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Abstract: Deep network fault diagnosis requires a lot of labeled data and assumes identical data
distributions for training and testing. In industry, varying equipment conditions lead to different
data distributions, making it challenging to maintain consistent fault diagnosis performance across
conditions. To this end, this paper designs a transfer learning model named the multi-adversarial
joint distribution adaptation network (MAJDAN) to achieve effective fault diagnosis across operating
conditions. MAJDAN uses a one-dimensional lightweight convolutional neural network (1DLCNN)
to directly extract features from the original bearing vibration signal. Combining the distance-
based domain-adaptive method, maximum mean difference (MMD), with the multi-adversarial
network will simultaneously reduce the conditional and marginal distribution differences between
the domains. As a result, MAJDAN can efficiently acquire domain-invariant feature information,
addressing the challenge of cross-domain bearing fault diagnosis. The effectiveness of the model was
verified based on two sets of different bearing vibration signals, and one-to-one and one-to-many
working condition migration task experiments were carried out. Simultaneously, various levels of
noise were introduced to the signal to enable analysis and comparison. The findings demonstrate
that the suggested approach achieves exceptional diagnostic accuracy and exhibits robustness.

Keywords: intelligent diagnosis; multi-adversarial domain adaptation; deep transfer learning;
rolling bearing

1. Introduction

Bearings play a vital role in the functioning of rotating machinery to minimize friction
between mechanical components. The detrimental effects of bearing damage are espe-
cially pronounced in various rotating machinery, often resulting in significant mechanical
failures [1]. Therefore, it is very important to ensure the safety and stability of bearings
through health monitoring and intelligent fault diagnosis [2–4]. Researchers have con-
ducted extensive studies on fault diagnosis methods, which include methods based on
signal processing, statistical analysis, and machine learning. Methods based on signal
processing utilize time–frequency analysis to extract fault characteristic information from
vibration signals for fault diagnosis. Common techniques include Short-Time Fourier Trans-
form [5], wavelet transform [6], and mathematical morphology analysis [7], etc. Methods
based on statistical analysis monitor and analyze the characteristic values of signals, extract-
ing fault characteristic quantities from the changes produced and comparing them with
designed standard values and thresholds to determine the faults. The primary methods
include Bayesian theory [8] and multivariate statistical analysis, etc. The method based on
machine learning trains the model by collecting normal operation data and fault data so
that the model can automatically learn fault characteristics. Compared to the previous two
methods, machine learning does not rely heavily on expert knowledge and experience. In
fault diagnosis applications, it offers greater flexibility and universality, as well as higher
efficiency and accuracy.
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With the advancement of machine learning algorithms, techniques for bearing fault
diagnosis have also made significant progress. Among these techniques, deep learning-
based diagnosis methods have gained popularity in recent years, demonstrating superior
performance compared to shallow learning methods [9]. One of the main reasons is
that deep learning eliminates the part of manual feature extraction, automatically learns
internal representation and predict targets from the original input, and realizes an end-
to-end system [10]. Numerous deep learning models have been employed in the realm
of fault diagnosis, with convolutional neural networks (CNN), recurrent neural networks
(RNN), and their respective variants being particularly prominent [11–13]. Ding et al.
introduced the transformer network based on the self-attention mechanism into bearing
fault diagnosis, achieving satisfactory diagnostic efficiency and results [14]. Zhou et al.
integrated generative adversarial networks with deep convolution, utilizing a small amount
of labeled data and a large amount of unlabeled data for semi-supervised learning, and
attempted to diagnose on unlabeled data with expanded fault types [15].

Typically, fault diagnosis models assume that the training data and the test data
follow the same distribution [16,17]. As a result, the trained models generally achieve
high accuracy when evaluated on the test dataset. However, in the actual industry, the
working conditions and states of mechanical equipment are not consistent, which will lead
to changes in the data distribution under different working states [18]. When a model
trained on a dataset from one specific working condition is utilized for diagnosing data from
different working conditions, the diagnosis results often prove unsatisfactory, even when
the fault type remains the same [19]. For this issue, Zhou et al. introduced a probabilistic
Bayesian deep network to quantify and analyze the uncertainty of the model’s diagnostic
results under unknown conditions. The results indicate that the model has a high level of
uncertainty in predicting failures under unknown conditions, and the larger the difference
between conditions, the greater the uncertainty [20]. In addition, the training of the deep
model mainly relies on the data with fault labels to adjust the weight of the model and
then find out the mapping function that corresponds the data to the label. But labeling data
consumes a lot of labor costs. To tackle this problem and achieve a solution, the concept of
transfer learning was developed. The key advantage of transfer learning lies in its ability to
leverage labeled data (source domain) from one specific working condition and unlabeled
data (target domain) from other, related working conditions for training purposes [21]. It is
worth noting that this differs from semi-supervised learning, which only involves a single
working condition. Semi-supervised learning trains models by leveraging a combination of
a small amount of labeled data and a large volume of unlabeled data, addressing the issue
of limited labeled data. In contrast, transfer learning involves source and target domain
data from different working conditions. The crux of transfer learning lies in addressing
the distributional discrepancy between the two domains. This approach empowers the
model to be utilized for fault diagnosis across diverse working conditions. Therefore,
transfer learning can build bridges between different fields that follow different probability
distributions and establish a learning mechanism that spans different fields [22].

