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Abstract: Auscultation primarily relies upon the acoustic expertise of individual doctors in identi-
fying, through the use of a stethoscope, the presence of abnormal sounds such as crackles because
the recognition of these sound patterns has critical importance in the context of early detection
and diagnosis of respiratory pathologies. In this paper, we propose a novel method combining
autoregressive (AR)-based spectral features and a support vector machine (SVM) classifier to detect
the presence of crackle events and their temporal location within the input signal. A preprocessing
stage is performed to discard information out of the band of interest and define the segments for
short-time signal analysis. The AR parameters are estimated for each segment to be classified by
means of support vector machine (SVM) classifier into crackles and normal lung sounds using a set
of synthetic crackle waveforms that have been modeled to train the classifier. A dataset composed of
simulated and real coarse and fine crackles sound signals was created with several signal-to-noise
(SNR) ratios to evaluate the robustness of the proposed method. Each simulated and real signal was
mixed with noise that shows the same spectral energy distribution as typically found in breath noise
from a healthy subject. This study makes a significant contribution by achieving competitive results.
The proposed method yields values ranging from 80% in the lowest signal-to-noise ratio scenario to a
perfect 100% in the highest signal-to-noise ratio scenario. Notably, these results surpass those of other
methods presented by a margin of at least 15%. The combination of an autoregressive (AR) model
with a support vector machine (SVM) classifier offers an effective solution for detecting the presented
events. This approach exhibits enhanced robustness against variations in the signal-to-noise ratio
that the input signals may encounter.

Keywords: respiratory; crackle; detection; AR model; SVM; accuracy; sensitivity; precision

1. Introduction

An increasing amount of economic and technological resources are being invested
in accelerating the early detection of respiratory diseases (for example, pneumonia) as
it is essential to providing effective medical treatment that minimizes risks to the health
of the patient and optimizes healthcare costs at the same time. According to the World
Health Organization (WHO), pneumonia is the leading cause of death in children, with
one million deaths in children under 5 years of age in 2017, which is equivalent to 15%
of all deaths in this population worldwide [1]. Although there are more sophisticated
clinical tests (for example, blood tests and chest X-rays) to diagnose most lung diseases
than the auscultation process [2], auscultation is the most widely used tool in health centers
in low-income countries and even in most rural areas of high-income countries when a
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first respiratory system examination is performed mainly due to its low cost and non-
invasiveness. However, auscultation depends largely on the acoustic training of each
pulmonologist to recognize, through the stethoscope, the presence of abnormal sounds that
are often associated with various respiratory pathologies, as occurs between crackles and
specific lung diseases such as congestive heart failure and pneumonia [3–5]. In addition, it
is important to note that crackles may not be heard by the doctor due to their short duration,
low rate of occurrence, and often low amplitude, which makes them difficult to be detected
by the human auditory system [6].

