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Abstract: For the visual measurement of moving arm holes in complex working conditions, a his-
togram equalization algorithm can be used to improve image contrast. To lessen the problems of
image brightness shift, image over-enhancement, and gray-level merging that occur with the tradi-
tional histogram equalization algorithm, a dual histogram equalization algorithm based on adaptive
image correction (AICHE) is proposed. To prevent luminance shifts from occurring during image
equalization, the AICHE algorithm protects the average luminance of the input image by improving
upon the Otsu algorithm, enabling it to split the histogram. Then, the AICHE algorithm uses the local
grayscale correction algorithm to correct the grayscale to prevent the image over-enhancement and
gray-level merging problems that arise with the traditional algorithm. It is experimentally verified
that the AICHE algorithm can significantly improve the histogram segmentation effect and enhance
the contrast and detail information while protecting the average brightness of the input image, and
thus the image quality is significantly increased.

Keywords: complex working conditions; histogram equalization; Otsu algorithm; machine vision;
image enhancement

1. Introduction

In the industrial field, machine vision systems applied in practice will inevitably
encounter environmental problems (e.g., light, fog, smoke, dust), imaging equipment prob-
lems, lighting problems, and other factors that will result in the acquisition of low-quality,
low-contrast images, which is not conducive to subsequent image processing, and so image
enhancement is necessary. The main methods of image enhancement include histogram
equalization, homomorphic filtering [1], Retinex theory-based enhancement algorithm, and
deep learning methods. For the image enhancement algorithm of homomorphic filtering,
Gong [2] et al. proposed a homomorphic filtering method based on combination and
addition in HSV space. However, this work merely improved the underground image data
and had certain efficiency flaws. The enhancement method based on Retinex theory has a
poor effect on high-brightness images (such as hazy photos), and it produces visible halo
phenomena at the intersection of light and dark in the image, which is not conducive to
industrial measurement. Deep learning technologies can increase image quality. How-
ever, there are still issues with data availability and the generalization of deep learning
systems [3].

The histogram equalization method is widely used because it is fast, simple, and
effective. Histogram equalization takes the histogram statistics of the pixel values of the
input image and then distributes them evenly, which is effective for image enhancement.
However, the traditional histogram equalization algorithm [4] can lead to the brightness of
the image being offset due to over-stretching, which results in poor enhancement; it can
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also lead to a loss of detail information and over-enhancement due to gray-level merging.
These image quality problems detract from the success of image processing and hinder
the extraction of target information from the image. Therefore, histogram equalization
algorithms have been improved through various methods [5–8].

To solve the problem of mean luminance shift, Kim proposed the bi-histogram equal-
ization (BBHE) algorithm [9], which divides the input image histogram into two sub-
histograms based on the mean value of the input image histogram, equalizes them sepa-
rately, and finally merges them. Later on, many other scholars improved such algorithms,
and Wang et al. proposed the dualistic sub-image histogram equalization (DSIHE) al-
gorithm [10], which divides the image into two sub-histograms based on the median of
the gray level, instead of the mean, and equalizes them separately. The recursive sub-
image histogram equalization (RSIHE) algorithm [11] and the recursive mean-separate
histogram equalization (RMSHE) algorithm [12] improve upon BBHE and DSIHE, respec-
tively. Chen et al. [13] proposed a bi-histogram equalization algorithm with a “minimum”
mean brightness error (i.e., minimum mean brightness error bi-histogram equalization,
MMBEBHE), which determines the unique separation point by testing all intensity values
and selecting the minimum difference between the average input brightness and the av-
erage output brightness. He et al. [14] proposed an infrared image enhancement method
combining improved L-C saliency detection and dual-region histogram equalization in
order to improve the visual effect of infrared images and highlight the detail information.
The foreground and background regions are obtained by adaptive segmentation of the
saliency map using the K-means algorithm. Although the K-means algorithm works well
when the sample data are dense and the distinction between classes is particularly good,
the selection of the K value is difficult to estimate. Blind determination of the K value will
lead to inaccurate segmentation results.