Within the domain of transfer learning, unsupervised domain adaptation (UDA) holds
significant importance and has been extensively explored by researchers. It has found suc-
cessful applications in various fields, including computer vision [23], target detection [24],
etc. Since UDA has shown promising results in transfer learning, many researchers have
introduced UDA into the field of mechanical fault diagnosis to solve the problem of fault
diagnosis under different operating states. UDA can be broadly categorized into two types:
base distance and base adversarial [25]. Distance-based unsupervised domain adaptation
(UDA) involves mapping features into a shared feature space and employing methods such
as Correlation Alignment (CORAL) [26], maximum mean discrepancy (MMD) [27], Central
Moment Discrepancy (CMD) [28], and other difference measurement techniques. These
methods estimate the distribution gap between the source domain and the target domain,
thereby minimizing the distribution discrepancy. The adversarial-based UDA utilizes the
interaction between the feature extraction module and the domain discrimination module
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to achieve the purpose of domain confusion, thereby extracting invariant features from
two domains [29]. Inspired by the above methods, many different pieces of research have
designed a UDA algorithm for cross-operating condition fault diagnosis. Li et al. employed
CNN for extracting features from rolling bearings. They then minimized the MMD between
the multi-layer models and effectively narrowed the distribution distance of feature map-
pings between the source domain and the target domain [30]. Yu et al. utilized a domain
adversarial method based on the Wasserstein distance to train raw signal data, reducing
the marginal distribution between the source and target domains in the high-dimensional
feature space to extract domain-invariant features [31]. Qin et al. introduced a combination
of confrontation and CORAL techniques to tackle the challenge of cross-domain fault
diagnosis in gearboxes [32]. However, most of the existing transfer learning methods align
marginal distributions (Figure 1a) or conditional distributions (Figure 1b) independently,
and they rarely consider both at the same time.
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To tackle the previously mentioned challenges and improve the effectiveness of cross-
domain fault diagnosis, this article propose an innovative approach based on the multi-
adversarial joint distribution adaptation network (MAJDAN). The main contributions of
this article are as follows:

(1) Through the integration of maximum mean discrepancy (MMD) and multi-adversarial
networks for domain adaptation, our model can concurrently align both conditional
and marginal distributions. The advantage of this combined approach is that it not
only leverages the capabilities of adversarial learning to capture complex non-linear
feature mappings but also utilizes the statistical properties of MMD to ensure that the
distributions of the source and target domains are close in the feature space. This can
offer a more robust and resilient domain adaptation method.

(2) We employed a 1D lightweight CNN as a feature extractor to directly learn from raw
loyalty signals, offering a computational advantage over traditional deep convolu-
tional neural networks.

(3) We validated our proposed model on two datasets across different transfer tasks,
confirming its effectiveness. We also introduced noise to vibration signals to assess the
model’s resilience against noise, and comparisons were made with other approaches.

The structure of the remainder of this paper is as follows: In Section 2, a detailed
exposition of the theories used in the proposed method is provided. Section 3 elucidates
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the structure and functionality of each module within MAJDAN and presents the final loss
function, detailing the algorithm’s training process. Section 4 offers the experimental setup
and results analysis of the algorithm on the dataset. Section 5 concludes the paper.

2. Preliminary Knowledge
2.1. One-Dimensional Lightweight Convolution

Convolutional neural networks (CNNs) are mostly used to solve image problems,
so many fault diagnosis methods use 2D CNNs as a feature extraction method. Many
researchers use various techniques to convert one-dimensional signals received by sensors
into two-dimensional images for direct input into existing 1D CNNs for feature extrac-
tion. For example, convert one-dimensional sequence data into two-dimensional grayscale
images [33,34]; use continuous wavelet transform or fast Fourier transform methods to con-
vert one-dimensional sequence data into time–frequency images [35,36]. These conversion
methods have achieved satisfactory results in fault diagnosis, but converting 1D sequence
data to 2D images consumes additional computational cost, and the training cost of 2D
CNNs is also higher than that of 1D CNNs. Therefore, this paper uses a lightweight 1D
CNN to directly extract features from the original data. 1DLCNN refers to the lightweight
image classification network MobileNet V2 [37], which can reduce computing costs while
ensuring accuracy [38]. Figure 2 shows two special convolutional blocks contained in
lightweight convolutional neural networks: the depthwise separable convolution block
and the inverted residual block. The fundamental ideas and tenets of each module in the
lightweight CNNs are explained briefly in this section.
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Figure 2. Convolutional blocks in lightweight convolutional neural networks. (a) Depthwise separa-
ble convolution; (b) inverted residual block.

