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Abstract: As blockchain technology plays an increasingly important role in the Internet of Vehicles,
how to further enhance the data consensus between the areas of the Internet of Vehicles has become
a key issue in blockchain design. The traditional blockchain-based vehicle networking consensus
mechanism adopts the double-layer PBFT architecture, through the grouping of nodes for first intra-
group consensus, and then global consensus. To further reduce delay, we propose a CRMWSL-PBFT
algorithm (C-PBFT) for vehicle networking. Firstly, in order to ensure the security of RSU nodes in the
network of vehicles and reduce the probability of malicious nodes participating in the consensus, we
propose to calculate the reputation of RSU nodes based on multi-weighted subjective logic (CRMWSL)
model. Secondly, in order to ensure the efficiency of blockchain data consensus, we improve the
consensus protocol of traditional double-layer PBFT, change the election method of the committee
and the PBFT consensus process, and improve throughput by reducing the number of consensus
nodes. For the committee, we combine the credibility value and hash method to ensure the credibility
of nodes, but also to ensure a certain degree of election randomness. For the PBFT consensus process,
the regional committee consensus is carried out first, and then the regional master node carries out
the global consensus. Through experimental comparison, we show that the C-PBFT significantly
reduces consensus time, network overhead, and is scalable for Internet of Vehicles.

Keywords: Internet of Vehicles; consortium blockchain; hierarchical consensus; PBFT; reputation value

1. Introduction

With the rapid development of the Internet of Things and the continuous progress
of 5G technology, the Internet of Vehicles is gradually coming into people’s view. The
Internet of Vehicles plays an important fundamental role in the field of transportation.
The collection and sharing of traffic data between vehicles can better optimize the service
quality of intelligent transportation systems [1]. However, due to privacy and security
concerns, vehicles may be reluctant to upload data to the Road Side Unit (RSU) for data
sharing, thus hindering the development of future connected vehicles [2].

Due to the characteristics of blockchain technology such as distribution, anonymity,
and non-comparability, many researchers have integrated blockchain technology with
vehicle networking. Blockchain is used to establish a secure, trusted, and decentralized
intelligent transportation ecosystem to solve part of the problem of vehicle data sharing [3].
However, after the introduction of blockchain, the system needs to consume a lot of
computing resources and storage resources to meet the data-sharing service. At the same
time, in a highly dynamic vehicular networking environment, it is difficult to maintain a
long-term communication connection between vehicles and RSU nodes. When the data
synchronization speed in the blockchain network does not match the moving speed of
vehicles, the high latency may cause data inconsistency between nodes in different regions,
resulting in meaningless old data for vehicles and other problems.
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As an integral component of blockchain technology, consensus algorithms serve the
pivotal role of ensuring data consistency among distributed nodes. Many of the current
studies combining IoV and blockchain consensus algorithms are based on traditional
methods, including proof-of-work (PoW), proof-of-stake (PoS), entrusted proof-of-stake
(DPoS), and practical Byzantine fault Tolerance (PBFT). However, the limited computational
resources of RSU nodes within vehicular networks render them inadequate for the execution
of PoW-based algorithms. Furthermore, consensus mechanisms such as PoS and DPoS,
which hinge on stake-based incentives, may potentially introduce disparities in outcomes.
A comparative analysis conducted by Kim et al. [4] evaluated the efficacy of PoW, PoS, and
PBFT, concluding that PBFT holds the highest promise as a consensus algorithm within the
context of vehicular networks.

Although there are many researches on the PBFT consensus algorithm in IOV [5–7],
most of them are based on traditional single-chain structure. As the number of nodes
increases, the communication complexity of traditional PBFT consensus algorithm increases
rapidly and the consensus performance decreases sharply. Therefore, it is a great challenge
to directly apply the PBFT consensus algorithm in the Internet of Vehicles.

Therefore, this paper proposes a double-layer PBFT consensus algorithm by region.
Meanwhile, the committee election algorithm elects appropriate RSU nodes to participate in
the consensus according to the credibility value, which solves the problem of low scalability
of the PBFT algorithm due to the superlinear complexity due to excessive RSU nodes.

The main contributions of this paper are summarized as follows:

(1) We propose a multi-weight subjective logic model to calculate the RSUs node’s credit
value more accurately.

(2) We propose a committee election algorithm to select appropriate nodes to participate
in consensus based on node reputation, reduce communication complexity, and
improve the scalability of blockchain.

(3) We propose a double-layer consensus structure algorithm, which firstly carries out
regional consensus and then global consensus to reduce consensus latency and com-
munication complexity.

(4) We experimentally tested the proposed reputation assessment model RCMWSL and
the C-PBFT consensus algorithm.

The rest of the paper is organized as follows. Section 2 presents related research on the
reputation mechanism of IoV and research related to the scalability of consensus protocols.
Section 3 presents the system model. Section 4 presents the proposed C-PBFT consensus
algorithm. Section 5 analyzes the security properties of the proposed consensus algorithm.
Section 6 provides simulation experimental results. Section 7 concludes the paper and
discusses future research directions.

