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Abstract: It is extremely important to gather the viscosity behavior of fluids accurately for industries
and academia. There is no better method than viscosity measurement to detect changes in the specific
characteristics of the materials. However, viscosity measurement is indeed a very sensitive process. In
nature, fluids are involved in widely various containers, and they are affected by serious temperature
deviations. It is a necessity for viscometers to have the capability to obtain accurate data from
all types of containers of fluids even in serious temperature variations in order to understand the
natural phenomena inside the fluids. Conventional viscometers mainly neglect the effect of sudden
temperature deviations inside the fluids, or they need to use very expensive water bath systems that
stabilize the temperature around the test fluids, which is not feasible at all. In this research, the effects
of non-uniform temperature fields are analysed detailly to confirm that even in extremely limited
amounts, serious viscosity and temperature deviations may occur. Experiments were performed in
two parts. The first part was conducted using several thermocouples with different test fluids to find
out the effects of thermal conduction and convection. For the second part, particle image velocimetry
(PIV) was utilized to comprehend the flow movement within the test fluids. It was shown that even
for small volumes and even in very controlled environments, an almost 35% viscosity measurement
error (VME) occurs. Finally, as a solution to this problem, a new non-dimensional parameter called
the Akpek number was proposed. The Akpek number enables the estimation of VMEs in any possible
case. VME is a very crucial obstacle that has urgency to be illuminated by researchers and scientists
to improve fluid characteristics. The main goal of this research is to illuminate the importance of
this problem and offer a potential solution. The final results are supported by experimental data and
numerical simulations using OpenFOAM.

Keywords: viscosity measurement; heat transfer; non-dimensional parameter

1. Introduction

Viscosity is a critical parameter for defining fluid quality in various industrial, scien-
tific, and engineering applications. The significance of viscosity lies in its direct correlation
with a fluid’s performance, efficiency, and behavior within dynamic systems. High-quality
fluids are characterized by consistent and predictable viscosities, as this property affects
the overall fluid dynamics and heat transfer capabilities. For instance, in the field of lu-
bricants and hydraulic fluids, appropriate viscosity ensures efficient energy transmission
and reduces wear and tear on mechanical components [1]. Viscosity measurement is also
used to detect contamination levels in lakes [2–4]. The viscosity level of a lake rises if the
lake is contaminated. In chemical processes, the proper control of viscosity is vital for
optimizing reaction rates and product yield [5]. Furthermore, in medical and pharmaceu-
tical applications, the viscosity of fluids can impact drug delivery systems and patient
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safety [6]. In a similar manner, blood viscosity is utilized to comprehend cardiovascular
diseases in medicine [7,8]. Therefore, understanding and defining fluid quality via viscosity
assessment is imperative for ensuring optimal performance and reliability across diverse
industrial sectors. There is no better method than viscosity measurement to detect changes
in the specific characteristics of materials [9].

Viscosity measurement is a crucial aspect of fluid characterization, but it comes with
its fair share of challenges. One of the primary difficulties lies in accurately measuring vis-
cosity across a wide range of fluids, from low-viscosity liquids to highly viscous substances.
Traditional methods like capillary viscometry and rotational viscometry may struggle to
provide precise results for non-Newtonian fluids, which exhibit complex viscosity behav-
iors under different shear rates [10]. Moreover, the presence of suspended particles or
bubbles in the fluid can further complicate viscosity measurements, leading to inaccurate
readings [11]. In addition to these challenges, heat transfer effects can significantly impact
viscosity measurements. Temperature changes can alter a fluid’s viscosity, and maintain-
ing a consistent temperature throughout the measurement process is essential to ensure
accurate results [12]. Non-isothermal conditions can induce temperature gradients within
the fluid, leading to variations in viscosity readings. Researchers must carefully consider
the impact of heat transfer on viscosity measurements and implement appropriate temper-
ature control techniques to minimize potential errors. Addressing these difficulties and
understanding the effects of heat transfer is crucial for obtaining reliable and meaningful
viscosity data across various fluid systems.