The input of a standard 1D CNN is a vector and a convolution kernel, where the
convolution kernel’s size is often smaller than the input, and this configuration creates
a local receptive field. Weight sharing refers to the fact that the filter’s weights remain
constant when each filter moves over the input map. However, the number of parameters
grows with deeper convolutional layers, increasing the computing cost. Lightweight
CNNs are based on depthwise separable convolutions, which are a form of factorized
convolutions [39]. This form decomposes the standard convolution into a depthwise
convolution (DW), which operates channel-wise, and a pointwise convolution (PW) with a
1 × 1 kernel. DW convolution differs from standard convolution in that it employs a single-
channel convolution kernel. The feature maps generated through DW convolution have
the same number of channels as the input. Then, the feature maps after DW convolution
are combined with PW convolution to generate new feature maps. Figure 1 illustrates the
computational process of depthwise separable convolution, which divides the conventional
convolution operation into two sequential steps: filtering and combining. This approach



Appl. Sci. 2023, 13, 10606 5 of 21

effectively reduces the computational burden. Comparing this to a standard convolution
can be expressed as follows:

CI ·K1·K2·F1·F2+CI ·CO ·F1·F2
CI ·CO ·K1·K2·F1·F2

= 1
CO

+ 1
K1·K2

(1)

where CI denotes the count of input channels, CO represents the number of output channels,
K1 × K2 is the size of the convolution kernel, and F1 × F2 is the size of the feature map.
The numerator is the computational cost of depthwise separable convolution, and the
denominator is the computational cost of standard convolution. It can be seen from the
simplified results that the depthwise separable convolution can save a lot of computational
costs compared with the traditional convolution, and it also shows a good feature extraction
ability in the model of this paper.

The inverted residual structure can be seen as the inverse or opposite of the residual
structure, and the 1× 1 convolution kernel is employed to expand the dimension. Following
that, DW convolution extracts features, and ultimately, the 1 × 1 convolution reduces the
dimension. The operation of increasing dimensionality is performed to extract more
information. Due to the limitation of DW convolution, which does not alter the number
of channels, a dimensionality expansion is initially performed to increase the channel
count. Subsequently, DW convolution is applied in the expanded high-dimensional space
to extract additional feature information.

2.2. Multi-Adversarial Adaptation

In the realm of cross-condition mechanical fault diagnosis, the domain adaptation
techniques that utilizes adversarial networks to perform domain confusion by extracting
domain-invariant features has achieved commendable results. Domain adaptation is
defined formally as the following: given a source domain Ds =

{(
xs

i , ys
i
)}ns

i=1 of ns labeled

samples and a target domain Dt =
{

xt
j

}nt

j=1
of nt unlabeled samples. The data from both

domains are sampled from joint distributions P(Xs, Ys) and Q
(
Xt, Yt), respectively, where

P 6= Q. Utilize the data from the source domain to train a predictive function f for the
target domain, represented as f : xt → yt , so that f has the lowest prediction error in the
target domain.

The adversarial learning process can be conceptualized as a two-player game. In
this game, the two players are the domain discriminator, Gd, and the feature extractor, G f .
While Gd strives to identify the domain of each sample, G f aims to extract shared features
across both domains, constantly challenging the capabilities of the domain discriminator.
For the adversarial learning objective function, the aim is to minimize the classification
loss associated with G f and simultaneously maximize the loss for G f . This process ensures
that the parameters of the feature extractor are adjusted specifically to derive domain-
invariant features.

However, a single domain classifier can only align the distributions of the two domains
on a global scale. After global feature alignment, it is indeed possible to achieve decent
classification results for two domains with similar overall distributions. But merely a
global alignment of domains lacks fine-grained information and makes it difficult to
distinguish between the structural properties of each category, which potentially leads to a
misclassification of samples near the category decision boundary [40].

Multi-adversarial domain adaption has K domain discriminators. Each domain dis-
criminator can be called a local domain discriminator Gk

d (k = 1, . . ., K). K corresponds to the
class of the sample, and the Kth domain discriminator is responsible for distinguishing the
domains of the samples associated with the Kth class, as shown in Figure 3. Although the
target domain data are unlabeled, the label classifier outputs a predicted label ŷi = Gy(xi).
ŷi is actually the probability of sample xi over all classes. This probability guides the
significance of each sample xi to the specific local domain discriminator Gk

d. The weight
of the feature G f (xi) in relation to the local domain discriminator Gk

d is determined by the
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probability ŷi, reflecting the importance of each sample. The mathematical expression to
apply it to all local discriminators is as follows:

Ld =
1
n

K

∑
k=1

∑
xi∈Ds∪Dt

Lk
d

(
Gk

d

(
ŷk

i G f (xi)
)

, di

)
(2)

where Gk
d is the kth local domain discriminator, Lk

d is its cross-entropy loss, and i is the
domain label of xi, n = ns + nt.
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2.3. Maximum Mean Difference (MMD)

Domain adaptation methods based on discrepancy metrics play an important role in
transfer learning, where the most widely used discrepancy metric is the maximum mean
difference (MMD). Many domain adaptation methods employ the MMD to quantify the
distributional divergence between source and target domains, and for further improvement
on this basis, a plethora of UDA methods have been developed.