2. Related Work
2.1. IoV Reputation

In recent years, researchers have designed reputation evaluation methods and models
in the field of the Internet of Vehicles based on different theoretical methods. Li et al. [8]
improved the subjective logical trust model and established a three-valued subjective
logical trust model. The uncertainty of events is divided into a priori uncertainty and
a posteriori uncertainty in the model, and the results of the events are simulated with
Dirichlet-categorical distribution, and the propagation law of trust relationships among
different entities is derived using Bayesian inference. Liu et al. [9] propose an improved
reputation calculation method based on subjective logic. In this method, a concept of
“familiarity” is introduced, that is, the weight of the evaluation opinion is high in the
neighbor nodes that are familiar with the evaluated node. And this kind of the complexity
of reputation calculation in this model is generally larger. Jaimes et al. [10] conducted
reputation management based on entity. Due to the huge scale of the Internet of Vehicles
network, it is easy to cause problems such as single-point bottlenecks and complicated
calculation processes. Rivas et al. [11] considered all credit evaluation factors obtained from
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neighboring vehicles, which may lead to inaccurate credit evaluation and even security
problems such as collusion attacks. Lin et al. [12] put forward the reputation model based on
subjective logic, which mainly uses the theory of subjective logic to quantify the reputation
information of nodes. The subjective logic defines the representation and calculation
methods of credibility quantitatively. Moreira et al. [13] evaluated the reputation of vehicle
nodes in an in-vehicle self-assembling network by judging the reliability of message content
through the reliability of the message source. Josang et al. [14] proposed a subjective logical
trust model that predicts the probability that something turns out to be trustworthy using a
beta distribution. Yang et al. [1] also proposed a decentralized trust management system to
evaluate the trustworthiness of received vehicle data by using blockchain and PoW and
PoS consensus schemes.

2.2. Consensus Protocol Scalability

Although the PBFT algorithm is a satisfactory consensus solution in distributed sys-
tems, its scalability is low and the number of nodes involved in consensus has a direct
impact on the communication complexity of the PBFT consensus algorithm, so researchers
have tried to streamline the number of nodes involved in consensus by forming a consensus
committee from all the nodes of the system and then releasing the consensus results to
other nodes, thus improving the scalability of the system.

The Permacoin [15] algorithm then elects the leader based on the participant’s free disk
size. And the strategy for electing leaders can be used as a strategy for electing committees
with slight modifications. The T-PBFT algorithm [16] combines the feature trust model
with the consensus algorithm to evaluate the trust level of nodes, select some nodes with
higher credit to participate in the consensus, and use the nodes with higher quality in
the network to establish the consensus group instead of a single master node. PoPT [17]
proposes an algorithm to measure the participation of nodes in a public chain system and
elects a committee based on the participation ranking. The dBFT [18] algorithm elects the
committee based on POS and associates nodes with the margin of node access to solve
the disinterested problem of native POS. The Tendermint [19] algorithms elect committees
based on PoS, which associate nodes with margins to solve non-benefit problems of native
PoS. The Algorand algorithm [20] uses VRF to randomly select a subset of network nodes as
a committee to ensure the unpredictability of committee members and improve the security
and the scalability of the system. Due to the high communication complexity of the PBFT
consensus algorithm in practical applications, many scholars have improved the PBFT
algorithm from consensus structure. Li et al. [21] proposed a scalable multi-layer consensus
mechanism based on PBFT. By layer-grouping nodes into different layers and limiting
communication within groups, it was analyzed that the complexity of communication
was minimal when the network was evenly distributed in subgroups in the second layer.
Singh et al. [22] constructed a multi-level network model based on blockchain for security
monitoring to ensure identity information security and enhance system reliability, but
increased system management overhead. Fortino et al. [23] proposed a grouping algorithm
based on reputation integral to improve the possibility of malicious nodes making errors,
but did not consider the problem of reduced system communication performance when
the number of nodes increased. Hou et al. [24] constructed a multi-layer blockchain to
group users according to certain security levels and stored data of different levels into the
chain of corresponding levels, to achieve secure data access control. Xu et al. [25] used a
hashing algorithm to ensure that consistently nodes are grouped, which can avoid a large
amount of communication between nodes, reduce the communication complexity of the
network, and improve the scalability of the network, but cannot identify Byzantine nodes.
Zhai et al. [26] proposed a bottom-up two-tier RSU chain consensus protocol (TLPBFT)
based on blockchain and trust values, and the algorithm latency rises significantly when
the number of regional nodes is high. Liu et al. [27] proposed a quality-of-service-based
PBFT algorithm that reduces the inter-node consensus latency but does not consider the
presence of malicious nodes in the group.



Appl. Sci. 2023, 13, 10663 4 of 21

3. System Model
3.1. System Architecture

Figure 1 shows the blockchain IoV system model. The communication between
vehicles or between vehicles and RSUs is wireless, while the communication between RSUs
is wired communication. The model consists of the following main components:

(1) Vehicle: The vehicle is equipped with an intelligent On Board Unit (OBU), which
enables it to have functions such as sensing, computing, and storage. The vehi-
cle is responsible for uploading its interaction records, feedback ratings, and other
information to the RSUs.

(2) RSU: Compared with the vehicles, the RSU has strong computing and storage re-
sources as well as a sufficient energy supply, so the RSU is selected as the node of the
blockchain network. In addition, the RSU needs to collect the communication data
among vehicles within its communication range as well as the feedback rating data,
update the reputation value of vehicles at the end of each cycle according to their
behavior, and then package the results into blocks to be added into the blockchain
network for global vehicles and other subjects to query.

(3) Reputation Center (RC): The reputation center stores the latest reputation of vehicles
and RSUs in the network. When the reputation obtained by RSUs from the vehicle side
is too different from that stored by RSUs, RSUs will request the latest reputation of the
corresponding vehicles from the RC. At the same time, the RC issues certificates for
legitimate vehicles and RSUs and distributes public and private keys of vehicles and
RSUs through secure channels. The model assumes that the RC is completely credible.

Figure 1. The blockchain-based system model for IoV.

3.2. Network Model

Our model uses a partial synchronization model with known latency bounds ∆ and
global stability time GST, where all transmissions between two replicas are reached in ∆
time after GST.

3.3. Security Properties

The C-PBFT algorithm should have the following properties:

(1) Safety
At the same block height, any two honest nodes submit the same blocks.