Respiratory sounds can be categorized into normal and abnormal sounds according
to the COmputerized Respiratory Sound Analysis (CORSA) guidelines [7]. Normal res-
piratory sounds (RSs) heard in healthy lungs are represented by a broadband spectrum
locating most of the energy between 60–1000 Hz [8]. One of these abnormal or adventitious
respiratory sounds are called crackles sounds (CSs), which are superimposed onto the RS,
generated by unhealthy lungs as a consequence of pulmonary disorders. Crackles can be
defined as discontinuous, short, explosive, and non-musical sounds with a spectral energy
located between 100 Hz and 2000 Hz [9] as shown in Figure 1. Specifically, crackles can
be classified as either coarse or fine. Coarse crackle sounds (CCs) are characterized by a
temporal duration ≤20 ms and can be heard in the early inspiratory and the expiratory
phases, showing a low pitch located around 350 Hz. One of the causes of these is the
presence of air bubbles in large bronchi [10]. Fine crackle sounds (FCSs) are characterized
by a temporal duration of ≤5 ms, active in the late inspiratory phase with a high pitch
located around 650 Hz. The cause of FCSs is the abrupt opening of small airways [10].
In the literature [11–13], it is common characterize both CCSs and FCSs using temporal
waveforms by means of two parameters: (i) tIDW (initial deflection width), which indicates
the temporal duration between the beginning of the crackle and the first deflection; and
(ii) t2CD (two-cycle deflection), which represents the time duration from the beginning of
the crackle to the time point where two cycles are completed. Specifically, (i) FCSs show
on average tIDW = 0.5 ms and t2CD = 3.3 ms whereas CCSs are represented on average
by tIDW = 1.0 ms and t2CD = 5.1 ms according to Hoevers et al. [11]; (ii) FCSs show on
average tIDW = 0.9 ms and t2CD = 6.0 ms whereas CCSs are represented on average by
tIDW = 1.25 ms and t2CD = 9.50 ms according to Cohen et al. [12]; (iii) FCSs show on
average tIDW = 0.7 ms and t2CD = 5 ms whereas CCSs are represented on average by
tIDW = 1.5 ms and t2CD = 10 ms according to the American Thoracic Society (ATS) [13].
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Figure 1. Magnitude spectrogram of a respiratory sound signal with a duration of ten seconds. The
crackle sounds often tend to show vertical lines due to their short duration and explosive nature. It
can be observed that most of the crackles are located in the intervals [0–0.7], [3.1–3.6], [6–6.4] and
[9.4–9.7] seconds.
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For many years, signal processing and machine learning approaches have been com-
bined for event detection and classification tasks using spectro-temporal features [14–16].
Specifically for the task of crackle sound detection, several approaches have been pro-
posed based on spectrogram analysis [17,18], autoregressive (AR) models [19,20], wavelet
transform [21–24], fractal dimension filtering [25–28], entropy [29,30], empirical mode
decomposition (EMD) [31], fuzzy systems [32], Gaussian mixture models (GMM) [33],
logistic regression [34], support vector machines (SVM) [35–37], independent component
analysis (ICA) [38], multi-perceptron networks (MPNs) [39], non-negative matrix factoriza-
tion (NMF) [40], convolutional neural networks (CNNs) [41,42], recurrent neural networks
(RNNs) [43,44] and hybrid neural networks [45,46]. Serbes et al. [23] detected crackle
sounds testing different windows and wavelets for time-scale analysis. The extracted
features were fed into SVM and k-nearest neighbor (kNN) models, but frequency bands
containing no crackle information were removed using a dual-tree complex wavelet to
reduce redundancy. Li and Hong [35] developed a crackle detection method using prepro-
cessing, feature extraction (ratio between frequency of limbic signal, standard deviation of
the limbic signal time, and the smoothing time of the limbic signal) and classification based
on SVM. In [43], an event detection approach for crackle detection, based on RNNs using
spectral features, was proposed. The approach exploited spectral information and temporal
dependencies of the lung sounds, showing robustness regarding the contamination of the
lung sound recordings with noise, bowel, and heart sounds. Garcia et al. [38] proposed to
evaluate the efficiency of three popular ICA algorithms (FastICA, information maximiza-
tion, and temporal decorrelation source separation) to determine the best method to extract
crackle sounds. Information maximization achieved the best results, determining the pres-
ence of crackles in the independent components by means of their kurtosis and skewness,
whereas the type of crackle was indicated by their characterization via the spectrogram of
those components. In [42], CNNs were used to recognize lung sounds (including coarse
and fine crackles) by means of spectrograms, Mel frequency cepstrum coefficient (MFCC)
features and local binary pattern (LBP) features. Results demonstrated that the performance
depends on learning parameters, batch size, and of iterations, band moreover, CNNs can
replace conventional classifiers using fully connected layers to train the previous features.
In [24], a classification system was proposed based on wavelets, genetic algorithms, and
SVMs in order to discriminate between the presence or absence of crackles caused by
pneumonia. Recently, Pal and Barney [28] proposed a crackle separation and detection
technique combining an iterative envelope mean (IEM) method with the established frac-
tal dimension (FD) technique [47]. The IEM method estimated the non-stationary and
stationary parts of the lung sound signal and then the FD technique was applied to the
estimated non-stationary output of the IEM method for further removing elements related
to normal breath sounds. Authors indicated that IEM-FD filtering showed a high rate of
crackle detectability when several signal-to-noise ratios (SNRs) were evaluated.