MMD is utilized to quantify the dissimilarity between two distinct yet related dis-
tributions. Given that the data from the source and target domains originate from two
different distributions, p and q, respectively, MMD calculates the distance between these
distributions within the Reproducing Kernel Hilbert Space (RKHS) [41]. Formally, the
MMD is defined as follows:

LMMD(p, q) ,
∥∥Ep[φ(xs)]− Eq

[
φ
(
xt)]∥∥2

H (3)

where φ(·) is the mapping function from the input features to the RKHS. At this time,
the sample features of the source domain and the target domain satisfy the equation
k
(

xs, xt) = φ(xs) · φ
(
xt), k

(
xs, xt) is the kernel function. Theoretically, LMMD(p, q) = 0

when p and q have the same distribution [41].
LMMD(p, q) can be calculated as follows:

LMMD(p, q) =

∥∥∥∥∥ 1
ns

ns
∑

i=1
φ(xi)− 1

nt

nt
∑

j=1
φ
(
xj
)∥∥∥∥∥

2

H

= 1
n2

s

ns
∑

i=1

ns
∑

j=1
k
(

xs
i , xs

j

)
+ 1

n2
t

nt
∑

i=1

nt
∑

j=1
k
(

xt
i , xt

j

)
− 2

nsnt

ns
∑

i=1

nt
∑

j=1
k
(

xs
i , xt

j

)
(4)
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In domain adaptation, the feature extractor’s parameters are adjusted by reducing the
MMD between the source and target domain feature representations. The objective of this
process is to make the feature representations of the source domain and target domain close
to each other, so that when dealing with data from different domains, the feature extractor
can generate universal feature representations, which are also known as domain-invariant
features. In this paper, MMD is employed to bridge the marginal distribution gap between
the source and target domains, ensuring a global feature alignment.

3. Multi-Adversarial Joint Distribution Adaptation Network

Three components make up the MAJDAN model: a shared feature extractor G f
with the parameter θ f , a shared label predictor Gc with the parameter θc, and a domain
discriminator Gd with the parameter θd. Its structure is shown in Figure 4. A 1DLCNN is
designed as a feature extractor that directly processes the original signal of bearings and
extracts the feature representation. Then, the extracted features are fed into a label predictor
and a local domain classifier. In the label predictor, the supervised classification training is
performed on the labeled source domain data, and the predicted pseudo-label is output
for the unlabeled target domain data. At the same time, MMD is introduced to quantify
the global distribution shift between the two domains. A local domain classifier performs
subdomain obfuscation for each category based on pseudo-labels.
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3.1. Feature Extractor

The feature extractor of MAJDAN is a 1DLCNN design based on MobileNet V2, which
saves computational costs compared with the standard 1D CNN, and also has good feature
extraction capabilities. In the first layer, standard convolution is applied to process the input
data. Considering the length of the data, a 46 × 1 wide convolutional kernel was chosen
to give the model a larger receptive field, capturing features over a broader range and
simultaneously reducing the data’s length. In subsequent structures, depthwise separable
convolution replaces standard convolution to reduce computational costs. The parameters
of the feature extractor were determined through empirical values and manual tuning. At
the end of the network, global average pooling is used to reduce the dimensionality of the
feature maps. Table 1 shows the parameters of 1DLCNN.
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Table 1. Parameters of 1DLCNN.

Layer Convolution Kernel Parameters
(n × h × c) Stride

ConvBNReLU6 6 × 46 × 1 4
ConvBNReLU6

ConvBN
6 × 3 × 1

16 × 1 × 6
1
1

ConvBNReLU6
ConvBNReLU6

ConvBN

96 × 1 × 16
96 × 3 × 1

24 × 1 × 96

1
2
1

ConvBNReLU6
ConvBNReLU6

ConvBN

144 × 1 × 24
144 × 3 × 1

32 × 1 × 144

1
2
1

ConvBNReLU6
ConvBN

32 × 3 × 1
48 × 1 × 32

1
1

ConvBNReLU6 64 × 1 × 48 1
Global Average Pooling / /

In our model, the input of the feature extractor G f is the one-dimensional vibration
signal of the source domain and the target domain. During the training phase, data from
the two domains are fed into the model in mini-batches. The inputs from the source and
target domains are represented as xs and xt, respectively. Their corresponding output
features are denoted as Fs = G f

(
xs; θ f

)
and Ft = G f

(
xt; θ f

)
.