(2) Liveness
If a transaction is received by an honest node, then that transaction will eventually be
included in the honest node’s ledger.
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4. C-PBFT Consensus Algorithm
4.1. Algorithm Design Overview

In this section, we construct a double-layer consensus algorithm C-PBFT based on
the PBFT consensus algorithm, one of the challenges of which is that the original PBFT
algorithm selects master nodes arbitrarily, which may make malicious nodes become master
nodes consecutively, thus wasting network resources, so we propose the multi-weight
subjective logic model CRMWSL to calculate node reputation values, as seen in Section 4.2.
Another challenge is that the scalability of the PBFT algorithm is poor. Therefore, the
committee election algorithm is designed to select appropriate nodes to participate in the
consensus based on node reputation value and reduce the number of nodes participating
in the consensus, as shown in Section 4.3. At the same time, a double-layer consensus
structure was designed, and nodes were divided into regions to carry out regional local
consensus and interval global consensus, as shown in Section 4.4.

The key symbols used in this paper are listed in Table 1.

Table 1. The main symbols.

Notation Definition{
bi→j, di→j, ui→j

}
A local opinion vector ωi→j from a vehicle Vi to RSUj

Fi→j Vi’s expected beliefs about RSU

αi, βi The number of positive/negative interactions

χ, τ The weight of positive/negative interactions

Ri Reputation value of node i

n Number of regions

u Average number of nodes in each committee

m Average number of nodes in each region

Υ The given decay parameter for event freshness

E The initial reputation value of the node predefined in the system

4.2. Reputation Calculation Using Multi-Weighted Subjective Logic Model

When a vehicle and an RSU interact positively, the vehicle generates a good rating for
the RSU. Positive engagement indicates that the vehicle believes the RSU provides relevant
and helpful services or that the data supplied by the RSU is accurate. On the contrary,
some malicious vehicles may generate malicious evaluations for RSUs to provide false
information, too many malicious evaluations will harm RSU node reputation, and false
evaluations will result in some malicious nodes being elected to the committee, resulting in
unreliable and insecure consensus networks.

Therefore, it is necessary to design a secure and efficient RSU node reputation value
evaluation model and prevent collusion between RSUs and vehicles, and selecting suitable
candidate nodes to build the consensus committee by reputation value can ensure a safe
and reliable consensus process. In this section, a multi-weighted subjective logic model is
proposed for the calculation of the reputation value of RSU nodes.

4.2.1. Local Opinions of Subjective Logic

The RSUj corresponds to the vehicle Vi in the region, and based on its communica-
tion data interaction with the RSUj and the predefined subjective logic model, the local
opinion vector ωtx

i→j := {btx
i→j, dtx

i→j, utx
i→j} of the vehicle Vi in the time window evaluates

the reputation value of the RSUj:
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btx

i→j =
(

1− utx
i→j

) αtx
i→j

αtx
i→j+βtx

i→j

dtx
i→j =

(
1− utx

i→j

) βtx
i→j

αtx
i→j+βtx

i→j

utx
i→j = 1− qtx

i→j

(1)

In this case, vehicle Vi interacts with the RSUj during traveling with data, such as crowd-
sensing or vehicle data sharing. The local opinion of the subjective logic model Vi on the
RSUj can be formally described as a local opinion vector ωtx

i→j := {btx
i→j, dtx

i→j, utx
i→j}, where

btx
i→j, dtx

i→j, utx
i→j stand for trust, distrust, and uncertainty, respectively. btx

i→j, dtx
i→j, utx

i→j ∈ [0, 1]

and btx
i→j + dtx

i→j + utx
i→j = 1, where {t1, · · · tx, · · · tX} represents part of the time period X

as a time window. αtx
i→j is the number of positive interactions between vehicle Vi and

RSUj, and βtx
i→j is the number of negative interactions between vehicle Vi and RSUj, where

positive interactions mean that vehicle Vi believes that the service provided by RSUj is
relevant and useful. A negative interaction means that vehicle Vi does not believe that the
service provided by RSUj is relevant and useful. qtx

i→j is the communication quality of the
link between vehicle Vi and RSUj, that is, the probability of successful packet transmission,
which determines the uncertainty of ui→j in the local opinion vector. Based on the local
opinion vector ωtx

i→j := {btx
i→j, dtx

i→j, utx
i→j} in the time window of vehicle Vi, the expression

of the initial credit value evaluated by vehicle Vi to RSUj is determined as follows:

Fi→j = bi→j + γui→j (2)

where 0 ≤ γ ≤ 1 is a given constant, representing the degree of influence of uncertainty on
credit value.

4.2.2. Multi-Weight Local Opinions of Subjective Logic

Local opinions using the subjective logic model are affected by different factors. When
considering weighted operation, traditional subjective logic evolves to multi-weighted
subjective logic. We consider the following weights to form a partial opinion:

• Interaction Frequency: The higher the interaction frequency means that vehicle Vi
has more prior knowledge of RSUj, so the calculation of Vi’s credit value to RSUj is
more accurate and reliable. The interaction frequency of Vi with RSUj is the number
of times Vi interacts with RSUj, the ratio of Vi to the number of times V interacts
with RSUj and other interactions in a time window. For distinction, the frequency of
interaction between vehicle Vi and RSUj in this step is expressed as IF0

i→j:

IF0
i→j =

Ni→j

∑N
z=1 Ni→z

(3)

Ni→j = (αtx
i→j + βtx

i→j), where z is the set of all RSUs interacting with vehicle Vi in the
time window, with N elements. The higher the interaction frequency, the higher the
reputation expectation of vehicle Vi on RSUj.