Crackle detection is a complex task due to factors such as: (a) nonstationarity of lung
and crackle sounds, (b) low-magnitude relation between crackles and lung sounds (SNR),
(c) crackle overlapping, (d) crackle waveform distortion by lung sounds, and (e) difficulty
to establish the time domain parameters such as tIDW , t2CD, and tLDW . The autoregressive
(AR) model has proved useful for processing stationary random process, for example, for
spectral analysis even with short time segments of information. In fact, respiratory sounds
can be represented as a response of a system formed by lung parenchyma and chest wall to
a white noise input which models the respiratory sounds source; hence, the system may be
modeled as an all-pole filter.

Several AR-based models have been presented in the literature. In [48], AR-based
features were used to feed two classifiers, a k-nearest neighbour (k-NN) classifier and a
quadratic classifier, in order to discriminate between pathological and healthy patients.
In [49], the authors combined sixth-order AR coefficients, wavelet coefficients, and crackle
parameters as input for a k-NN and single layer perceptron. In a multichannel scenario
(i.e., using several microphones), multivariate AR version called vector AR (VAR) has been
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used in [50] as input for SVM and Gaussian mixture model (GMM) classifiers. Moreover,
in [51], the authors proposed a crackle detection system using a threshold over the coeffi-
cients of a time-varying AR (TVAR) model showing superior results than using waveform
analysis.

There are studies that have evaluated the detection of abnormal lung sounds from
a physical perspective. In [52], it was asserted that determining the origin of abnormal
sounds can provide valuable insights, potentially narrowing down the range of possible
pathological causes and pinpointing the specific affected lung region. This information can
prove invaluable in the context of diagnosis and treatment planning. To address this mat-
ter, [53] introduced an algorithm capable of effectively imaging sound sources, a capability
demonstrated through computer simulations and experiments involving life-sized gelatin
models of the human thorax. Their findings suggest that meaningful spatial information
can be extracted from recordings employing as few as 16 microphones. Recently, in [54], a
discussion of these types of studies covering auscultatory methods was presented. Alterna-
tively, in this paper we aim to detect and localize the temporal occurrence of adventitious
sounds on an input single-channel respiratory signal. In fact, the information about the
temporal location will serve to focus a doctor’s attention on the regions of the signal where
crackles are present.

In this paper, we investigate the effect of the autoregressive (AR)-based frequency
features that characterizes the spectral envelope of a breathing signal. In particular, we
propose the utilization of complex valued poles derived from the AR model as inputs for a
support vector machine (SVM) classifier using the radial basis function (RBF) kernel. The
proposed approach has been compared with other state-of-the-art approaches including the
iterative envelope mean-fractal dimension (IEM-FD) and the time-varying autoregressive
(TVAR) methods. Finally, the proposed AR-based features are combined with a state-of-
the-art convolutional neural network (CNN) architecture for crackle detection [55]. The
outcomes of this comparison revealed notable enhancements in the performance metrics
associated with the proposed methodology for characterizing and detecting crackles events.
In fact, when dealing with limited data quantities, SVM presents a preferable choice
whereas deep learning models typically entail a substantial number of tunable weights
(free variables) that necessitate calibration with data. Actually, when the quantity of
these weights exceeds or approximates the number of available training examples, deep
models tend to essentially “memorize” the data, which can lead to overfitting. On the
contrary, when a suitable kernel function is applied, SVM provides a robust, efficient, easily
interpretable solution and is less prone to overfitting in classification problems.

The paper is organized as follows. Section 2 reviews the dataset used in this work and
details the proposed method. Section 3 describes the metrics, setup, and the state-of-the-art
methods in order to discuss the experimental results. Finally, conclusions and future work
are presented in Section 4.

2. Materials and Methods
2.1. Dataset

In order to assess the crackle detection performance of the proposed method in a
biomedical sound scenario, the dataset ψ was created using the same available software
provided by the authors [28,56]. Specifically, the dataset ψ is composed of 2520 signals:
(i) simulated signals related to FCSs and CCSs by modifying both parameters tIDW and
t2CD according to [11,12,57]; (ii) real signals related to FCSs and CCSs with different tIDW
and t2CD extracted from lung sound recordings. Specifically, real FCSs were extracted from
a patient with idiopathic pulmonary fibrosis (IPF), and real CCSs were selected from a
patient with bronchiectasis (BE) [56]. Each simulated and real signal has been mixed with
noise NR that shows the same spectral energy distribution as typically found in breath
noise from a healthy subject measured over the lung bases on the right-hand side of the
back as occurs in [56]. Moreover, several signal-to-noise ratios (SNRs) ranged from −10
to 10 dB in steps of 1 dB have been created to evaluate the robustness of the proposed
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method detecting crackles. For each SNR, 15 simulated signals of every scenario have been
evaluated, considering the effect of random variations of the local SNR around any given
crackle. In this manner, a set of 315 signals have been generated considering all the SNRs
for each type of simulated or real crackle signal. Although the dataset ψ is detailed in
Table 1, more details can be found in [28,56].