3.2. Label Predictor

The label predictor Gc is composed of a fully connected layer. For the source domain
data, it is equivalent to an ordinary supervised learning classifier. The parameters for the
feature extractor G f are refined by reducing the cross-entropy loss between the predicted
and actual labels, which ensures the diagnostic precision of the source domain. At the same
time, pseudo labels are output for unlabeled target domain samples, which are used for
the subdomain alignment of local domain classifiers. If Gc can extract features that are
invariant across both the source and target domains after transfer training, then the label
predictor can be utilized for label prediction in the target domain. The extracted sample
features are passed through the label classifier Gc with a parameter of θc to obtain the
predicted label ŷ = Gc(Zs; θc). The loss for training on the source domain is as follows:

Lcls = − 1
M

[
M
∑

i=1
Jy
(
ŷs

i , ys
i
)]

= − 1
M

[
M
∑

i=1
Jy

(
Gc

(
G f

(
xs

i ; θ f

)
; θc

)
, ys

i

)] (5)

3.3. Local Domain Discriminator

The local domain discriminator Gk
d is divided into multiple sub-discriminators. A

single sub-discriminator is a binary classifier that comprises three fully connected layers.
Each fully connected layer is accompanied by a batch normalization (BN) layer, and the
rectified linear unit (ReLU) function is utilized to introduce nonlinearity. The number of
sub-discriminators corresponds to the fault category and is used to align the conditional
distribution between each category in the source and target domains. To be more specific,
the local domain discriminator Gk

d can be partitioned into K subdomain discriminators.
Each subdomain discriminator is responsible for aligning the features of source and target
domain samples that are relevant to the Kth class. The output of the label predictor Gc is
the probability of each sample xi category label belonging, and this probability is used to
indicate the attention of the Kth sub-domain discriminator to the sample. The loss function
calculation formula of the local domain discriminator has been given in the first section.
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3.4. Training Process

The MAJDAN objective function consists of three parts, which are the label predictor
loss (Equation (5)); the MMD of the source and target domains (Equation (4)); and the
local domain discriminator loss (Equation (2)). By combining (2), (4), and (5), the objective
function can be expressed as follows:

Ltotal

(
θ f , θc, θd

)
= Lcls − µ((1− λ)Ld − λLMMD) (6)

where µ and λ are the tradeoff parameters of the objective function.
The training purpose of the model is to iteratively update the parameters θ f , θd, and

θc. In the MAJDAN, the diagnostic accuracy of the source domain samples is guaranteed
by minimizing the supervised classification loss of the source domain. On this basis, the
parameters θ f and θc are optimized by using MMD to reduce the global distribution differ-
ence between the source domain and the target domain. Concurrently, the parameter θd is
adjusted by amplifying the domain classification loss of the domain discriminator via the
Gradient Reversal Layer (GRL). This is performed to blur the distinction between the two
domains, enabling the feature extractor to derive domain-invariant features. Algorithm 1
displays the MAJDAN training process.

Algorithm 1. MAJDAN model training.

Training procedure for the proposed MAJDAN algorithm

1. Initialization

Input : data Ds =
{(

xs
i , ys

i
)}ns

i=1, Dt =
{

xt
j

}nt

j=1
,

hyperparameterλ and µ,
learning rate ε,
batch size b,
initialization parameters θ f , θd, θc.
2. Training
for each epoch do:
for each batch size do:
for i from 1 to b do:
Forward propagation

G f (xi)← f
(

θ f , xi

)
Gc

(
G f (xi)

)
← f

(
θ f , G f (xi)

)
Gd

(
G f (xi)

)
← f

(
θd, G f (xi)

)
Back propagation

using Equations (2), (4) and (5) calculate label classifier loss Lcls, MMD loss LMMD, local
domain discriminator loss Ld.
Update θ f , θd, θc

θ f ← θ f − ε
(

∂Lcls
∂θ f
− µ((1− λ) ∂Ld

∂θ f
− λ ∂LMMD

∂θ f
)
)

θc ← θc − ε
(

∂Lcls
∂θc

+ µ ∂LMMD
∂θc

)
θd ← θd − ε ∂Ld

∂θd

end

3. Testing
Using trained feature extractor and label classifier to predict the test set of the target domain.

4. Experimental Results
4.1. Dataset

The experimental dataset employed in this study originates from the University of
Ottawa and comprises bearing vibration data collected under the condition of time-varying
speed [42]. Figure 5 shows a photo and a diagram of the experimental platform. The data



Appl. Sci. 2023, 13, 10606 10 of 21

are collected by the NI data acquisition board; the accelerometer measures the vibration
data; and the encoder measures the rotational speed data. In this experiment, the bearing
vibration data are selected as the dataset. The dataset collects bearing vibration signals
of different health states under different time-varying speed conditions. The sampling
frequency is 200 kHz, and the sampling time of each vibration signal is 10 s. Based on
different health statuses, the dataset is categorized into three groups, as presented in Table 2.
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Table 2. Fault status information from University of Ottawa bearing dataset.

Health
Condition

Normal
Condition Inner Race Fault Outer Race Fault

Label H I O

This dataset also collects signals from four different variable speed conditions: in-
creasing speed, decreasing speed, increasing then decreasing speed, and decreasing then
increasing speed. Table 3 shows the labels of the four different working conditions in the ex-
periment. In this experiment, transfer tasks were designed for the data of different working
conditions, including 12 groups of single-working-condition transfer tasks: T0–T1, T0–T2,
T0–T3, T1–T2, T1–T3, T2–T3, T1–T0, T2–T0, T3–T0, T2–T1, T3–T1 and T3–T2, and four
groups of multiple-working-condition transfer tasks: T0–T1T2T3, T1–T0T2T3, T2–T0T1T3,
and T3–T0T1T2.