In normal conditions, heating from the surrounding environment causes heat trans-
fer [13–15]. The three fundamental modes of heat transfer are conduction, convection, and
radiation [16]. In this research, heat transfer through radiation is not taken into account
since its effect is negligible. The level of heat transfer is crucial to evaluate the accuracy of
the viscosity measurement in almost all types of viscometers [17]. However, there are only
a few studies available in the literature which focus on the viscosity measurement errors
caused by the uneven temperature fields within the fluids [18–21]. This research includes a
much expanded and deeper analysis of these previous studies.

In this research, the effects of non-uniform temperature fields are analysed detailly
in order to confirm that even in limited amounts, serious viscosity and temperature de-
viations may exist. It is shown that even for small volumes and even in very controlled
environments, an almost 35% viscosity measurement error occurs. The final results are
supported by experimental data and numerical simulations using OpenFOAM [22]. Finally,
as a solution to this problem, a new non-dimensional parameter for optimum heating
speed called the Akpek number is proposed. The Akpek number enables the estimation
of VMEs in any possible case, thus assisting researchers in calculating viscosities in any
possible case.

2. Experimental Design

The experiments were performed in two parts in two different experimental beakers
to prove that significant viscosity and temperature variations can occur even in very small
volumes. The first part focused on understanding the effects of thermal conduction and
convection by measuring the magnitude of the uneven temperature field within the test
liquids using several thermocouples. The results were supported by several simulations.
In the second part, Particle Image Velocimetry (PIV) was used to understand the flow
motion within the test fluids. A much smaller sample cup was used to obtain better
images. To achieve statistically accurate data, the experiments were carried out three times.
Three different fluids with distinct viscosities were utilized throughout the experiments to
evaluate the influence of temperature deviations on viscosity measurement.

The volume of the test cup used for thermal conduction and convection has a height of
20 cm and horizontal dimensions of 10.8 cm × 10.8 cm. Meanwhile, the volume of the test
cup used for flow visualization is much smaller, with a height of 40 mm and horizontal di-
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mensions of 64 mm× 24 mm. Figures 1 and 2 show schematic diagrams of the experimental
setups for thermal conduction and convection and for flow visualization, respectively.
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Figure 2. Schematic illustration of experimental setup for flow visualization.

The heating cup has a volume of 11,236 cm3 for the thermal conduction and convection
experiment and 3375 cm3 for the flow visualization experiment. The test fluids were
introduced into the sample cups up to a height of 20 cm for the first experiment and up
to 30 mm for the flow visualization experiment. In both experiments, the heights of the
test fluids and the heating water were set to be equal to each other. The experiments were
performed at room temperature.

2.1. Test Fluids

The test fluids used in the experiments are silicone oils purchased from Shinetsu
Chemical Co. located in Yokohama, Japan. Their viscosity–temperature characteristics
are presented in Figure 3. These fluids are denoted as Fluid A (KF-96-100 cSt), Fluid B
(KF-96-1000 cSt), and Fluid C (KF-96H-10000 cSt), and have different kinematic viscosities
of 100, 1000, and 10,000 mm2/s, respectively, at 25 ◦C. It is noteworthy that all three liquids
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have the same specific heat of 1.5 J/g·◦C and a thermal conductivity of 0.16 W/m·◦C
despite their different viscosities.
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2.2. Temperature Measurement in Thermal Conduction and Convection