The principle of all these methods is to calculate a suitable threshold to split the
original histogram and then equalize each histogram separately. These methods can protect
the average brightness of the input image, but their limitations are that the segmented
sub-histogram is too narrow, leading to poor image enhancement, and the distribution is
too wide, so it will contain noise, artifacts, and other defects. To solve the problem of image
detail loss, some scholars proposed the local histogram equalization algorithm (AHE) for
image contrast enhancement, but the algorithm is complex, has a long running time, and
generates a lot of noise and block effects, so it was improved to produce the contrast-limited
adaptive histogram equalization (CLAHE) algorithm [15].

In recent years, to mitigate the problem of average brightness change and image detail
loss due to gray-level merging in the equalization process, Stark et al. [16] proposed adap-
tive histogram equalization, the idea of which is to segment the image, perform histogram
equalization for each region separately, and finally merge multiple local maps, which can
protect certain detail information but also introduce noise. To improve the image over-
enhancement problem, Maitra et al. [17] proposed a pre-processing algorithm for pectoral
muscle detection and suppression using contrast limited adaptive histogram equalization
(ARAN) to enhance the contrast of digital mammograms. Bi-histogram with a plateau limit
for digital image enhancement (BHEPL) [18] uses the average of the intensity of each sub-
histogram as the platform limit. Aquino-Morínigo et al. [19] proposed a dual Bi-histogram
histogram equalization algorithm using two platform limits (BHE2PL). Singh et al. [20]
proposed an image enhancement technique using the idea of exposure values, called image
enhancement using exposure-based sub-image histogram equalization (ESIHE), which
divides the cropped histogram into two parts using a pre-computed exposure threshold.
Paul [21] proposed a three-histogram equalization technique for digital image enhancement
in the three-platform limit, which uses a separation threshold parameter to initially separate
the histogram of the input image into three sub-histograms. Huang [22] proposed an image
enhancement strategy—contrast-constrained dynamic quadratic histogram equalization
(CLDQHE)—to overcome the drawbacks of over-enhancement and over-smoothing that
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exist in traditional histogram equalization methods. Although these algorithms perform
well in contrast improvement, they fail to maintain brightness and preserve fine structures.

Hence, this study proposes a dual histogram equalization algorithm based on adaptive
image correction (AICHE) for image enhancement in the process of moving arm hole
machine vision measurement in complex working conditions. With AICHE, the global
histogram is divided into two sub-histograms to solve the problem of mean luminance
shift, and then the sub-histograms are corrected in two platform limits to avoid the over-
enhancement of the image. Next, to prevent image over-enhancement and gray-level
merging problems, grayscale correction is conducted using a local grayscale correction
algorithm to perform histogram equalization on the basis of maintaining the average
brightness of the input image to improve the image contrast while protecting image
detail information.

2. Histogram Equalization

The main idea of the histogram equalization algorithm is to extend the probability
density function (PDF) of the gray levels in the whole image and remap the gray levels of
the pixels in the original image. First, the histogram of the original image F is normalized
and its cumulative histogram is constructed. The conversion formula is mainly composed of
the cumulative distribution function (CDF). Then, the cumulative histogram is quantized to
the gray level of the output image. The three steps of the algorithm are detailed as follows:

Count the percentage of pixels for each gray value to obtain the PDF of the histogram:

PDF(i) =
ni
n

, i = 0, 1, 2. · · · k (1)

where i is the gray level of the input image, n is the total number of pixels in the input
image, and ni is the total number of pixels in the image with gray level i.

Accumulate the PDF of each gray level to obtain the CDF of the histogram:

CDF(i) =
k

∑
i=0

PDF(i) (2)

where CDF is cumulative distribution function.
Quantize the CDF and map it to the output image:

F(i) = start + (end− start)× CDF(i) (3)

where start and end denote the minimum and maximum gray levels of the mapping
interval, respectively.

Based on the CDF, the traditional histogram equalization algorithm selectively en-
hances the gray levels that occupy more pixels and extends the distribution range of gray
levels. However, it will over-enhance the gray levels with higher frequency, and it will
merge the gray levels with fewer pixel points, resulting in the loss of details, which is also
the drawback of traditional histogram equalization.