• Timeliness of Interaction: Recent behavioral events with a higher degree of freshness
are weighted more heavily than past events. In order to reflect the effect of reaction
time on reputation, a freshness decay function is defined to represent the freshness of
a behavioral event: ψ(tx) = ψx = ΥX−x, where Υ ∈ (0, 1) is a given decay parameter
about the freshness of an event. In a time period X, the local opinion vector of vehicle
Vi on the evaluation of RSUj is expressed as
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bi→j =
∑X

x=1

(
ψxbtx

i→j

)
∑X

x=1 ψx

di→j =
∑X

x=1

(
ψxdtx

i→j

)
∑X

x=1 ψx

ui→j =
∑X

x=1

(
ψxutx

i→j

)
∑X

x=1 ψx

(4)

where ψx represents the freshness attenuation function, btx
i→j, dtx

i→j and utx
i→j are shown

in Formula (1).
• Interaction Effects: Positive interactions increase the reputation value of RSU nodes,

while negative interactions decrease the reputation of RSU nodes. In general, the
effects of negative events are much more serious in public opinion than positive
effects, so the interaction effects of messages have higher weights on local opinions.
The weight of positive interaction is χ, and the weight of negative interaction is τ,
where χ + τ = 1, χ < τ. Combining the interaction timeliness and the weight of
the interaction effect, the positive and negative interaction effects of Vi and RSUj are
expressed as follows:

Vα
i→j =

∑X
x=1(ψxχαtx

i→j)

∑X
x=1 ψx

(5)

Vβ
i→j =

∑X
x=1(ψxτβtx

i→j)

∑X
x=1 ψx

(6)

Among them, Vα
i→j represents the positive interaction between Vi and RSUj, while

Vβ
i→j represents the negative interaction effect between Vi and RSUj.

Therefore, according to Formulas (3), (5), and (6), the interaction frequency of Vi and
RSUj is updated as follows:

IFi→j =
Vα

i→j + Vβ
i→j

∑N
x=1 Ni→x

(7)

where IFi→j is the result of updating the IF0
i→j of formula (3).

• Distance Factor: Considering the influence of the geographical location where the
vehicle Vi sends the message, that is, the farther the geographical location where the
message is generated is from the geographical location where the event occurs, the
lower the event weight. Assuming that the distance between the location where the
event is generated and the location where the message is sent is 0-L, we believe that
the information is credible in terms of distance factors.
The factors influencing distance are shown as follows:{

DFi→j = 1, ∆L ≤ L
DFi→j =

L
2
√
|Xi−X|2+|Yi−Y|2

, ∆L > L (8)

where ∆L =
√
|Xi − X|2 + |Yi −Y|2, (Xi, Yi) and (X, Y) are the location coordinates

of the message generated by vehicle Vi and the geographic location coordinates of the
message generation, respectively.
Therefore, the overall credibility value weight of the local opinion is δi→j = ρ1 ∗ IFi→j +
ρ2 ∗ DFi→j, where ρ1 + ρ2 = 1, 0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1.
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4.2.3. Recommended Opinions of Subjective Logic

For each vehicle, the vehicle collects the local opinion vector of other vehicles that
have communication data interaction with the RSUj to evaluate the RSUj’s credit value
within a time period and the corresponding credit value weight δ, and uses the collected
local opinion vector corresponding to the credit value weight δ to merge all the collected
local opinion vectors into one recommended opinion. The formula expression is as follows:

brec
s→j =

1
∑s∈S δs→j

∑s∈S δs→jbs→j

drec
s→j =

1
∑s∈S δs→j

∑s∈S δs→jds→j

urec
s→j =

1
∑s∈S δs→j

∑s∈S δs→jus→j

(9)

Vehicle Vi merges to get a recommendation as ωrec
s→j := {brec

s→j, drec
s→j, urec

s→j}, where
S ∈ S indicates that vehicle S belongs to the recommended vehicle set S .

4.2.4. Combining Local Opinions with Recommended Opinions

After obtaining a local opinion vector for the RSU from other vehicles, a particular
vehicle has a subjective opinion for each RSU based on its interaction history. This partial
opinion should still be taken into account when forming the final initial credit rating of a
single vehicle to avoid deception.

After Vi combines the local opinion vector of its own credit evaluation of RSUj in a
time period with the merged recommendation opinion, the resulting credit opinion can be
expressed as ωfinal

s→j := {bfinal
s→j , dfinal

s→j , ufinal
s→j }.

bfinal
i→j =

bi→jurec
s→j+brec

s→jui→j

ui→j+uγec
s→j−urec

s→jui→j

dfinal
i→j =

di→jurec
s→j+drec

s→jui→j

ui→j+uγec
s→j−urec

s→jui→j

ufinal
i→j =

urec
s→jui→j

ui→j+urec
s→j−urec

s→jui→j

(10)

Similar to Equation (2), Vi’s final reputation opinion on RSU is

Ffinal
i→j = ε + tanh

(
bfinal

i→j + γufinal
i→j

)
(11)

where ε is the initial creditworthiness of any predefined node in the system and is a
negligible non-zero positive number.

In a certain period, RSUj receives all vehicles in the corresponding area to evaluate
its credit value and gets the initial credit value, and then adds it to get its own node credit
value Rj.

4.3. Committee Election Algorithm

This section defines the election function fSeleH (·) for the consensus committee. In
order to ensure the randomness of the election, it is necessary to ensure the fluidity of
the node election committee that meets the credibility threshold. Elections provide two
important attributes, namely public key pk and node reputation R, node pi first performs
hj ← H(pk j, Rj) operations on its own public key pk and reputation value Ri to obtain the

hash value hi, which is basically evenly distributed between 0 and 2hashlen(hj)− 1. Therefore,
whether to be selected to the committee is randomly selected according to the credibility of

the nodes. When Rj −
hj

2
hashlen(hj)

> 0, where the hashlen(.) function is used to calculate the

bit length of a given hash, node pi meets the inclusion condition, and node pi is added to
the committee CO.
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The algorithm pseudo-code is described in Algorithm 1.