As shown in Figure 4, a total of nine precise and calibrated thermocouples (accurate
to ±0.02 ◦C) are strategically placed at various locations in the experimental beaker. The
experimental cup is then placed in the center of a second cup, which serves as the heating
cup. Water is used as the heating fluid, and six thermocouples are also placed in this
heating beaker to ensure a uniform temperature of the heating fluid. To achieve controlled
heating, the temperature of the heating fluid is gradually increased at a constant rate of
5 ◦C per minute, which is controlled by a 2500-watt resistor at the bottom and four 200-watt
resistors (one at each corner) of the heating cup, as shown in Figure 4. It is expected that
the use of five resistors can produce more homogeneous temperature fields, minimizing
viscosity measurement errors. Throughout the experiments, the temperature values of all
thermocouples are recorded simultaneously to analyze the temperature distribution in
the fluid.
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In this experimental setup, four thermocouples are located near the liquid surface at a
depth of 5 cm, while another set of four thermocouples is located near the liquid bottom at
a depth of 15 cm. In addition, a single thermocouple is placed in the center of the liquid at
a depth of 10 cm. This detailed arrangement allows for a comprehensive analysis of the
thermal fields within the sample cup. The thermocouple sensors within the sample cup are
referred to as internal sensors (IS), while the sensors within the heating cup are referred to
as external sensors (ES). In addition, the thermocouple in the center of the fluid is referred
to as the central sensor. The sensors IS1, IS3, IS5 and IS7 are located near the surface, the
sensors IS2, IS4, IS6 and IS8 are located near the bottom and the sensor IS9 is located in the
center of the liquid.

2.3. Flow Visualization

To gain insight into the physical phenomena in the test cup, the velocity field is mea-
sured using Particle Image Velocimetry (PIV). The experimental setup for flow visualization
is shown in Figure 5. To visualize the flow in the test fluid, a small amount of nylon tracer
particles with a diameter of 20 µm and a specific gravity of 1.02 are introduced. Planar
measurement of the velocity field is performed using a PIV system consisting of a CW
Nd:YAG laser of 8 W power and a high-speed CMOS camera (1280× 1024 pixels with 8-bit)
operated by a pulse controller. The CMOS camera is positioned at a distance of 550 mm
from the test cup. The frame rate of the camera is set to 130 frames per second with an
exposure time of 7.6 ms. It is important to note that the camera lens has a focal length of
75 mm and an f-number of 2.8, while the thickness of the light sheet used for visualization
is approximately 1 mm [23,24].
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To continuously monitor the temperature in the test cup, three thermocouples are
strategically placed at different locations. The test cup is immersed in a heating cup during
these temperature measurements. The thermocouples are specifically positioned along the
longitudinal axis of the test cup, with one in the center and the other two near the wall.
This arrangement allows comprehensive collection of temperature data from various points
in the test fluid.

To ensure accuracy, these experiments are repeated three times, and the average values
obtained from these repetitions are used to create a non-uniform temperature field for each
liquid. The heating process is facilitated by a heating unit located under the heating water.

Throughout the experiments, the temperature readings of all three thermocouples
are recorded simultaneously. The thermocouples are placed at a depth of 20 mm in the
test fluid.

3. Mathematical Background

To understand the heat transfer phenomenon in the test cup, the Rayleigh number (Ra),
the Grashof number (Gr) and the Prandtl number (Pr) are evaluated for the three fluids.

The Rayleigh number is defined by

Ra =
gβ∆Tl3

να
, (1)

the Grashof number is defined by

Gr =
gβ∆Tl3

ν2 , (2)

and the Prandtl number is defined as

Pr =
ν

α
, (3)

where l is the characteristic length (distance of (IS1–IS9) in x coordinates), ∆T is the tem-
perature difference between the surface and the center of the test fluid ((aritmetic average
of IS1, IS3, IS5, IS7)–(IS9)), g is the gravitational acceleration, β is the volume expansion
coefficient, ν is the kinematic viscosity and α is the thermal diffusivity. In addition, the
Rayleigh number is simply the multiplication of the Grashof number and the Prandtl
number (Ra = Gr × Pr).

For all fluids, the thermal diffusivity coefficient is 0.07 mm2/s, the expansion coefficient
is 0.00095 (1/◦C) and the gravitational acceleration is 9.8 m/s2. The kinetic viscosities at
different temperatures are presented in Figure 3.