3. Proposed AICHE Transformation

In this study, we propose the AICHE algorithm to segment the image into two sub-
histograms of target and background by improving upon the Otsu method, and then
perform the histogram equalization process separately, which ensures that the average
brightness of the original image will not be shifted. Additionally, the algorithm segments
the histogram of the image based on the adaptive threshold. This effectively avoids the
phenomenon of image over-enhancement and also prevents detail loss to a certain extent.
The flowchart of the AICHE algorithm is shown in Figure 1.
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3.1. Histogram Segmentation

For most images, the distribution of pixel grayscale is not uniform, and the average
brightness of the image will be shifted during the equalization process. This can be solved
using histogram segmentation. When segmenting the grayscale histogram, if the segmented
sub-histogram is too narrow, the equalization effect of the image will be reduced, and if
it is too wide, it will lead to excessive enhancement and the loss of details. Therefore, the
selection of the threshold value is extremely important, and the improper selection of the
threshold value will directly lead to the degradation of the image quality after equalization.

First, suppose a threshold t is the segmentation point, and the image is divided into
target region A and background region B according to the gray level, where region A
consists of pixels with gray value in the interval [MIN, t], and region B consists of pixels
with gray value in the interval [t + 1, MAX]. Then, the ratio of class A to class B qA(t),
qB(t) is

qA(t) =
t

∑
i=MIN

PDF(i), qB(t) =
MAX

∑
i=T+1

PDF(i) (4)

where MIN and MAX denote the initial and termination values of the histogram, respec-
tively, and P(i) denotes the probability that the grayscale value is i.

µA(t) and µB(t), can be calculated as follows:

µA(t) =
t

∑
i=MIN

iPDF(i)
qA(t)

, µB(t) =
MAX

∑
i=T+1

iPDF(i)
qB(t)

(5)

where µA(t) and µB(t) denote the probabilities of class A and class B, respectively.
Then, the µ can be calculated as follows:

µ = qA(t)µA(t) + qB(t)µB(t) (6)

where µ is the average grayscale of the input image.
The inter-class variance σ2

T is defined as

σ2
T = qA(t)[µA(t)− µ]2 + qB(t)[µB(t)− µ]2 (7)

The traditional Otsu algorithm is simple, convenient, and not affected by the bright-
ness of the image. It sets the threshold at which the variance between the target and
background grayscale reaches its maximum value as the optimal segmentation threshold:
KOtsu = argtminσ2

T . The smaller the distance between each pixel in two regions and the
class center, the better the pixel cohesion in each region. The traditional Otsu algorithm
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is less effective in segmentation because it does not consider pixel spatial correlation. To
measure the goodness of pixel cohesion, d2(t) is assumed and calculated as follows:

d2(t) = (µA(t)− µB(t))
2 (8)

where d2(t) is a distance metric. σ2
A and σ2

B are calculated as follows:

σ2
A(t) =

1
qA(t)

t

∑
i=MIN

(i− µA(t))
2P(i) (9)

σ2
B(t) =

1
qB(t)

MAX

∑
i=t+1

(i− µB(t))
2P(i) (10)

where σ2
A and σ2

B denote the mean variance values of the target and background regions,
respectively.

Obviously, the smaller the average variances σ2
A and σ2

B, the better the segmentation
effect; on this basis, a new threshold-finding formula G(t) is obtained.

G(t) =
qA(t)qB(t)d2(t)
σ2

A(t) + σ2
B(t)

=
qA(t)qB(t)(µA(t)− µB(t))

2

σ2
A(t) + σ2

B(t)
(11)

The corresponding t when G(t) takes the maximum value is the optimal threshold.
Therefore, Kout is obtained as follows:

Kout = argtmaxG(t) (12)

where Kout is the optimal threshold value.
According to threshold Kout, the histogram is divided into two sub-histograms, where

the first part is defined as i ∈ [0 : Kout] and the second part is defined as i ∈ (Kout + 1 : L).