Table 1. Dataset ψ. FCS: (i) ATS: tIDW = 0.7 ms & t2CD = 5 ms, (ii) Hoevers: tIDW = 0.5 ms & t2CD =
3.3 ms [45], (iii) Cohen: tIDW = 0.9 ms & t2CD = 6 ms. CCS: (i) ATS: tIDW = 1.5 ms & t2CD = 10 ms,
(ii) Hoevers: tIDW = 1 ms & t2CD = 5.1 ms, (iii) Cohen: tIDW = 1.25 ms & t2CD = 9.5 ms. KC: number
of crackles per signal. NOTS: number of signals per SNR. NS: number of signals generated taking
into account all SNRs evaluated.

Scenario Type Model KC NOTS Noise Diagnosis SNR NS

Simulated

FCS [57] ATS 10 15 NR - [−10 dB, 10 dB] 315

FCS [11] Hoevers 10 15 NR - [−10 dB, 10 dB] 315

FCS [12] Cohen 10 15 NR - [−10 dB, 10 dB] 315

CCS [57] ATS 10 15 NR - [−10 dB, 10 dB] 315

CCS [11] Hoevers 10 15 NR - [−10 dB, 10 dB] 315

CCS [12] Cohen 10 15 NR - [−10 dB, 10 dB] 315

Real FCS [28,56] - 10 15 NR IPF [−10 dB, 10 dB] 315

CCS [28,56] - 10 15 NR BE [−10 dB, 10 dB] 315

2.2. Modeling of Simulated Crackle Sounds

In order to train the classifier, a set of synthetic crackle sounds have been generated.
Similar to [58], a crackle waveform y(t) is created (Equations (1)–(4)) assuming: (i) the
crackle has two cycles represented by the parameter t2CD, (ii) the location where the first
cycle of the waveform y(t) equals zero is explicitly indicated by the parameter tIDW , and
(iii) most of the power in y(t) is concentrated near the beginning of the waveform. To time
shift most of the power to the beginning of the waveform, a modulating function m(t) is
generated. An example of simulated crackles in the time domain is shown in Figure 2.
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Figure 2. Two simulated crackles, normalized in energy, are modelled: (tIDW , t2CD) = (2 ms, 10 ms) in
the top plot and (tIDW , t2CD) = (1 ms, 20 ms) in the bottom plot.

t0 =
tIDW
t2CD

(1)
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y0(t) = sin(4πtα), α =
log10(0.25)
log10(t0)

(2)

m(t) =
1
2

(
1 + cos

(
2π

(
t

1
2 − 1

2

)))
(3)

y(t) = y0(t)m(t) (4)

In this work, a set of K = 187 crackle waveforms was created based on a conservative
strategy using all combinations between both parameters tIDW and t2CD [11,12,57]. Specif-
ically, tIDW ∈ [0.5, 1.5] ms with a step size of 0.1 ms and t2CD ∈ [3.3, 20] ms with a step
size of 1 ms. Finally, each signal y(t) is normalized in energy, that is, ∑t y2(t) = 1.0. The
magnitude Fourier transform (spectral pattern) of the previous set of K crackle waveforms
is shown in Figure 3.
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Figure 3. Magnitude spectrogram of the first eighteen spectral patterns combining the parameters
tIDW and t2CD as previously mentioned. Higher energy is indicated by darker colour.

2.3. Proposed Method

In Figure 4, a block diagram of the structure of our proposed method is shown. First,
a preprocessing stage is performed to discard information out of the band of interest
and define the segments for the short-time signal analysis. Then, we window the initial
signal into frames (parameters used are explained in the Setup section). We calculate the
14 complex envelope coefficients for each frame by using our AR model. Finally, we use
these data to feed the support vector machine system.