The heat distribution can be simulated in 3D using the heat equation [25]. For this
purpose, a transient incompressible solver of the OpenFOAM platform is used, which
implements the following temperature equation within the concept of thermal conduction:

∂T
∂t
−∇(k∇T) = 0. (4)

In the given equation, T represents temperature, t represents time, and k represents the
thermal diffusivity coefficient, which was set to 0.07 for the simulations. Figure 6 illustrates
the computational geometry, where the four sides and the bottom part of the domain are
defined as walls, while the top side is open to the atmosphere.
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Figure 7 shows a carefully selected structured grid with 128,000 hexahedral cells
generated using the blockMesh tool in OpenFOAM. This image shows the sensitivity
analysis performed for the simulations and illustrates the influence and impact of the
selected grid structure.
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Figure 7. A chosen structure grid.

Boundary conditions were carefully selected to be consistent with experimental set-
tings. In particular, the temperature on the four sides and in the bottom part of the domain
was gradually increased from 298 K to 363 K over a period of 10 min. In addition, the
change in fluid viscosity was assumed to remain constant during the temperature increase
due to the small magnitude of the change.
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The calculations were performed on a PC equipped with an Intel Core i7 CPUX980
@ 3.33GHzX eight cores (each core with two threads) and 12 GB RAM. Each calculation
required approximately 1.5 days to complete.

4. Results and Discussion

Figure 8 presents the change in Rayleigh, Grashof and Prandatl numbers through time.
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The temporal changes in the Rayleigh number for the test fluids show a rapid increase
during the initial phase of heating, followed by saturation in the later phase. The Rayleigh
number is a dimensionless parameter that is critical to the calculation of natural convection.
The onset of convection occurs when the Rayleigh number reaches a critical value. Thus,
it is an important indicator for determining whether natural convection is laminar or
turbulent. It is simply the product of the Grashof number and the Prandtl number.
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In this research, it should be noted that the Rayleigh number for test fluid A reaches
approximately 106 in the later stages of heating, while it is about 105 for test fluid B, and
about 104 for test fluid C.

The Grashof number is a parameter that helps us understand the turbulent regime
within the fluid. A higher Grashof number indicates a turbulent boundary layer, while
a lower Grashof number indicates a laminar boundary layer [26]. It is important to note
that the Grashof number for liquid A exceeds 102 towards the end of the heating process.
This means that after the eighth minute, thermal convection becomes more dominant than
thermal conduction.

Furthermore, the Prandtl number is another significant parameter in our study. Smaller
Prandtl numbers signify a greater effectiveness of thermal convection, while larger Prandtl
numbers indicate a higher effectiveness of thermal conduction [27]. Our experimental
findings demonstrate that as heating time increases, Prandtl numbers decrease, indicating
that thermal convection becomes more dominant. Moreover, as the viscosity of the fluid
decreases, the strength of thermal convection also increases.

Figure 9 confirms significant temperature variations between thermocouples in both
the thermal conduction and convection experiments. These experimental results align
with the mathematical outcomes based on Rayleigh, Prandtl and Grashof numbers. As the
heating period increases, the temperature differences among the thermocouples of Fluid A
become significantly smaller compared to Fluid B and Fluid C, indicating a decrease in the
Prandtl number. With the Grashof number surpassing 102 for Fluid A, thermal convection
becomes more dominant, resulting in smaller temperature fluctuations.
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Similarly, Fluid B and Fluid C exhibit smaller Rayleigh numbers, which are not
significant enough to initiate turbulent flow within the fluids. As a result, laminar flow
becomes dominant and causes larger temperature fluctuations between the thermocouples.
On the other hand, the Rayleigh number of Fluid A is powerful enough to induce turbulent
flow, leading to smaller temperature variations among the thermocouples. Meanwhile,
the Rayleigh number of Fluid A is powerful enough to cause turbulent flow, representing
smaller temperature variations between the thermocouples.