Table 3. University of Ottawa bearing dataset working condition information.

Working
Condition

Increasing
Speed

Decreasing
Speed

Increasing Then
Decreasing Speed

Decreasing Then
Increasing Speed

Label T0 T1 T2 T3

Before the test, the data need to be processed in order to obtain a more ideal fault
diagnosis result. This paper uses a 1DLCNN as a feature extractor, which can directly
extract features from the original vibration signal. But the input data need to be normalized
and cut first.

Normalization: To adapt the input data to the requirements of the neural network and
mitigate the adverse effects of significant variations in magnitude among individual input
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samples on the model’s solution, before segmenting the vibration signal, the data must be
normalized. The method used is norm normalization:

V′ =
V
‖V‖2

(7)

where V denotes the original vibration signal, and V′ represents the normalized signal.
Cutting: The original vibration signals from the bearings are continuously collected.

To meet the training requirements of the neural network, the raw vibration signals are
segmented. As shown in Figure 6, this study employs overlapping sampling segmentation
to augment the dataset, thereby increasing the number of training samples and enhancing
the generalization performance of the neural network [43]. The signal length of each
acquisition is 4096, the overlap is 50%, and each working condition has 2900 samples after
segmentation.
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4.2. Parameter Settings

Hyperparameters can profoundly influence the model’s performance. To enhance
accuracy and the model’s generalizability while curtailing training time, this study conducts
experiments, taking the T0-T1 single operating condition transfer task as a case study, to
examine the effects of hyperparameters on the model. The experiments were conducted
by varying four different hyperparameters: batch size, initial learning rate, λ, and µ. The
model was trained for 50 epochs for each experiment. Figure 7 shows the comparison
results with different hyperparameter settings. The results indicate that the values of λ and
µ have a significant impact on diagnostic accuracy, while batch size and initial learning
rate have a relatively minor effect on accuracy. However, batch size and initial learning
rate do affect the duration of the training process. After considering all factors, the final
hyperparameter settings were chosen as follows: batch size of 64, initial learning rate of
0.03, λ set to 0.5, and µ set to 0.5.

After determining the optimal range of hyperparameters, carry out transfer task
experiments on T0, T1, T2, and T3 working conditions. All labeled samples from the source
domain and 80% of the unlabeled samples from the target domain are selected for domain
adaptation training to reduce the distribution difference between the two domains. The
remaining 20% of the samples from the target domain are used to test the classification
performance in the target domain after unsupervised domain adaptation.

Figure 8 illustrates the variation trend of accuracy in the source domain and target
domain during the training of the MAJDAN model for the T0–T1 single-working-condition
transfer task. The results indicate that the accuracy of the source domain samples reaches a
stable state after five epochs of training, achieving a classification accuracy of approximately
100%. This is because the training of the source domain belongs to supervised learning,
and the feature extractor used in this paper can extract data features well to classify labeled
data. After 30 epochs of training in the target domain, the accuracy can reach about 96%,
indicating that the MAJDAN model is capable of extracting domain-invariant features
from unlabeled target domain data through domain adaptation techniques and accurately
performing fault classification.
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4.3. Single-Working-Condition Transfer Experiment

The experiment designed six groups of single-working-condition transfer tasks: T0–T1,
T0–T2, T0–T3, T1–T2, T1–T3, and T2–T3. The source domain contains 2900 samples, while
the target domain contributes 2300 samples for training and an additional 600 samples
for testing. In each experiment, the model is trained for 50 epochs, and for each transfer
task, the training is repeated 10 times. The accuracy of the 10 training runs is averaged to
obtain the final result. The experimental results are shown in Figure 9, where the diagnostic
accuracy of the target domain for the transfer tasks T1–T2, T2–T3, and T3–T2 reached 100%,
and the diagnostic accuracy for the transfer tasks T1–T3, T1–T0, T2–T0, T3–T0, T2–T1,
and T3–T1 exceeded 99%, and for T0–T2 and T0–T3, it was around 98%. The diagnostic
accuracy of transferring from condition A to condition B is relatively lower compared
to other migration tasks, but it is still above 96%. The experimental results confirm the
effectiveness of the MAJDAN model.
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In practical situations, the collected signals mostly contain noise. In order to verify
the anti-noise performance of MAJDAN, this paper introduces Gaussian white noise at
varying signal-to-noise ratios (SNRs) to the bearing vibration signal. The definition of SNR
is as follows:

SNRdB = 10lg
(Psignal

Pnoise

)
(8)

where Psignal is the power of the original signal, and Pnoise is the power of the noise.
Figure 10 shows the original vibration signal and the vibration signal with SNR = 50 dB,
45 dB, 40 dB, and 35 dB Gaussian noise added.