Algorithm 1 Reputation election fSeleH (·)
Input: pkj, Rj
Output: CO
Initializaion: CO← ∅
1. hj ← H

(
pkj, Rj

)
2. f (x)← Rj −

hj

2hashlen (hj)
3. if f (x) > 0 then
4. CO← CO ∪ pi
5. else
6. CO← CO
7. endi f

4.4. Double-Layer Consensus Structure

In the Internet of Vehicles environment, due to the wide range of vehicle activities, a
large number of RSU nodes, and high communication complexity, it is necessary to design
a network structure with scalability and flexibility to cope with the rapid change in network
topology when vehicles are running.

In this paper, we propose a double-layer PBFT consensus structure, as shown in
Figure 2, with n nodes in the first layer and m nodes in each region in the second layer, i.e.,
a total of n + m nodes. Where the replica of the committee in the first layer is noted as r1

i
(superscript 1 indicates the number of layers, and subscript i indicates the region), r1

i serves
as the leader of the corresponding replica of each regional committee in the second layer r2

i .
An upper layer r1

i together with the r2
i in its region forms a regional consensus committee.

Figure 2. Topology of C−PBFT system.

As shown in Figure 3, the C−PBFT consensus process is divided into two parts: first,
regional local consensus is carried out, and then global consensus is carried out.
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Figure 3. The whole process of C-PBFT’s consensus.

4.4.1. Regional Local Consensus

Node RSUk receives the request message m sent by the requesting vehicle in the target
area in the format of < REQUEST2, o, t, c > σc, and node RSUk puts the request message
e into the transaction pool in the target area, where O indicates that node RSUk receives
the request message e sent by the requesting vehicle in the target area in the format of
< REQUEST2, o, t, c > σc, and node RSUk puts the request message e into the transaction
pool in the target area, where O indicates the specific operation to be performed, t indicates
the timestamp, which is the time when the requesting vehicle sends the request message to
the RSUk, c indicates the requested vehicle number, and σc indicates the request for vehicle
signature, REQUEST2’s superscript 2 indicates the request at the second layer.

(1) Pre-prepare Phase

The regional master node p of the target regional committee assigns the serial number
to the request message in the transaction pool and broadcasts the preparatory
message 〈〈PRE− PREPARE2, v, h, d〉σp , e > to all nodes of the regional committee.
〈PRE− PREPARE2, v, h, d〉σp is the signature of the master node p of the target regional
committee using its own private key, v indicates the view number, h indicates the sequence
number assigned to the request message e, and d represents a summary of the request
message e.

(2) Prepare Phase

After receiving the PRE− PREPARE2 message from the primary node p, node RSUk
uses the corresponding public key for verification. After the verification is successful, node
RSUk sends a < PREPARE2, v, h, d, k >σk message, indicating the signature message of
node RSUk, to other nodes in the owning area committee, including the primary node.

(3) Commit Phase

If RSUk receives 2 f + 1 PREPARE2 messages that pass the authentication, RSUk enters
the confirmation phase. The

〈
COMMIT2, v, h, d, k

〉
σk

multicast message is sent to the node

that receives 2 f + 1 PREPARE2 messages that pass the authentication.

(4) Reply Phase

If node RSUk receives 2 f + 1COMMIT2 messages that pass the authentication, it
indicates that most nodes in the current regional committee have reached a consensus.
Node RSUk sends a reply message < REPLY2, v, t, c, k, r >σk to the area master node p of
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the region, where r represents the execution result of the requested operation. Master node
p of the area confirms that the area has reached a consensus by checking that more than
f + 1 members in the current area, including itself, reply to the REPLY2 message with the
same serial number. The regional master node sends a request to the first-layer master
node p to send the consensus data m to the first-layer master node, opening a new round
of consensus requests.

The algorithm pseudocode is described in Algorithm 2.

Algorithm 2 Regional Local Consensus Pseudocode

Input: < REQUEST2, o, t, c >σc
Output: < REPLY2, v, t, c, k, r >σk
1. while valid < REQUEST2, o, t, c >σc received = True do
2. broadcast << PRE− PREPARE2, v, h, d >σp, e2 > to r2 in same consensus group.
3. end while
4. while valid << PRE− PREPARE2, v, h, d >σp, e2 > received = True do
5. broadcast < PREPARE2, v, h, d, k >σk to r2 in same consensus group.
6. end while
7. while valid < PREPARE2, v, h, d, k >σk received = True do
8. if number of valid < PREPARE2, v, n, d, k >σk> 2 f + 1 then
9. broadcast < COMMIT2, v, h, d, k >σk to r2 in same consensus group.
10. end if
11. end while
12. while valid < COMMIT2, v, h, d, k >σk received = True do
13. if number of valid < COMMIT2, v, h, d, k >σk> 2 f + 1 then
14. broadcast < REPLY2, v, t, c, k, r >σk to r2 group leader.
15. end if
16. end while

4.4.2. Global Consensus

The primary node of Layer 1 makes global consensus according to the time order of
messages in the transaction pool. The primary node of Layer 1 sends << PRE−PREPARE1, v,
h, d >, e >σi messages to all regional primary nodes, where σi represents the signature of
the primary node of Layer 1, i. The preparation phase, preparation phase, and confirmation
phase in the global consensus are similar to those in the local consensus and will not be
repeated here.

All regional master nodes will reply to the message
〈

REPLY1, v, t, c, i, r
〉

σi directly
to the requesting vehicle. If the requesting vehicle receives f + 1 REPLY1 messages, the
consensus is successful. i indicates the number of the primary node in the area, REPLY1 is
the flag description, v indicates the number of the current view, t stands for the timestamp,
c indicates the requested vehicle number, and r indicates the result of the requested oper-
ation. After the above process is completed, the master nodes in all areas send the reply
message REPLY1 directly to the client, that is, to request the vehicle. After the client
receives f + 1 REPLY1, the consensus is successful. After the two−tier consensus of the
target regional committee is completed, the remaining nodes of the blockchain network
copy the data locally.