2.3.1. Preprocessing

For the task of crackle detection, the signals are low-pass filtered and resampled to
4 kHz. The window length for the short-time analysis was chosen to be 256 samples (64 ms)
with a hop size of 16 ms. This interval was a good compromise between parameter accuracy
and stationary requirements. Finally, the sliding segments were weighted by a Hamming
window to reduce the spectral leakage.
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Figure 4. The block diagram of the proposed method.

2.3.2. Autoregressive (AR) Parameter Estimation

In this paper, AR parameters are estimated for each segment of the respiratory sound as

xs(n) = −
K

∑
k=1

as(k)xs(n− k) + es(n), (5)

where s = 1, . . . , S denotes the segment index, as(k) is the k-th AR coefficient with K
denoting the model order. es(n) is IID Gaussian noise with zero mean and variance σ2.
Levinson–Durbin recursion was used in order to estimate the AR parameters. This recursion
also gives the total mean square prediction error of a k-th order predictor. In this work,
sixth-order AR model coefficients are extracted from respiratory sounds to form the feature
set for the classifier as was shown in [48,49,59].

The above equation can be solved by using the z-transform. This allows the equation
to be written as

Xs(z)

(
1 +

K

∑
k=1

as(k)z−k

)
= Es(z) (6)

and the transfer function Hs(z) can be expressed using a rational format

Hs(z) = zK 1

∏K
k=1(z− ps(k))

(7)

where ps(k) are the poles describing the estimated spectral envelope of the input segment.
This approach has been widely used to characterize and synthesize the speech formants [60].

As shown in Figure 5, the frequency response of the all-pole AR model is depicted for
two healthy and unhealthy excerpts. These features gave us the aim to proceed into the cre-
ation of a classification system between these two classes (healthy and unhealthy patients).
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Figure 5. Frequency response for the all-pole AR model using 6-th coefficients modelling the breathing
sound excerpt for a healthy patient (top plot), an unhealthy frame with coarse crackle (middle plot),
and an unhealthy frame with fine crackle (bottom plot).

2.3.3. SVM Classifier

SVM is a supervised learning method which is often applied to classification or
regression. It is a method for obtaining the optimal boundary of two sets in a vector space
independently from the probabilistic distributions of training vectors in the sets. A support
vector machine is used here to classify crackles and normal lung sounds. The RBF kernel
function is used in this work to achieve an optimal result. In addition, the parameters of
the SVM are optimized to obtain a better performance, which will be introduced in the
third section.

Support vector machines (SVMs) are the famous and widely utilized supervised
classifiers developed by [61]. A support vector machine (SVM) is a powerful and versatile
machine learning algorithm used primarily for classification and regression tasks. SVMs
are particularly effective in scenarios where the data are not linearly separable, meaning
that the classes cannot be separated by a single straight line or hyperplane. SVMs achieve
this by transforming the input data into a higher-dimensional space where separation
becomes possible through the use of a hyperplane.

In a classification context, an SVM attempts to find the hyperplane that best separates
different classes of data points while maximizing the margin between the two classes. The
margin is the distance between the hyperplane and the nearest data points from each class.
The SVM seeks to find the hyperplane that not only separates the classes but also maximizes
this margin, which theoretically reduces the risk of overfitting and enhances the model’s
generalization capabilities.

The data points that are closest to the hyperplane and have the most influence on
determining its position are referred to as “support vectors”. These are the data points
located at the edges of the margin or those that might be misclassified if the margin were to
shift. The SVM focuses on these support vectors, making it a robust algorithm even in the
presence of outliers or noisy data.

SVMs offer flexibility in dealing with different types of data through the use of various
kernel functions, which can implicitly map the data into higher-dimensional spaces. This
allows SVMs to handle non-linear relationships between variables.
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3. Evaluation
3.1. Metrics

Three metrics are proposed to detect the presence or absence of crackle events: accuracy
(Acc), sensitivity (Se) and precision (Pr). All of them are calculated analyzing each signal
within the dataset ψ by matching the original data and the estimated data provided by the
proposed method. The metric Acc represents the ability to correctly detect the presence or
absence of the crackles events when they are active or inactive in the signal, Se represents the
ability to detect the number of missed crackle events within the dataset, and Pr represents
the ability to detect frames within a signal with crackles when no crackles events are active.
These three mentioned metrics are calculated as shown in Equations (8)–(10). The parameter
tp indicates true positives, that is, number of active crackle events within the dataset ψ
correctly detected as crackle. The parameter fp represents false positives or false alarm
events, that is, the number of crackles events inactive within the dataset ψ incorrectly
detected as crackles. The parameter fn indicates false negatives or missed events, that is,
the number of crackles events active within the dataset ψ incorrectly detected as no crackle.