As a reminder, the measurement of temperature deviations is crucial for this research,
as temperature deviations also mean deviations in viscosity.

Similar outcomes are presented from the flow visualization experiment. Figure 10
illustrates the temporal evolution of temperatures for the test fluids in the test cup, as well
as the heating water, as recorded by the thermocouples. All temperatures gradually rise as
time (t) progresses following the initiation of heating. Notably, the temperatures of the test
fluid and the heating water are initially maintained at the same level during the onset of
heating. While the relationship between temperature and time in the heating water remains
unaffected by fluid viscosities, the temperatures (Tc and Tb) within the cup are influenced
by the viscosity of the fluid. This effect becomes more pronounced for fluids with higher
viscosities, leading to an increased temperature difference.
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The heat transfer phenomenon for viscometers was also investigated through the
numerical simulations using OpenFOAM. The simulations are shown in Figures 11 and 12.
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Figure 13 displays velocity field measurements within planar sections observed from
the front and side of the test cup. These sections are taken through the center of Fluid A at
the eight-minute mark, as captured during the current PIV experiment. The figure presents
velocity vectors, magnitudes, and streamlines, providing insights into the flow dynamics
within the test cup. Notably, the velocity magnitude (v) is depicted using color-coded bars.
Importantly, it should be noted that the cell pattern exhibits asymmetry concerning the
midplane. This asymmetry arises due to the considerable Rayleigh number of 6.6 × 105,
which induces flow instability [28].
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Figure 13. Velocity field in test cup for Fluid A (100 cSt). (a) t = 4 min, (b) t = 8 min.

Figures 14 and 15 show the velocity fields in the test cup for Fluids B and C, respectively,
8 min after the initiation of the heating. These results indicate that the magnitude of the
thermal convection decreases as the viscosity of the fluid increases, corresponding to a
decrease in the Rayleigh and Grashof numbers and an increase in the Prandtl number.
Therefore, the influence of thermal convection becomes weaker for the highly viscous fluids
and thermal conduction becomes the main method for the heat transfer. This result agrees
well with the experimental observation of the temperature variations in the test cup and
the estimates of the Rayleigh, Grashof and Prandtl numbers in Figure 6.
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As a final discussion, VME graphic that is presented in Figure 16 explains a lot about
the serious problems in viscosity measurement during heat transfer.
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VME is calculated by [29]

logηT =
763.1

273 + T
− 2.559 + logη25, (5)

where ηT is kinetic viscosity (mm2/s
)

at T ◦C and −25 ◦C < T < −250 ◦C.

VME (%) =

(
100−

((
ηT

IS8x100
)

ηT
IS1

) )
, (6)

where ηT
IS8 and ηT

IS1 imply the viscosity of Fluid A, B or C at the points where IS8 (at the
bottom) and IS1 (at the surface) measure the temperature (T) at selected times.

Owing to pronounced thermal convection, low-viscosity fluids offer a more thermally
uniform environment, leading to reduced VMEs. Nevertheless, even within these favorable
circumstances, there is still a 15% occurrence of VMEs. In the case of highly viscous fluids,
the outcomes related to VMEs are notably more severe. As the duration of heating extends,
the incidence of VMEs escalates, reaching levels as high as 30%, ultimately invalidating all
viscosity measurements.
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5. The Proposal of a Non-Dimensional Parameter Called the Akpek Number as a
Possible Solution for VME

In the previous parts, the non-uniform temperature distribution problem was dis-
cussed. It is understood that this problem in viscometers is naturally caused by the thermal
conduction and thermal convection.

In both industry and academia, capillary viscometers are widely used to obtain stan-
dard viscosity values. These values are universally accepted as highly accurate due to the
absence of non-uniform temperature distribution issues in capillary viscometers. The tem-
perature measurement error in these instruments is typically within the range of ±0.02 ◦C,
ensuring precise viscosity measurements.