3.2. Adaptive Local Grayscale Correction

The input image is divided into two sub-histograms according to the algorithm above,
and histogram equalization is performed on each of the two sub-histograms to improve
the image brightness offset. However, a new histogram assignment algorithm is used in
this study to solve the image over-enhancement and gray level merging problems. The
algorithm is mainly divided into two parts: image over-enhancement suppression and
local gray level correction.

3.2.1. Image Over-Enhancement Suppression

In the equalization process, the gray levels with higher frequencies appear to be over-
enhanced, whereas the gray levels with lower frequencies are merged, leading to a loss of
image details. Therefore, the AICHE algorithm suppresses the over-enhanced gray levels
by setting a threshold T for each of the two sub-histograms. The procedure is as follows.

1. First, let the input image be F, and obtain the sets FA and FB of non-zero cells in the
two sub-histograms.{

FA = {F(i)|F(i) 6= 0}, i ∈ [MIN, Kout]
FB = {F(i)|F(i) 6= 0}, i ∈ [Kout + 1, MAX]

(13)

where i is the gray level of the image, and FA and FB denote non-zero cells in the two
sub-histograms, respectively.
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2. The one-dimensional median filtering of FA and FB is performed, and the segmentation
thresholds TA and TB of the two sub-histograms are calculated as follows.{

TA = TMA × Kout−MIN
MAX−MIN

TB = TMB × MAX−Kout
MAX−MIN

(14)

where TMA and TMB denote the peaks of the two sub-histograms, respectively.
3. The image PS is obtained by independently equalizing the two sub-histograms ac-

cording to Equations (1)–(3), and the equalization equation is as follows.

PS(i) =


MIN +

(Kout−MIN)×
Kout
∑

i=MIN+1
PDF(i)

NA , i ≤ Kout

(Kout + 1) +
[MAX−(Kout+1)]×

MAX
∑

i=Kout
PDF(i)

NB , i > Kout

=


MIN +

(Kout−MIN)×
Kout
∑

i=MIN+1

ni
n

NA , i ≤ Kout

(Kout + 1) +
(MAX−Kout−1)×

Kout
∑

i=MIN+1

ni
n

NB , i > Kout

(15)

where ni is the total number of pixels in the image at gray level i, PS(i) is the histogram
after equalization at gray level i, and NA and NB are the total numbers of gray levels
in region A and region B, respectively.

4. After cropping the balanced histogram according to Equation (16), the image PT
is obtained.

PT(i) =


TA, i ≤ Kout ∩ PS(i) ≥ TA
TB, i > Kout ∩ PS(i) ≥ TB

PS(i)
(16)

where PT(i) indicates the cropped histogram with gray level i.

3.2.2. Local Gray Level Correction

To solve the problem that the gray levels will be merged after equalization, the AICHE
algorithm corrects the image after equalization. First, the gradient value is obtained by
convolving the input image and the equalized image with the Sobel operator to find the
location where the gradient value is obviously reduced. Second, the gray value is modified
with reference to the original image to enhance the local gradient value to protect the image
detail information. The specific process is as follows.

1. The gradient matrices Din and DHE of the input image and the equalized image are
obtained by convolving the images F and PT with Sobel operators in four directions.
The gradient matrix convolution is calculated as follows:

Din =
√
(D0◦ ∗ F)2 + (D180◦ ∗ F)2 + (D45◦ ∗ F)2 + (D135◦ ∗ F)2

DHE =
√
(D0◦ ∗ PT)

2 + (D180◦ ∗ PT)
2 + (D45◦ ∗ PT)

2 + (D135◦ ∗ PT)
2

(17)

where D0◦ , D45◦ , D135◦ , D180◦ denote the convolution factors in the four directions of
0◦, 45◦, 135◦, and 180◦, respectively. The four convolution factors are

D0◦ =

 −1 0 1
−2 0 2
−1 0 1

; D180◦ =

 −1 −2 −1
0 0 0
1 2 1

;

D45◦ =

 2 1 0
1 0 −1
0 −1 −2

; D135◦ =

 0 −1 −2
1 0 −1
2 1 0

;