The algorithm pseudocode is described in Algorithm 3.
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Algorithm 3 Global Consensus Pseudocode

Input: < REPLY2, v, t, c, i, r >σi
Output: < REPLYl , v, t, c, i, r >σi
1. while valid

〈
REPLY2, v, t, c, i, r

〉
σi received = True do

2. if number of valid < REPLY2, v, t, c, i, r >σi> f + 1 then
3. broadcast < REQUESTl , o, t, c >σc to superior rl leader.
4. end if
5. end while
6. while valid

〈
REQUESTl , o, t, c

〉
σc

received = True do

7. broadcast << PRE− PREPAREl , v, n, d >σp, e1 > to rl all nodes.
8. end while
9. while valid << PRE− PREPAREl , v, n, d >σp, e1 > received = True do
10. broadcast < PREPAREl , v, n, d, i >σi to rl all nodes.
11. end while
12. while valid < PREPARE1, v, n, d, i >σi received = True do
13. if number of valid < PREPARE1, v, n, d, i >σi> 2 f + 1 then
14. broadcast < COMMITl , v, n, d, i >σi to ri

l all nodes.
15. end if
16. end while
17. while valid < COMMIT1, v, n, d, i >σi received = True do
18. if number of valid < COMMIT1, v, n, d, i >σi> 2 f + 1 then
19. reply < REPLY1, v, t, c, i, r >σi to client.
20. end if
21. end while

5. Theoretical Analysis
5.1. Safety Analysis

First, the committee election algorithm elects suitable nodes in each region to par-
ticipate in consensus, the selected committee meets the honest majority, and the regional
committee performs the PBFT algorithm for consensus, because the PBFT algorithm, for all
locally confirmed client requests, all normal replica nodes in the system must agree on the
message serial numbers of these requests, so it ensures the consistency within the region,
and regional consensus is completed. After the regional master node sends a message to the
leadership master node, the leadership master node broadcasts for inter-regional consensus,
and after the inter-regional PBFT consensus is completed, the data is synchronized among
the regions, which ensures the data consistency across regions. Therefore, our algorithm
satisfies the security.

5.2. Liveness Analysis

If the master node is evil, our proposed reputation value evaluation algorithm quickly
reduces the master node reputation value so that it does not satisfy the master node
condition, while the PBFT view replacement protocol replaces the master node, specifically,
our algorithm can handle the situation where consensus cannot be reached and prevent
malicious master nodes from not forwarding messages to honest nodes. Thus, the activity
of the system is ensured.

5.3. Honest Majority of the Committee

Lemma 1. Among the elected members, more than half of the nodes are honest, except for the
negligible probability δ(m).

Proof. In the worst case, all nodes have a reputation value of 1. The committee election
can be viewed as an independent random sampling problem, and the probability that node
pi is elected to the committee is

Pr[pi is elected ] =
mµj

∑n
i=1 µi

=
m
n

(12)
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where m is the committee size, k is the node number, and µj is the reputation value of each
node pi.

Suppose that the probability that the node representing the election is an honest node
and the probability that the node representing the election is a Byzantine node, the random
variable A represents the number of honest nodes in the committee, and the random
variable B represents the number of Byzantine nodes in the committee. The random
variables A and B satisfy the following binomial distribution:

Pr[A = k] =
(

n
k

)(
α

m
n

)k(
1− α

m
n

)n−k
(13)

Pr[B = k] =
(

n
k

)(
β

m
n

)k(
1− β

m
n

)n−k
(14)

Let X and Y be denoted as

X =
{

A : 0 ≤ A ≤
⌊m

3

⌋}
(15)

Y =
{

B :
⌈m

3

⌉
≤ B ≤ n

}
(16)

When neither X nor Y holds, the nature of the honest majority of the committee holds.
Pr[X ∪Y] represents the probability that at least one of X and Y holds:

Pr[X ∪Y] = Pr[X] + Pr[Y]− Pr[X ∩Y]

≤ Pr[X] + Pr[Y]

= Pr
[

A ≤
⌊m

3

⌋]
+ Pr

[
B ≥

⌈m
3

⌉]
= F

(⌊m
3

⌋
, n, α

m
n

)
+ F

(
n−

⌈m
3

⌉
, n, 1− β

m
n

) (17)

where F(k, n, p) = Pr[X ≤ k] is the cumulative distribution function (CDF) of the ran-
dom variable X ∼ B(n, p). Note: Pr[X ≥ k] = F(n − k, n, 1− p). By the Binomial Tail
Inequality [28], it follows that:

F(
⌊m

3
⌋
, n, α m

n ) + F(n−
⌈m

3
⌉
, n, 1− β m

n )

≤ exp

(
−2n

(
α m

n −
bm

3 c
n

)2
)
+ exp

(
−2n

((
1− β m

n
)
− n−dm

3 e
n

)2
)

= 2 exp(−2n
(
bm

3 c−βm
n

)2
) = δ(m)

(18)

where n and β are constants. Thus, in the worst case, except for the negligible probability,
the committee honest nodes will be in the majority.

Under normal conditions, the reputation values of all honest nodes and a few Byzan-
tine nodes are close to 1, while the reputation values of the remaining Byzantine nodes
are smaller than the reputation values of honest nodes. This indicates that the reputation
value of a node basically correctly reflects the probability of a node being an honest node.
According to the probability of each node being elected to the committee as

mµj

∑n
i=1 µi

, it is clear
that nodes with higher credibility are more honest and more likely to become committee
members. Therefore, there are

Pr[ Dishonestmajority ]Normal-case < Pr[ Dishonestmajority ]Worst-case = δ(m) (19)

It shows that, in the process of election committee, the probability of honest majority
is higher in normal circumstances than in the worst case.
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5.4. Attacks Discussion

Next, we discuss the possible attacks on the consensus algorithm proposed in this
paper, which include both internal and external attacks, and show how they are mitigated
and defended against by our algorithm.