However, it is essential to note that capillary viscometers can only provide single-point
viscosity measurements. To acquire data equivalent to continuous viscosity measurements,
it often takes several days, requires a significant amount of labor force, and can be expensive.

Despite the precision of capillary viscometers, the limitation in achieving continu-
ous viscosity data has led to the exploration of alternative methods that strike a balance
between accuracy and efficiency. Researchers and industries are continually working to
develop innovative techniques that can provide more frequent and cost-effective viscosity
measurements without compromising accuracy.

In this section, a novel non-dimensional parameter is introduced to address the issue
of non-uniform temperature distribution during fluid heating and its impact on viscosity
measurements. The proposed concept suggests that there exists an optimal heating speed
for a fluid, considering factors such as applied heat flux, viscosity change rate, fluid volume,
and thermal diffusivity. By using this new concept, it becomes possible to eliminate the
problem of non-uniform temperature distribution in viscometers. Consequently, any type
of viscometer can provide viscosity measurements that are as accurate as those obtained
with a capillary viscometer.

To calculate the acceptable heating speed that can eliminate the non-uniform temperature
distribution problem, certain parameters need to be considered. These parameters include:

R = R
(

x, t, Ti, Tf , L, α,
dµ∗

dT
,

dTw

dt

)
. (7)

In Equation (7), x is location, t is time, Ti is initial temperature, Tf is final temperature,

L is the length between the center and the edge of the fluid, α is the thermal diffusivity,
dµ∗

dT
is the viscosity change in temperature and

dTw

dt
is the change in the temperature of edge of

the fluid in time.
By non-dimensionalizing these parameters, we can create a standardized equation

that removes the dependence on specific units and scales. This will enable us to solve
similar heating speed problems in a more general and applicable way.

Therefore, when the temperature is non− dimensionalized, θ∗=
θ

θi
=

T − Tf

Ti − Tf
. (8)

In Equation (8), non-dimensional temperature parameter θ∗ indicates the rate between
(T and Tf) and the maximum temperature difference that is (Ti − Tf). Based on this,
parameter θ∗ should remain in the interval of 0 < θ∗ < 1.

When x is non-dimensionalized,

X∗ =
X
L

. (9)

Therefore, when t is non dimensionalized,

t∗=
αt
L2 . (10)
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In Equation (10), t∗ is called the Fourier number.

When viscosity change in temperature (
dµ
dT

) is non-dimensionalized,

µ∗ =
µ

µt
=

µ− µ f

µi − µ f
. (11)

In Figure 17, the centerline temperature of an infinite cylinder is plotted as a function of
time. It can be observed that as the Fourier number increases, the temperature homogeneity
also increases. In fluid mechanics, the Fourier number is a dimensionless parameter used to
characterize heat conduction. Conceptually, the Fourier number represents the ratio of the
conduction rate to the storage rate of heat and is derived from the non-dimensionalization
of the heat conduction equation, as shown in Equation (12).
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Figure 17. Heisler chart and centerline temperature as a function of time [30].

The Fourier number plays a crucial role in understanding the heat transfer behavior in
various systems. As it increases, it indicates that heat conduction becomes more dominant
compared to heat storage effects, leading to a faster and more uniform temperature dis-
tribution within the system. This information is valuable for analyzing and solving heat
conduction problems in different engineering and scientific applications.

d2θ∗

dx∗2
=

dθ∗

dt∗
=

dθ∗

dFo
. (12)

The Fourier number includes the following parameters:

Fo = Fo (x, t, Ti, Tf, L, α). (13)

Figures 18 and 19 are presented as an example to the viscosity change in temperature

(
dµ∗

dT
) and the change in the temperature of the edge of the fluid in time (

dTw

dt
).
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Based on the Heisler chart in Figure 17, temperature homogeneity (θ∗) can be evaluated
regarding to the change in the Fourier number.

As an example, let us say we have a ratio of center temperature (Tc) to wall temperature
(Tw) in percentage as the Fourier number increases as in Figure 19a. In this figure, an inverse
Biot number is accepted as zero.