Acc =
tp

tp + fp + fn
(8)

Se =
tp

tp + fn
(9)

Pr =
tp

tp + fp
(10)

3.2. Setup

We conducted preliminary experiments that showed that the following parameters,
used in this paper, provide the best trade-off between crackle detection performance
and the computational cost: sampling rate fs = 4410 Hz, window size N = 18 samples
(approximately 4.1 ms), hop size of four samples (approximately 0.9 ms), and a number of
FFT points equal to twice the window size in samples.

3.3. State-of-the-Art Methods for Comparison

Two recent and relevant state-of-the-art crackle detection methods IEM-FD [28] and
TVAR [51] have been implemented in order to evaluate the performance of crackle detection
of the proposed method.

3.4. Results and Discussion

In this section, we detail a systematic comparison of the results section obtained
from the implemented methods: the IEM-FD, TVAR, and the proposed method. All of
the separation techniques were implemented using the MATLAB (R2020b) programming
language. The metrics employed to evaluate the implemented methods are described in
Section 3.1. For evaluation, we compared the ground-truth and estimated temporal location
and length of each crackle using a tolerance window of 0.6 ms.

The overall results for the implemented methods are shown in Figure 6. The boxplot
displays the distribution of data based on a five-number summary (“minimum”, first
quartile (Q1), median, third quartile (Q3), and “maximum”). It details information about
the atypical values and the location of them within the entire range of possible values.
At the same time, it indicates whether the data are symmetrical, how tightly the data are
grouped, and how the data are skewed.

Figure 6 shows these results in terms of accuracy Acc, sensitivity Se and precision Pr of
the IEM-FD method on the left side, TVAR method on the center and the proposed method
on the right side. Additionally, Figure 7 displays the accuracy results of the compared
methods as a function of the SNR value (between −10 and 10 dB).
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In general terms, the values obtained from the proposed method are significantly
higher in terms of accuracy Acc and precision Pr among the compared methods. Moreover,
our method also outperforms the IEM-FD and the TVAR in terms of sensitivity (Se).
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Figure 6. Accuracy, sensitivity and precision average results evaluating all scenarios and SNRs in the
dataset ψ by IEM-FD [28], TVAR [51], and the proposed method.
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Figure 7. Accuracy, sensitivity, and precision average results evaluating all scenarios for each SNR in
the database ψ by IEM-FD [28] (red color), TVAR [51] (green color), and the proposed method (blue
color), where the dashed lines represent the mean value for each metric and method.

Regarding the boxplot accuracy values of the IEM-FD method, the median is 45.45%,
the first quartile (Q1) is 32.25%, the second quartile (Q2) is 50%, the maximum is 61.54%,
and the minimum is 5.66%. In fact, the performance of this method is limited by the number
of false positives (i.e., normal events detected as crackles) as be seen in the precision values
in Figure 6.

In the case of the TVAR method, the following measurements are found: the median
is 70%, the first quartile (Q1) is 90%, the second quartile (Q2) is 40%, the maximum is 100%,
and the minimum is 0%. This variability in the results suggests that the method is too
dependent on the conditions of the input signals, as can be seen in Figure 7. In fact, the



Appl. Sci. 2023, 13, 10683 11 of 16

TVAR method provides the worst results among the compared methods when dealing with
low SNR values.

The proposed method shows the minimum standard deviation among the compared
methods. In particular, the median is 100%, the first quartile (Q1) is 90.90%, the second
quartile (Q2) is 100%, the maximum is 100%, and the minimum is 80%. Additionally, as can
be seen in Figure 7, the results are robust independently of the input signal SNR conditions.