(18)
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2. Local grayscale correction of the image PT is conducted according to Equation (19) to
enhance the local information of the image.

xout(i, j) =
{

xHE
main(i, j) + (xin(i, j)− xmain(i, j)), DHE(i, j) < Din(i, j)

xHE(i, j), DHE(i.j) ≥ Din(i, j)
(19)

where xout(i, j) is the grayscale value of the center pixel of the output image, xin(i, j)
and xHE(i, j) denote the center pixels of image F and image PT , respectively, and
xmain(i, j) and xHE

main
(i, j) are the grayscale averages of each pixel in a 5× 5 window

centered at (i, j) in the input image and the equalized image, respectively.
3. The final image is the output.

Figure 2 shows the effect of image processing and its grayscale histogram during
the process of the HE algorithm and AICHE algorithm. It can be seen that although the
HE algorithm can improve the image contrast, the image is overexposed due to image
stretching. And, after histogram segmentation, the average brightness of the image is
protected, but at this point there is still the problem of gray level merging and the loss
of image details. After the adaptive local gray level correction of the image, the average
brightness of the input image is protected while the contrast and detail information are
enhanced, and the image quality is significantly improved.
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4. Analysis of Algorithm Results
4.1. Improved Image Segmentation Effect of Otsu Algorithm

Figure 3 shows the comparison between the improved Otsu algorithm and other
image segmentation algorithms in three scenarios. Unlike the traditional Otsu and K-
means algorithms, the improved Otsu algorithm can segment the image reasonably well to
obtain a more complete moving arm profile. The improved Otsu algorithm segmentation
can show more details of the image and optimize the segmentation effect.

4.2. AICHE Algorithm Effect

To demonstrate the effectiveness of the AICHE algorithm, Figures 4–13 simulate the
environment of insufficient light, fog, and smoke, and compare the image enhancement
effects of seven histogram equalization algorithms with those of the AICHE algorithm.
These include the classical algorithms HE, BBHE, and CLAHE and several more advanced
algorithms, BHEPL, RSIHE, ESIHE, and MEBEBHE.
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4.3. Objective Evaluation Indicators

Four objective evaluation indicators are selected in this study, which are detailed
below.

4.3.1. Structure Similarity Index Measure

Structure similarity index measure (SSIM) is a metric used to compare the similarity of
two images. The SSIM value is mainly based on three characteristics: structure, luminance,
and contrast. Luminance is measured by the average gray value; contrast is measured by
the gray standard deviation; and structure is measured by the correlation coefficient. The
calculation method is as follows:

µ =
1
N

N

∑
i=1

xi (20)

σ = (
1

N − 1

N

∑
i=1

(xi − µ)2)

1/2

(21)

where µ is the average gray value, σ is the gray standard deviation, and C is the correla-
tion coefficient.

SSIM is consistent with human visual characteristics in evaluating image quality. Its
value falls in the range of [0, 1], where a higher value indicates a stronger similarity between
the two images, reflecting higher image quality. Its calculation formula is as follows:

SSIM(X, Y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(22)

where X and Y denote the input image and output image, respectively; σx and σy are the
standard deviations of image X and Y, respectively; µx and µy are the grayscale averages
of image X and image Y, respectively; σxy is the covariance of the two images; and C1 and
C2 are the correlation coefficients.
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Figure 9. The simulation results (above) of the ‘scene 6’ image are presented along with its corre-
sponding histogram (below). 
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Figure 10. The simulation results (above) of the ‘scene 7’ image are presented along with its corre-
sponding histogram (below). 
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Figure 11. The simulation results (above) of the ‘scene 8’ image are presented along with its corre-
sponding histogram (below). 
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Figure 12. The simulation results (above) of the ‘scene 9’ image are presented along with its corre-
sponding histogram (below). 
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sponding histogram (below).
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4.3.2. Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) can be used to compare the contrast enhancement
effect of images. PSNR is a measure of image quality based on the definition of mean
square error (MSE), which expresses the average of the differences between two images at
each pixel point and is calculated as follows:

MSE =

N
∑

i=1

N
∑

j=1
|X(i, j)−Y(i, j)|2

N
(23)
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PSNR is improved on the basis of MSE and its value is greater than zero. The larger
the value, the less distortion in the output image, the higher the contrast, and the more
obvious the enhancement effect; it is calculated as follows:

PSNR = 10 log10[
(2N − 1)2

MSE
] (24)

where N is the total number of pixels; X(i, j) and Y(i, j) denote the input image and output
image, respectively; and MSE is the mean square error.