Internal Attacks. An attacker may collude with nodes in the blockchain network or
inject malicious nodes into the blockchain network in order to perform malicious acts and
attack the consensus process from within the network.

Internal attacks can be classified into two cases depending on the type and behavior
of the node.

(1) The master node may be a malicious node.
Malicious primary nodes intentionally generate divergent pre-prepared messages
and transmit them to other nodes. In the PBFT’s prepare and commit phases, nodes
engage in voting amongst themselves. If the pre-prepared messages from the primary
node are inconsistent, replica nodes can readily detect this discrepancy. Consequently,
replica nodes will abandon the consensus proposed by the primary node and await
the re-presentation of transactions by other nodes. Simultaneously, the credibility as-
sessment mechanism and the view change protocol ensure that the malicious behavior
of the primary node is curtailed within reasonable bounds.

(2) The malicious nodes predict the master node in advance to carry out the attack.
Our proposed consensus algorithm utilizes a committee election mechanism to ran-
domly designate primary nodes. This approach ensures a certain degree of random-
ness while still maintaining the requirement that nodes meet the credibility threshold.
This prevents the scenario wherein the node with the highest reputation consistently
acts as the primary node, thereby thwarting malicious nodes from preemptively
predicting the primary node.
External attack. An attacker may maliciously attack the nodes in the blockchain
network to make them behave maliciously and thus attack the consensus algorithm
from the external network.

This paper mainly includes the following cases:

(1) The data is tampered and forged.
The RSU nodes within the system employ techniques such as pseudonymous identifi-
cation, hash algorithms, and digital signatures. To safeguard against data tampering,
the blockchain system utilizes asymmetric encryption technology. As a result, nodes
lacking the requisite private keys are incapable of forging the identities of other nodes
or the signatures of their messages. The integration of blockchain technology and dig-
ital signatures substantially elevates the cost of successful impersonation by potential
attackers, thereby reinforcing the overall system’s reliability.

(2) On-off attack by malicious nodes.
The so-called On-off attack is when the attacker performs well for a period of time to
enhance its reputation value, and when it accumulates to a high reputation value, it
suddenly launches an attack until the reputation value is about to drop to a certain
value, and then stops doing evil and becomes a normal node.

Our CRMWSL reputation value calculation model can achieve high-precision rep-
utation calculation. Due to the recommendation of other vehicles and the multi-weight
calculation of nodes, the reputation value of evil nodes will drop sharply, and below the
threshold value will be withdrawn from the committee to participate in consensus. Also
according to different environments, the trust threshold can be increased appropriately,
which will distinguish more abnormal nodes.

6. Performance Evaluation

This experiment is divided into two parts of testing, which are divided into testing the
CRMWSL reputation value calculation model and testing the performance of the C-PBFT
consensus algorithm. The consensus algorithm test part uses go language to simulate the
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C-PBFT algorithm, and the throughput and latency are evaluated for 30, 60, 90, 120, 150,
180, and 210 nodes, respectively. The experimental test was performed 100 times, each time
the client sent 200 request messages, and the average of 100 times was taken as the test
result. Major parameters used in the simulation are listed in Table 2.

The CRMWSL model test uses the San Francisco taxi data set, which records the
moving tracks of 536 taxis in a month. Figure 4 shows the track distribution points of
200 taxis in a month,whose latitude and longitude are 37.73~37.80 and −122.50~−122.38,
respectively. 400 RSUs are deployed in this area for testing, and the update period of RSU
reputation is 1 min.

Table 2. Parameter setting in the simulation.

Parameter Setting

Frequency of interaction between
vehicle and RSU [50,200] times / week

Coverage range of RSUs [300,500] m

Speed of vehicles [50,150] km/h

Weighting parameters χ = 0.4, τ = 0.6, ρ1 = 0.5, ρ2 = 0.5

Rate of compromised vehicles [10%, 90%]

Successful transmission probability of
data packets [0.5,1]

Vehicle to RSU bandwidth 20 MHz

Figure 4. Vehicle track distribution map.

6.1. Reputation Value Change Rate

In the proposed CRMWSL scheme, vehicles calculate the reputation values of can-
didate nodes based on local opinions and recommendations from other vehicles. The
CRMWSL scheme is compared with the traditional subjective logic (TSL) scheme [29]
and the MWSL scheme [30], which is a typical model that uses linear functions to cal-
culate reputation.That is, Tl

i→j = (1− k)Tave + kTlas, where Tave = bave
x→j + 0.5uave

x→j and

Tlas = blas
i→j + 0.5ulas

i→j, where k is the weight, set to 0.5. bave
i→j and uave

i→j are the average values

of bi→j and ui→j of other vehicles, respectively. blas
i→j and ulas

i→j of the RSU are the latest bi→j

and ui→j in the local opinion of vehicle Vi.
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Assuming that the probability of abnormal behavior of the abnormal vehicle is 70%,
and the abnormal vehicle interacts with other normal vehicles through RSUs, the reputation
value of the target RSU decreases over time. Figure 5 shows the change in the reputation of
the malicious miner candidates for three schemes: (i) MWSL scheme, (ii) TSL scheme, and
(iii) CRMWSL scheme. It can be seen that the CRMWSL scheme updates the reputation
value more accurately, resulting in a lower reputation value for anomalous RSUs. After
7 min, the reputation value drops to 0.5, which is lower than that of the TSL and MWSL
schemes, implying that the probability of anomalous RSUs being detected is higher in
the CRMWSL scheme when the trust threshold is 0.5. Due to the weight of interaction
frequency, timeliness, and interaction effects on the recommended and local opinions, the
reputation value of RSU nodes in the CRMWSL scheme falls below the trust threshold faster
than in the TSL scheme and MWSL scheme. Therefore, the proposed scheme achieves more
accurate reputation calculation and is more secure and fair during committee elections.

