Detection effects of different walnut species. (a) Wen 185. (b) Yunnan Juglans sigillata.

3.4.2. Walnut Shell–Kernel Detection Effect Analysis under Different
Illumination Intensities

To verify the walnut shell–kernel recognition effect of the model under different
illumination conditions, the shells and kernels of Wen 185 and Yunnan Juglans sigillata
were tested using the YOLOX algorithm in this study. The AP50 of detection results were
95.7% and 95.9%. The AR values were 79.8% and 85.2%. The APs values were 75.5% and
81.3%. Figure 8 depicts the detection effects. To summarise, the YOLOX network can
accurately recognise the walnut shells and kernels under different illumination conditions,
with relatively high detection confidence.
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3.4.3. Walnut Shell–Kernel Detection Effect under Mutual Shielding

To evaluate the walnut shell–kernel recognition effect under complicated conditions,
the shells and kernels of Wen 185 and Yunnan Juglans sigillata with mutual shielding
were tested using the YOLOX algorithm. The AP50 values were 95.8% and 96.4%. The
AR values were 82% and 83.7%. The APs values were 78.1% and 79.8%. Figure 9 shows
the detection effects. The YOLOX network could accurately recognise walnut shells and
kernels accurately under mutual shielding with relatively high detection confidence.
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4. Discussions

Table 2 demonstrates the superiority of the YOLOX detection model over YOLOV3,
Faster-RCNN, and SSD. To achieve this, YOLOX uses the Mosaic data enhancement strategy
for input and replaces the traditional YOLO baseline header with a decoupling baseline,
significantly improving the convergence speed. In addition, SimOTA is used, reducing
training time and avoiding extra solver hyperparameters in the Sinkhorn Knopp algorithm,
thereby improving detection accuracy and efficiency. In this paper, YOLOX obtained good
recognition accuracy for walnut shell kernel detection in different scenarios, including
complex cases such as occluded shell kernels. This performance meets the requirements for
online real-time detection of walnut shell kernels. Yu et al. [34] used an improved YOLOv5
series algorithm to detect mixed materials in walnut kernels, achieving an mAP value
of 88.9%. Meanwhile, Pham et al. [35] used the YOLOv7 series algorithm to detect and
identify the good, bad, or incomplete cashews on a packaging production line, with an
average identification accuracy (mAP) of about 90%, demonstrating good results. While
near-infrared spectroscopy is also an important tool in nut detection [36], it demands higher
hardware requirements. YOLO-based detection technology has higher detection efficiency,
more affordable detection equipment, and a wider range of application objects. Moreover, it
has certain advantages in detection accuracy, making it suitable for current online detection
and identification requirements for walnut shell kernels.

However, it is important to note that the YOLOX model does have limitations. As
shown in Figure 10, after the walnut shell breaks, the shell kernels exhibit different shapes,
and their appearance closely resembles that of walnut shells. When shell kernels densely
block each other and have similar appearances, the detection performance of walnut shells
and kernels is slightly poor, resulting in lower confidence scores. Sometimes, the model
may mistakenly predict two closely contacted and shielded walnut shells or kernels within
a box, resulting in target positioning errors or reduced confidence. In addition, when
exposed to strong light, the detection accuracy is limited due to overexposure in the central
region of images caused by manual photo acquisition, resulting in increased similarity
between shell kernels and unclear details [37]. The YOLOX detection model struggles to
extract features effectively when processing walnut shell kernels with similar appearances,
resulting in reduced confidence in some images during detection.

In future research work, the utilisation of scientific image acquisition can be employed
to further improve the photo accuracy of walnut shells and kernels [38,39]. In addition, the
future should aim to create a more lightweight detection model, exploring the replacement
of the backbone network with other lightweight alternatives and reducing the number of
model parameters.
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5. Conclusions

The YOLOX algorithm is applied in this study to realise the fast recognition and accu-
rate separation of walnut shells and kernels after breaking. Some significant conclusions
could be drawn as follows:

(1) For walnut shell–kernel detection, the AP50, APs, and AR of the YOLOX algorithm are
96.3%, 80.6%, and 84.7%, respectively. The model size was 99 MB, and the FLOPs were
351.9. The AR of the YOLOX target detection algorithm is increased by 10%, 2.3%,
and 9% than those of YOLOv3, Faster R-CNN, and SSD target detection algorithms.
Moreover, APs increased by 12.1%, 3.9%, and 9.8%, respectively. Moreover, YOLOX
has apparent advantages in the model size and detection speed. It can decrease the
consumption of memory to a great extent during model training, which is beneficial
for the migration application of the model.

(2) Under different walnut species, supplementary light, and shielding conditions, AP50
of the YOLOX algorithm is higher than 95%, and AR is higher than 79%. The YOLOX
algorithm can realise accurate walnut shell–kernel recognition and has good ro-
bustness. Research conclusions can provide technological support to walnut shell–
kernel separation.
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