4.3.3. Absolute Mean Brightness Error

The absolute average brightness error (AMBE) indicates the absolute difference be-
tween the average brightness of the input image and the resulting image, and it is used
to measure the performance in maintaining the original brightness. ASME is a value
greater than zero. The smaller the AMBE value, the better the light preservation effect. It is
calculated as follows:

AMBE =|Q(X)−Q(Y)| (25)

where X and Y denote the input image and the resultant image, respectively, and Q(X) and
Q(Y) are the average brightness values of the input image and the resultant image, respectively.

4.3.4. Information Entropy

Information entropy (E) is used to measure the information richness of an image,
which is greater than zero. The larger the value of E, the more information and details are
present in the image. However, a large value of E also indicates significant noise in the
image. It is calculated as follows:

E = −
255

∑
i=0

pi log pi (26)

where pi denotes the proportion of pixels with gray value i in the image.

4.4. Evaluation Results

In this study, the performance of each algorithm is measured using image evaluation
metrics such as SSIM, E, PSNR, AMBE, and time.

As can be seen in Figures 4–13, the HE algorithm shows an obvious phenomenon of
image brightness change and detail loss. Under low light conditions, the BBHE, RSIHE,
and MMBEBHE algorithms can protect the average brightness but will lead to uneven
histogram balance due to unreasonable histogram segmentation, which is less effective
for detail processing and will cause local area distortion. CLAHE can protect the image
details but will introduce a large amount of noise, especially in Figures 10 and 13 where
the image visual effect is significantly reduced. The AICHE algorithm improves the image
contrast under the condition of protecting the average brightness of the image; it does
not introduce excessive noise, and, to a certain extent, it retains the original shape of the
original histogram.

From Tables 1 and 2, the AICHE algorithm has the highest PSNR value and the SSIM
value is closest to 1.The image information entropy in Table 3 demonstrates the richness of
details in the image. The information entropy of the image processed by CLAHE obviously
exceeds that of the original image, which indicates that noise is introduced in the image
and produces a block effect. Except for the CLAHE algorithm, the AICHE algorithm has
the highest information entropy value, indicating that the gray level merging phenomenon
is effectively avoided in the equalization process, which can protect the image information.
ESIHE cannot maintain the average image brightness well, which is also clearly reflected
by the AMBE values in Table 4.
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Table 1. SSIM of different algorithms.

Image HE BBHE CLAHE BPLHE RSIHE ESIHE MMBEBHE AICHE

Scene 1 0.35355 0.81761 0.65532 0.96649 0.89335 0.76816 0.87611 0.97822
Scene 2 0.56202 0.82984 0.66354 0.86973 0.89335 0.90575 0.83181 0.91081
Scene 3 0.40267 0.83725 0.47892 0.88366 0.87225 0.70318 0.87699 0.89607
Scene 4 0.65454 0.94258 0.65375 0.77875 0.95223 0.87196 0.86033 0.95223
Scene 5 0.58603 0.84615 0.63251 0.75727 0.88304 0.90293 0.84839 0.92898
Scene 6 0.57518 0.72178 0.63395 0.85655 0.81686 0.83812 0.85081 0.89026
Scene 7 0.79064 0.89123 0.63185 0.95572 0.89463 0.9434 0.89365 0.95629
Scene 8 0.70979 0.88585 0.76452 0.77475 0.81018 0.89923 0.71782 0.91879
Scene 9 0.90019 0.94821 0.91324 0.96226 0.97794 0.96686 0.92514 0.97873
Scene 10 0.68766 0.77379 0.69663 0.83925 0.78948 0.83556 0.70165 0.85255

Average value 0.62222 0.84942 0.67242 0.86444 0.87833 0.863515 0.83827 0.926293

Standard deviation 0.16538 0.07077 0.11052 0.07907 0.06007 0.08025 0.07265 0.04078

Note: The top averages produced by the compared algorithms are marked in bold font.