Now, focusing on a specific type of crackles, Figure 8 presents the Acc, Se, and Pe results
as a function of type of crackle (coarse (right side of the figure) or fine (left side of the figure))
and SNR value. As can be seen, the performance of the proposed method is clearly superior
to the other compared methods in both cases (coarse and fine crackle detection). Comparing
both sides of the figure, the results reveal that the proposed method underperforms when
dealing with coarse crackles under low SNR scenarios. Similar behavior is observed in
the case of the TVAR method although, as previously commented, the results are limited
by the number of false positives, which provokes a clear underperformance in terms of
Se. Interestingly, the results seem more stable in the case of IEM-FD when comparing
the performance of fine vs. coarse crackle detection. In any case, it is worth mentioning
that the results are worse than the compared approaches and specially limited by the
number of false negatives (i.e., crackles events detected as normal), which provokes a
clear underperformance in terms of Pr. Note that the Acc can be seen as general metric
accounting for both Se and Pr values.
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Figure 8. Accuracy, sensitivity, and precision average results evaluating all scenarios for each type
(fine crackles on the left side and coarse crackles on the right side) of crackles and SNRs from database
ψ by IEM-FD [28] (red color), TVAR [51] (green color), and the proposed method (blue color), where
the dashed lines represent the mean value for each metric and method.

Table 2 shows the mean values in terms of accuracy Acc, sensitivity Se and precision Pr
for the IEM-FD method, TVAR method, and the proposed method for test samples ψ at SNR
from −10 dB and until +10 dB for real and simulated crackles. In contrast to the previous
results shown in this document, here we make a distinction by type of crackle within the
test sample: ATS, Hoevers, Cohen, IPF, or BE, labeled here as simulated scenarios 1 to 6
and real scenarios 1 and 2. From these results, we can highlight the fact that our proposed
method has widely higher percentage values in comparison with the IEM-FD and TVAR
methods. It is important to note that all the methods have a clear underperformance in real
scenario 2. That is, when dealing with real sounds with coarse crackles (i.e., bronchitis)
superposed to simulated breathing. This suggests that the difference between simulated



Appl. Sci. 2023, 13, 10683 12 of 16

and real fine crackles allows a suitable modeling valid for both cases whereas in the case of
coarse crackles, the parameters may vary between simulated and real cases.

Table 2. Detailed results in terms of accuracy, sensitivity, and precision (mean values per crackle
type) KC: number of crackles per signal. NOTS: number of signals per SNR. NS: number of signals
generated taking into account all SNRs evaluated.

Accuracy
[Acc]

Sensitivity
[Se]

Precision
[Pr]Scenario Type KC NOTS Noise Diagnosis SNR

IEM-FD TVAR Proposed IEM-FD TVAR Proposed IEM-FD TVAR Proposed
Simulated 1 FCS [57] 10 15 NR - [−10 dB, 10 dB] 46.94% 69.23% 98.36% 97.46% 73.02% 99.94% 46.94% 93.33% 98.42%
Simulated 2 FCS [11] 10 15 NR - [−10 dB, 10 dB] 33.21% 81.36% 95.85% 100% 92.60% 97.81% 33.21% 87.27% 97.93%
Simulated 3 FCS [12] 10 15 NR - [−10 dB, 10 dB] 47.72% 76.21% 98.03% 97.14% 81.56% 99.94% 47.72% 91.98% 98.08%
Simulated 4 CCS [57] 10 15 NR - [−10 dB, 10 dB] 41.86% 46.00% 96.57% 93.17% 48.54% 98.25% 42.15% 82.64% 98.27%
Simulated 5 CCS [11] 10 15 NR - [−10 dB, 10 dB] 47.63% 71.86% 98.63% 97.46% 76.73% 99.90% 47.63% 91.68% 98.71%
Simulated 6 CCS [12] 10 15 NR - [−10 dB, 10 dB] 41.12% 38.68% 95.47% 91.49% 40.76% 96.86% 41.46% 76.70% 98.54%

Real 1 FCS [28,56] 10 15 NR IPF [−10 dB, 10 dB] 30.70% 92.04% 94.59% 79.96% 97.30% 96.10% 33.26% 94.39% 98.32%
Real 2 CCS [28,56] 10 15 NR BE [−10 dB, 10 dB] 30.64% 22.70% 74.78% 46.54% 23.87% 76.03% 53.86% 66.33% 97.72%

Once we have evaluated the robustness of the proposed method against different
type of signals and SNR conditions and compared the results with classical approaches,
we aim to also compare the results with more recent techniques based on deep learning.
In fact, deep learning approaches have recently been widely investigated for the task of
adventitious sound detection [41,62–68].