This means we should have a temperature difference (1 − Tc

Tw
) as in Figure 19b.

The viscosity change in temperature (
dµ∗

dT
) and the wall temperature change in time

(
dTw

dt
) is directly proportional to the temperature difference. Therefore, viscosity change

in temperature (
dµ∗

dT
) and the wall temperature change in time (

dTw

dt
) can only have a

multiplication or a division effect in Figure 19b. After these parameters are added, the new
graph appears as in Figure 20.
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temperature (
dµ∗

dT
), and the wall temperature change (

dTw

dt
) in time.

To achieve a minimum error in temperature measurement, the Fourier number is
assumed to be 1. Under this condition, the optimum settling time that results in the lowest
temperature measurement error is determined.

By setting the Fourier number to 1, the study aims to determine the most suitable
settling time that results in highly accurate temperature measurements. This finding is of
great importance for improving the precision of viscosity measurements and contributes to
the advancement of experimental methods in heat transfer analysis. Establishing an optimal
settling time is a critical step in minimizing potential errors in temperature-dependent
viscosity measurements, thereby improving the overall reliability and applicability of such
analyses in various research and industrial contexts.

t∗ =
L2

α
. (14)

As a result, a new non-dimensional parameter known as the Akpek number emerges

from the multiplication of the change in the viscosity by temperature (
dµ∗

dT
), the temporal

variation in the edge temperature of the fluid (
dTw

dt
), and the time parameter derived from

the Fourier Number.

Rakpek =

(
dTw

dt

)(
dµ∗

dT

)(
L2

α

)
. (15)

For the special case where the Biot number is zero and the Fourier number is one,
Figure 21 shows the relationship between the Akpek number and the viscosity measurement
error, which is directly linear with the temperature difference. This graph is based on the
data of the Heisler diagram.

This research result provides valuable insight into the influence of various parameters
on viscosity measurement accuracy, especially in scenarios where temperature variation
is significant. The Akpek number provides a comprehensive approach to quantifying the
acceptable rate of heating and enables the design of effective heating systems and vessels
for different types of fluids. The relationship presented between the Akpek number and vis-
cosity measurement error serves as a practical guide for optimizing viscosity measurements
in various experimental setups and industrial processes.
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From the obtained results, it can be deduced that an Akpek number of about 9.5 is
required to achieve zero viscosity measurement error for the sample fluid. The Akpek
number serves as a crucial parameter in designing vessels or determining the heating rate
for any type of fluid, either independently or interdependently. If the specific properties of
the sample vessel are known, the Akpek number can be used to determine an optimum
heating rate.

Moreover, the versatility of the Akpek number formulation allows its adaptation
to different scenarios in which the Biot number or the Fourier numbers differ from the
aforementioned values. By changing the t∗ number accordingly, the Akpek number can
be adapted to different conditions, ensuring accurate viscosity measurements for a wide
range of applications. This approach holds significant potential for improving the precision
of viscosity measurements and facilitates the development of efficient heating systems for
various liquid media.

6. Conclusions

The focus of this study is to investigate the effects of heat differences on viscosity mea-
surements by examining non-uniform temperature fields in various experimental setups.
The main objective is to understand the effects of heat convection and heat conduction
phenomena on viscosity measurement. A comprehensive methodology is employed that
includes mathematical principles of heat transfer, simulations, experiments, and Particle
Image Velocimetry (PIV) results.

Results indicate that inherent errors in viscosity measurement can occur even with
modern viscometers when temperature deviations are present. These errors can signifi-
cantly affect the quality and production processes of various types of fluids. To address
this problem, a non-dimensional parameter is proposed in this study. By incorporating
this parameter into viscometers, viscosity measurements can be calculated more accurately
regardless of the type of vessel, temperature variations, or properties of the viscous fluid.
The proposed approach is promising for improving the accuracy of viscosity measurements
and provides valuable insight for industries working with different fluid systems.
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