The same preprocessing and training methods as above are applied to the signal added
with Gaussian white noise. Figure 11 shows the experimental results of the MAJDAN
under various transfer tasks after adding noise with different SNRs to the signal.
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From the experimental results in Figure 11, it can be found that using the MAJDAN on
the vibration signal with 35 dB noise can also make the diagnosis accuracy of each transfer
task reach more than 85%, indicating that the network has a certain ability to resist noise
interference. In order to further verify the superiority of the MAJDAN, this paper takes
a sample with 45 dB noise as an example to compare it with other methods: 1D CNN,
Domain Adversarial Neural Networks (DANNs) [44], CORAL [27], and deep subdomain
adaptation network (DSAN) [45]. Each of the adaptive methods uses the same 1DLCNN
structure as a feature extractor. The results of the comparison are shown in Table 4. The
highest diagnostic accuracy for each transfer task is represented in bold. According to the
results in the table, it can be found that, the network model used in this paper is more stable
than other comparison models on various transfer tasks and has the highest accuracy on
most transfer tasks. In a 45 dB noise environment, the average accuracy of the MAJDAN
on all tasks is 6–15% higher than other comparison network models.

Table 4. Comparison results of single-working-condition transfer tasks.

1D CNN DANN Coral DSAN MAJDAN

T0-T1 60.69% 72.44% 63.23% 53.71% 93.21%

T0-T2 63.21% 64.94% 65.22% 59.74% 99.14%

T0-T3 67.02% 74.15% 66.65% 99.58% 99.69%

T1-T2 99.32% 99.59% 99.55% 99.62% 99.55%

T1-T3 99.65% 99.72% 99.08% 99.58% 99.38%

T2-T3 99.48% 99.73% 99.81% 99.72% 99.89%

T1-T0 60.03% 88.89% 61.37% 99.65% 99.83%

T2-T0 65.64% 99.31% 64.95% 99.82% 99.65%

T3-T0 98.84% 99.82% 99.65% 99.67% 99.83%

T2-T1 96.14% 98.12% 96.75% 97.60% 96.58%

T3-T1 95.20% 98.97% 95.89% 98.81% 96.23%

T3-T2 99.74% 99.83% 99.15% 99.83% 99.83%

Average 83.75% 91.29% 84.28% 92.28% 98.57%

4.4. Verification of Model Robustness

To ensure the robustness and reliability of the proposed algorithm, a 5-fold cross-
validation method was employed for its evaluation. Specifically, the entire dataset was
evenly segmented into five subsets. In each validation round, four of these subsets served
as training data, with the remaining one used for testing. This approach ensured that the
algorithm underwent training and testing on the entire dataset, providing a comprehensive
evaluation.

After each validation round, the accuracy of the testing subset was recorded. Following
the five validations, both the average and standard deviation of the diagnostic accuracy
were computed to offer a holistic view of the algorithm’s performance. This method allows
for an assessment of not just the mean performance of the algorithm but also its stability
across various data subsets. Figure 12 displays the average results and errors from the
five validations. As can be seen from the figure, the standard deviations from the 5-fold
cross-validation results are small, indicating that the model achieved similar performance
across the five different data splits. This suggests that the model is unlikely to overfit to a
specific data partition.
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4.5. Multi-Working Condition Transfer Experiment

The effectiveness of the MAJDAN model in transferring single-working-condition
fault diagnosis of bearings can be verified through the previous experiment. However,
compared with the transfer between single working conditions, the transfer tasks of one-to-
many working conditions are more practical and challenging. This means that in practical
applications, it is often sufficient to collect labeled samples from a single operating condition
and unlabeled samples from a mixture of various operating conditions to perform fault
diagnosis on bearings or other mechanical equipment.

In order to verify the effect of the MAJDAN on one-to-many working condition transfer
tasks, this section designs four groups of multi-working condition transfer tasks: T0-T1T2T3,
T1-T0T2T3, T2-T0T1T3, and T3-T0T1T2. The training method and result-obtaining method
are the same as in the single case. Table 5 shows the diagnostic accuracy of different
methods and their average for each transfer task. According to the training results, the
performance of the MAJDAN in the one-to-many transfer task is also more stable than
other comparison methods. The diagnostic accuracy on the four transfer tasks can reach
more than 97%, and the average accuracy is the highest compared with other methods.

Table 5. Comparison results of one-to-many working condition transfer tasks.

1D CNN DANN Coral DSAN MAJDAN

T0-T1T2T3 62.15% 64.23% 66.44% 96.40% 98.12%

T1-T0T2T3 88.35% 80.66% 87.84% 88.52% 99.82%

T2-T0T1T3 87.03% 98.63% 99.12% 98.97% 99.14%

T3-T0T1T2 87.15% 97.83% 97.60% 98.29% 97.78%

Average 81.17% 85.34% 87.75% 95.55% 98.71%

4.6. Performance of MAJDAN on Other Dataset

In addition to the bearing dataset from the University of Ottawa, we also selected
the bearing dataset from Case Western Reserve University (CWRU) [46] to verify the
performance of MAJDAN. The CWRU dataset has four working conditions: 1797 rpm/0 hp
(R0), 1772 rpm/1 hp (R1), 1750 rpm/2 hp (R2), and 1730 rpm/3 hp (R3). The accelerometer
is used to sample the fault data of the drive end bearing, and the sampling frequency is
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12 KHz. Table 6 shows the 10 health states contained in the bearing dataset, including the
normal state and three fault states, and each fault state is divided into three damage degrees.