Table 2. PSNR of different algorithms.

Image HE BBHE CLAHE BPLHE RSIHE ESIHE MMBEBHE AICHE

Scene 1 9.7051 28.2200 13.4224 32.8191 27.2202 20.3642 30.8145 33.1691
Scene 2 11.0532 18.8172 12.1940 17.7522 18.7340 22.4839 23.4246 31.9793
Scene 3 7.6270 13.9420 11.5169 22.6969 10.3618 12.1808 23.5157 27.3033
Scene 4 9.6131 13.2657 17.2237 11.5263 21.4071 20.5795 14.7804 20.5795
Scene 5 8.7144 14.1542 17.9418 11.8057 21.8398 18.4647 14.3072 23.1845
Scene 6 9.2463 12.6208 10.5965 11.0304 10.7381 12.3334 9.8361 12.7580
Scene 7 17.4424 27.7650 11.7832 30.9384 22.9990 30.1157 26.4948 31.3333
Scene 8 9.0751 25.2620 19.9886 10.4082 25.1913 16.6951 9.2755 21.3871
Scene 9 21.2349 24.7633 6.8659 26.1318 21.5225 27.5689 23.6395 29.8354
Scene 10 8.813 23.4973 20.3784 9.4208 22.6432 16.3077 9.1325 25.8520

Average value 11.2524 20.2307 14.1911 18.4529 20.2657 19.7093 18.5221 25.7381

Standard deviation 4.43957 6.34223 4.46301 9.02647 5.60078 5.89009 7.96312 6.37072

Note: The top averages produced by the compared algorithms are marked in bold font.

Table 3. E of different algorithms.

Image Original
Image HE BBHE CLAHE BPLHE RSIHE ESIHE MMBEBHE AICHE

Scene 1 6.6795 6.2585 6.4329 7.3721 6.6075 6.4146 6.5399 6.4329 6.6100
Scene 2 6.9335 6.6133 6.5720 7.4798 0.8336 6.6434 6.7688 6.5831 6.7754
Scene 3 6.4832 6.0482 6.0529 7.2479 6.1414 5.9924 6.1180 5.9747 6.2263
Scene 4 5.8144 5.7052 5.6333 6.6725 5.7407 5.7453 5.7456 5.6913 5.7850
Scene 5 5.5746 5.0785 4.9332 6.3464 5.0707 4.8746 5.1037 5.0313 5.1829
Scene 6 6.5849 6.2653 6.2540 7.2336 6.3560 6.2520 6.3487 6.2918 6.3663
Scene 7 7.4980 7.2396 7.2908 7.9450 7.4068 7.2882 7.3781 7.3107 7.4299
Scene 8 6.0384 5.1384 5.4682 6.3106 5.5317 5.4245 5.3574 5.7334 5.5863
Scene 9 7.6653 7.4882 7.4852 7.8956 7.5763 7.5308 7.5508 7.4800 7.5963

Scene 10 6.0335 5.0356 5.1394 6.1589 5.2051 5.1465 5.2067 5.1965 5.2112

Average value 6.53053 6.08708 6.12619 7.06624 5.64698 6.13123 6.21177 6.17257 6.27696

Standard
deviation 0.69256 0.86921 0.85574 0.69431 1.89171 0.87371 0.86821 0.81473 0.84929

Note: The top two averages produced by the compared algorithms are marked in bold font.
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Table 4. AMBE of different algorithms.