Figure 5. The change rate of reputation value of malicious RSUs.

6.2. Malicious RSUs Detection Success Rate

As depicted in Figure 6, our observations reveal distinct trends in the detection rates
of 10 malicious RSU nodes over a 60-min interval. Notably, as the trust threshold increases,
the scheme’s capability to distinguish abnormal nodes also grows. In this context, our
CRMWSL scheme outperforms both the MWSL and TSL schemes in successfully detecting
malicious RSUs.

More specifically, when the detection success threshold is set to 0.45, the CRMWSL
scheme achieves a 100% detection rate, which significantly surpasses the performance of
the MWSL and TSL schemes. These results underscore the CRMWSL scheme’s ability to
reliably identify potential security threats, thereby enhancing the overall security level of
the system.



Appl. Sci. 2023, 13, 10663 17 of 21

Figure 6. Detection rate under different trust thresholds.

6.3. Communication Overhead

The communication complexity analysis of the C-PBFT consensus algorithm:
Local consensus is performed first in the region.

(1) In the pre-prepare phase, each group master node broadcasts the message to each
node of the committee, and the communication overhead is u −1 at this time.

(2) In the prepare phase, when each RSU node that receives the message sends a verifi-
cation message to all nodes in the group except its own node, and the overhead is
(u − 1)(u − 1) at this time.

(3) In the commit phase, in which all nodes receive verification messages from other
nodes in the previous phase, the nodes confirm and count the number of messages
received, and the overhead is u(u − 1) at this time.

(4) In the reply phase, each node sends a reply message to the master node, and the
communication volume is u − 1.

The first layer of node consensus is performed, and since there are n groups involved
in consensus, a total of n nodes are involved in the first layer.

(1) In the pre-prepare phase, when the master node in each region receives enough
feedback messages, this message is put into the first layer transaction pool, and the
first layer master node reads the transaction and broadcasts it to all nodes in the first
layer, at this time the communication overhead is n − 1.

(2) The communication overhead of the prepare and commit phases is similar to that of
the first round of consensus in the bottom layer; then, its communication overhead is
n(n − 1) + (n − 1)(n − 1).

(3) In the reply phase, each regional master node sends a reply message to the master
node, and the communication is n − 1.

Therefore, the number of communications for the improved C-PBFT consensus algo-
rithm to complete a consensus process is the total communication complexity, as shown in
Equation (20).

C1 = 2u2 + 2n2 − 2u− n + 1 (20)

The number of communications in a consensus process of the original PBFT consensus
algorithm is C2 = 2m2n2 − 2mn.
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Figure 7 shows a comparative analysis of the communication overhead between
PBFT and C-PBFT consensus algorithms. It is clear that the communication overhead
generated by C-PBFT is significantly lower throughout the blockchain network, and this
overhead gradually increases as the number of consensus nodes increases. The reduction
of communication overhead is mainly attributed to the reduction of the scale of consensus
nodes by the C-PBFT algorithm. A node only needs to send messages to regional committee
nodes instead of to all nodes. When the number of network nodes is 180, the communication
overhead of PBFT is 43,832, and that of C-PBFT is 20,608 (three groups). This represents a
significant 68% reduction in communication overhead.

Figure 7. Comparison of communication overhead between C-PBFT and PBFT.

6.4. Consensus Latency

As can be seen from Figure 8, the consensus delay of the three algorithms increases
gradually as the number of nodes increases. The consensus delay of PBFT is the highest
when the number of nodes is different, and the C-PBFT algorithm is lower than PBFT and
TLPBFT on the whole, because the reputation calculation model of the C-PBFT algorithm
is more flexible than TLPBFT, and the reputation value of nodes is obtained through the
integration of local opinions and recommendation opinions. The identity of the primary
node selected by the C-PBFT algorithm is not easy to be attacked by malicious prediction,
and the consensus node cluster is more credible, does not lead to frequent view conversion,
has lower consensus delay and higher consensus efficiency, and further reduces the number
of consensus nodes by using committee strategy.

6.5. Throughput

As shown in Figure 9, with the continuous increase of the number of nodes, the
throughput of the three algorithms shows a trend of decline. The throughput of the C-PBFT
algorithm is higher than that of PBFT and TLPBFT, because C-PBFT elects committees in
each region to participate in the consensus, reducing the number of consensus nodes, thus
reducing the communication overhead, and the advantage becomes more obvious as the
number of nodes increases. Therefore, in the networking of vehicles, the C-PBFT algorithm
can maintain high efficiency and stability.
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Figure 8. The consensus latency of the three consensus algorithms.

Figure 9. The throughput of the three consensus algorithms.

7. Conclusions

To meet the requirements of vehicle speed, latency, and communication overhead
in the actual environment of vehicle networking, this paper modified the original PBFT
consensus structure and designed an extensible double-layer PBFT consensus algorithm.
In addition, a multi-weight subjective logic model CRMWSL for calculating reputation
value is proposed, in which factors such as interaction frequency, event timeliness, and
distance are taken into account to achieve accurate calculation of RSU node reputation
value. Meanwhile, suitable nodes are elected into the committee to participate in consensus
according to their reputation values, which further reduces communication overhead and
improves blockchain scalability.
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The experimental results show that the proposed CRMWSL model has great ad-
vantages over TSL and MWSL in improving the detection rate of malicious nodes, and
the proposed C-PBFT consensus algorithm is superior to PBFT and TLPBFT in terms of
transaction latency, throughput, and communication overhead.

In our future work, we will think about adding more weights to further increase the
node reputation value’s correctness and extending the double-layer consensus method to
multi-layer research to further reduce consensus time and increase consensus performance.
In order to provide more safe and effective services for the Internet of Vehicles, we will
also aim to employ blockchain technology to solve network security issues in the Internet
of Vehicles.
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