Table 6. Fault status information from CWRU dataset.

Health
Condition Fault Size Label

Outer race fault
7 mils

14 mils
21 mils

O-7
O-14
O-21

Inner race fault
7 mils

14 mils
21 mils

I-7
I-14
I-21

Ball fault
7 mils

14 mils
21 mils

B-7
B-14
B-21

Normal N

The processing method of the dataset is the same as before, and each working condition
participating in the training has 2000 samples. A total of 80% of the dataset as the target
domain is used for training, and the rest is used for testing. Table 7 shows the diagnostic
accuracy of each transfer task using MAJDAN and other models. Compared with 1DCNN
without an adaptive strategy, the algorithm proposed in this paper has obvious advantages
in diagnosis accuracy. Compared with other adaptive methods, DANN and CORAL
also showed superiority. The average accuracy of MAJDAN’s cross-working condition
diagnosis on the CWRU dataset is close to 100%, which verifies the effectiveness of the
model on different datasets.

Table 7. Comparison results of CWRU dataset.

1D CNN DANN CORAL DSAN MAJDAN

R0-R1 94.63% 99.75% 96.75% 100% 99.87%

R0-R2 85.44% 100% 88.66% 100% 100%

R0-R3 77.50% 78.25% 78.25% 99.87% 99.87%

R1-R2 97.25% 99.75% 97.50% 99.25% 100%

R1-R3 71.75% 99.75% 71.83% 99.75% 99.75%

R2-R3 94.75% 99.75% 94.25% 99.75% 99.75%

R1-R0 85.50% 97.42% 98.25% 99.00% 99.66%

R2-R0 92.75% 87.38% 87.87% 99.31% 98.25%

R3-R0 83.20% 78.55% 63.25% 97.25% 95.75%

R2-R1 93.25% 93.76% 87.00% 95.44% 97.75%

R3-R1 76.75% 77.25% 77.50% 96.25% 96.87%

R3-R2 92.00% 96.66% 96.75% 98.00% 99.87%

Average 87.06% 92.36% 86.49% 98.66% 98.95%

4.7. Feature Visualization

In order to understand the impact of different models more intuitively on sample
features, the R0-R3 transfer task is selected for feature visualization. In this study, the t-
distributed Stochastic Neighbor Embedding (t-SNE) technique was employed to reduce the
dimensionality of sample features to 2D for visualization. t-SNE constructs two probability
distributions expressing the similarity between sample points in high-dimensional and
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low-dimensional space, respectively. It uses gradient descent to learn and optimize these
distributions, aiming to make them as similar as possible. This ensures that the distance
relationships between data points are preserved after dimensionality reduction. Figure 13
shows the graphical representation of untrained raw data features and features after
training with different models following dimensionality reduction. It is observed that the
source domain samples in (b)–(f) all achieve excellent classification results, which also
proves the effectiveness of the feature extractor and label predictor. In Figure 13b, the
1DCNN model undergoes no transfer training, leading to significant dissimilarity between
the source domain and target domain sample distributions. Consequently, this mismatch
results in poor diagnostic performance. The source and target domain sample features in
(a) and (d) are also not well matched, while the features of the two domains in (e) and (f)
are very close. But in some categories, feature clusters of (f) appear to be tighter and better
matched than (e).
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5. Conclusions

This paper designs a MAJDAN model for cross-condition bearing fault diagnosis,
integrating MMD and multi-adversarial networks, to address the challenges of varying
operating conditions and difficulties in acquiring labeled data in practical scenarios. The
model was validated on bearing vibration datasets for transfer learning tasks, and the
results confirmed the effectiveness of the proposed MAJDAN model in this paper. Through
the experiments in this paper, the following conclusions are drawn:

(1) The MAJDAN model uses a 1DLCNN for feature extraction, which can effectively
extract the features of the original data. Make the model reduce training costs and data
processing steps while ensuring classification accuracy.

(2) The MAJDAN model combines MMD and multi-adversarial networks for ex-
tracting domain-invariant features, which can simultaneously align the marginal and
conditional distributions of the source and target domains. It shows excellent performance
in single-condition transfer and one-to-many case transfer tasks.

(3) The MAJDAN model also exhibited strong performance in transfer tasks involving
bearing vibration data with added Gaussian noise. Compared to other transfer learning
methods, the proposed model demonstrates more stable diagnostic accuracy across multi-
ple transfer tasks and achieves higher average accuracy. It exhibits excellent robustness
against noise.
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