Image HE BBHE CLAHE BPLHE RSIHE ESIHE MMBEBHE AICHE

Scene 1 72.3203 8.4028 20.4267 4.1236 3.8192 19.3066 6.1641 1.9737
Scene 2 63.5495 20.7392 22.7322 10.680 7.7807 12.5410 13.5527 6.6932
Scene 3 92.8464 24.4811 32.1225 17.3286 18.9348 52.7854 13.7168 12.1253
Scene 4 60.7812 4.2255 12.7312 52.0211 0.7013 31.6171 1.6792 0.6925
Scene 5 68.3038 17.6009 29.8796 42.2594 21.6477 13.0248 12.8289 12.6386
Scene 6 71.6894 30.1702 23.7526 20.1931 17.8950 32.4487 21.0208 17.6621
Scene 7 20.4280 2.1106 20.0978 2.4444 1.2151 0.9639 4.3422 0.7946
Scene 8 67.4038 27.0251 18.7464 55.4875 22.5769 41.5077 64.2064 15.7625
Scene 9 9.6527 5.9391 19.8077 6.2182 5.4492 4.6846 4.6402 4.2561
Scene 10 68.8450 34.6771 47.8343 32.3713 32.0415 26.2767 64.6110 31.2214

Average value 59.58201 17.53716 24.8131 24.31272 13.20614 23.51565 20.67623 10.382

Standard deviation 25.12541 11.71418 9.79701 19.97632 10.78832 16.48196 23.76145 9.61480

Note: The top averages produced by the compared algorithms are marked in bold font.

Based on the evaluation results, the AICHE algorithm proposed herein has good image
enhancement effects in all three working conditions; it can protect the average brightness
of the image and reduce the merging of gray levels on the basis of improving the image
contrast, and it has good robustness. However, as shown in Table 5, the computational
time of the AICHE algorithm is relatively long.

Table 5. Time of different algorithms.

Image HE BBHE CLAHE BPLHE RSIHE ESIHE MMBEBHE AICHE

Scene 1 3.25 4.78 10.36 4.98 2.25 3.46 4.23 7.35
Scene 2 2.33 3.73 11.17 4.03 2.56 1.77 3.21 7.24
Scene 3 2.28 6.96 11.221 7.17 1.73 2.56 6.75 8.83
Scene 4 3.27 5.56 10.26 5.52 3.26 3.75 4.89 7.89
Scene 5 2.27 6.72 9.39 6.28 1.79 2.36 4.95 7.93
Scene 6 1.82 3.28 11.19 3.98 2.57 2.23 3.43 6.23
Scene 7 4.59 6.89 13.25 5.57 3.89 4.89 5.69 10.36
Scene 8 1.11 4.77 9.25 6.73 1.75 1.27 5.49 7.69
Scene 9 1.74 4.41 11.30 3.26 2.31 1.15 2.82 5.53
Scene 10 2.217 6.400 11.128 7.49 2.54 2.07 4.82 8.35

Average value 2.4877 5.35 10.8519 5.501 2.465 2.551 4.628 7.74

Standard deviation 0.98344 1.35159 1.38965 1.43893 0.68844 1.16997 1.22275 1.33549

Note: The top averages produced by the compared algorithms are marked in bold font.

5. Conclusions

In this study, the AICHE algorithm is proposed for image enhancement under complex
working conditions. The problems of average brightness shift, image over-enhancement,
and gray level merging in the traditional histogram equalization process are effectively
solved. The algorithm improves upon the traditional Otsu method by segmenting the
image histogram to solve the problem of mean luminance shift and adaptively obtain the
threshold to suppress the gray level to avoid the image over-enhancement phenomenon.
Then, it uses the local gray level correction method to avoid the gray level merging problem.
According to the experimental analysis, the adaptive local correction method can effectively
avoid image over-enhancement and image detail loss, and it can enhance the image contrast
and detail information. Compared with other improved algorithms, the AICHE algorithm
significantly enhances the PSNR, gray level, and information entropy while avoiding the
introduction of noise; its SSIM is closer to 1, and its image visual effect is better.

Due to the pursuit of high-quality measurement accuracy, this method may lead to
some defects in time efficiency, which is more suitable for image enhancement in the indus-
trial environment. How to improve time efficiency will be a key issue in future research.
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