The investigation carried out by [55] highlighted the usage of convolutional neural
networks (CNNs) as state-of-the-art solutions across various research domains. Leveraging
the CNN architecture as detailed in [55], we subjected the same scenarios as previously
outlined to testing, subsequently conducting a comparative analysis between the outcomes
generated by the support vector machine (SVM) classifier and the CNN classifier. The
comparative results, presented in Table 3, delineate the performance contrast in terms of
accuracy (Acc), sensitivity (Se), and precision (Pr) across the eight scenarios encompassing
our proposed method. As can be observed in Table 3, both classifiers (SVM and CNN)
achieve excellent results (>90%) in all metrics except in the real coarse crackle scenario. In
any case, a slight improvement can be observed using the SVM-based classifier in terms
of accuracy (Acc) and sensitivity (Se). Conversely, CNN performs slightly better in terms
of precision (Pr). This suggests that the proposed system is somewhat more robust in
determining the occurrence of crackle events, which is very interesting from a clinical
perspective. However, it is worth noting that SVM is simpler to train, has fewer parameters,
and therefore is more robust to overfitting. Additionally, its parameters are much more
interpretable than those of CNN.

It is pertinent to underscore the notable performance decline observed in the real-
world scenarios examined in this study. As evident in Table 3, these scenarios exhibit
discernible decreases across all three metrics. These findings shed light on the potential
limitations inherent in the proposed methodology. In the context of real patient scenarios,
it is imperative to recognize that the properties of the input signals may undergo fluc-
tuations, resulting in consequential reductions in performance outcomes. As articulated
in the preceding Section 4, forthcoming research endeavors will be geared towards data
characteristic extraction and the modeling of time–frequency behaviors. These efforts are
envisioned to foster improved generalization regarding the authentic behaviors exhibited
by such sound signals in real-world contexts.
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Table 3. Comparison of the results of the proposed method as input of an SVM and CNN in terms of
accuracy, sensitivity, and precision (mean values per crackle type) KC: number of crackles per signal.
NOTS: number of signals per SNR. NS: number of signals generated considering all SNRs evaluated.

Scenario Type KC NOTS Noise Diagnosis SNR Accuracy (%)
[Acc]

Sensitivity (%)
[Se]

Precision (%)
[Pr]

SVM CNN SVM CNN SVM CNN
Simulated 1 FCS [57] 10 15 NR - [−10 dB, 10 dB] 98.36 97.61 99.94 97.94 98.42 99.49
Simulated 2 FCS [11] 10 15 NR - [−10 dB, 10 dB] 95.85 97.93 97.81 98.28 97.93 99.53
Simulated 3 FCS [12] 10 15 NR - [−10 dB, 10 dB] 98.03 97.44 99.94 97.72 98.08 99.50
Simulated 4 CCS [57] 10 15 NR - [−10 dB, 10 dB] 96.57 92.98 98.25 92.73 98.27 99.60
Simulated 5 CCS [11] 10 15 NR - [−10 dB, 10 dB] 98.63 98.25 99.90 98.54 98.71 99.55
Simulated 6 CCS [12] 10 15 NR - [−10 dB, 10 dB] 95.47 94.34 96.86 94.21 98.54 99.58

Real 1 FCS [28,56] 10 15 NR IPF [−10 dB, 10 dB] 94.58 91.42 96.10 93.11 98.32 99.34
Real 2 CCS [28,56] 10 15 NR BE [−10 dB, 10 dB] 74.78 72.34 76.03 74.00 97.72 98.12

4. Conclusions and Future Work

In this paper, a new crackle event detection method based on the combination of an
autoregressive model, and a support vector machine classification model is proposed. We
conclude that the proposed method is a suitable model for detection of the existence or
non-existence of crackle events within a dataset with a significant high success rate.

The proposed method has achieved highly competitive results in the detection of
crackle events in spite of the environmental factors, such as type of crackle (fine or coarse)
or very low signal-to-noise ratio.

Future work will focus on combining recurrent and convolutional neural networks
approaches using different time–frequency representations in order to develop novel criteria
to determine the most reliable and discriminant feature map in terms of the abnormal
respiratory sound to be detected.
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