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Abstract: Although structural topology optimization has been developing for decades, it still plays a
leading role within the area of engineering design. Solving contemporary design problems coming
from industry requires the implementation of efficient methods and approaches. This stimulates
research progress in the development of novel and versatile topology optimization algorithms. To
follow these modern trends, an original topology generator has been elaborated and finally built as a
Cellular Automaton with original update rules. The motivation for building the algorithm in this
way came from the idea of utilizing the benefits of local compliances sorting. This is conducted on
two levels: on the global level, the monotonic function mapping local compliances distribution is
defined based on their sorted values; on the local level, for each cell, the compliances are sorted within
the cell neighborhood. The three largest absolute values are selected, and these are the basis from
which to formulate Cellular Automata update rules. These original rules can efficiently control the
generation of structural topologies. This technique is somewhat inspired by the grey wolf optimizer
strategy, wherein the process of updating design variables refers to the positions of the three best
fitted wolves. It is proposed that we refer to the topology algorithm that benefits from the adaptation
of sorted compliances optimization as TABASCO. The developed algorithm is a modified version of
the flexible Cellular Automata one presented previously. The implemented extension, regarding the
local level cell sorting, allows us to improve the resulting compliance values. The advantages of the
algorithm, both from numerical and practical engineering points of view, as compared to the others
developed within the field, may be gathered as follows: the algorithm works based on simple update
rules, i.e., its numerical implementation is not complicated; it does not require gradient computations;
filtering techniques are not needed; and it can easily be combined with professional structural analysis
programs which allow engineering applications. The developed topology generator has been linked
with ANSYS to show that it can be incorporated into a commercial structural analysis package. This
is especially important with respect to the engineering implementations.

Keywords: topology optimization; heuristic methods; compliance minimization; cellular automata
method; grey wolf optimizer; hybrid methods

1. Introduction

The development of structural topology optimization has already been observed for
decades; nevertheless, this approach still plays a leading role in the area of engineering
design. Along with the original novel concepts applied in many research and engineering
fields, a variety of approaches to topology generation have been proposed over the years.
Many survey papers, e.g., refs. [1–4], supported by the recently published papers of Ribeiro
et al. [5] and Logo and Ismail [6], provided a broad discussion on various issues and aspects
of topology optimization.

Moreover, solving contemporary design problems coming from industry requires
the elaboration of novel methods and approaches, which stimulates continuous research
progress in the development of efficient topology optimization algorithms. The natural
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consequence of this progress is that nowadays, commercial structural analysis software
often also offers performing topology optimization. This easy access to topological design
is very helpful for engineers but, on the other hand, the results produced by the black
box systems are not necessarily the best to be found. It is definitely a step towards the
engineering implementation of topological designs but working on efficient topology
generators is still welcome. The present paper follows this trend, showing how to build
an original efficient generator of structural topologies. Hence, it is built as a Cellular
Automaton with original update rules. The rules utilize information gathered within
cells’ neighborhoods and are applied to all cells/elements. The motivation for building
the algorithm came from the idea of utilizing the benefits of local compliances sorting.
This is conducted on two levels: first, the monotonic function mapping local compliances
distribution is defined on the global level based on their sorted values; next, on the local
level, for each cell, the compliances are sorted within the cell neighborhood. Among
them, the three largest absolute values are selected, and this is the basis on which to
formulate Cellular Automata update rules. This technique is somewhat inspired by the
grey wolf optimizer [7] strategy, wherein the process of updating design variables refers to
the positions of the three best fitted wolves, namely alpha, beta and delta, wolves.

It is proposed that we refer to the topology algorithm that benefits from the adaptation
of sorted compliances optimization as TABASCO. The developed algorithm is a modified
version of the flexible Cellular Automata model presented previously. The implemented
extension, regarding local-level cell sorting, allows us to improve the resulting compliance
values. The advantages of the algorithm, both from numerical and practical engineering
points of view, as compared to the others developed within the field, art as follows: The
algorithm works based on simple update rules; its numerical implementation is not compli-
cated; it does not require gradient computations; it can easily be combined with professional
structural analysis programs which allows engineering applications. Moreover, generated
topologies are free from so-called grey elements, i.e., ones of intermediate densities, and
due to the grey elements elimination, it is easier to transform obtained numerical solution
to a CAD model and to prepare elements for manufacturing. One of the most important
advantages of using the algorithm proposed in this paper is that the implementation of
additional filtering techniques is not necessary. However, it is worth stressing that, in favor
of the CA approach, the neighborhood remains the same independent of the mesh size,
whereas in the case of the filtering technique, the neighborhood size has to be selected de-
pending on the mesh size. The problem related to the above is the generation of topologies
for a large number of elements. The OC method requires adjusting filtering parameters in
order to obtain a solid topology. In the case of the CA-based algorithm, it is not necessary.

The formulated original rules can efficiently control the generation of structural topolo-
gies, and the topology generator built on this basis has been linked with ANSYS to show
that it can be incorporated into a commercial structural analysis package. The perfor-
mance of the algorithm has been illustrated by the generation of selected plane and spatial
topologies using the TABASCO rules. Exemplary engineering implementation has been
included.

The content of the paper is structured as follows. The structural topology optimization
via heuristic methods is reviewed in Section 2. Within this subject, a Cellular Automat
approach and its implementation into topology optimization are described. The TABASCO
algorithm concept is introduced in Section 3, and its performance is first illustrated in
Section 4 based on the generation of plane structures topologies. Next, in Section 5, the
ability of the algorithm to cope with 3D structures is presented. Finally, some concluding
remarks are formulated in Section 6, which ends the paper.

2. Structural Topology Optimization and Heuristic Methods

Performing topology optimization (TO) means looking for the distribution of material
within a specified domain in order to minimize a chosen objective function and to satisfy
imposed constraints. It is assumed that topology optimization started with Michell’s paper,



Appl. Sci. 2023, 13, 10595 3 of 19

published in 1904. However, intensive studies started in the 1980s, and since then, TO has
become the most popular engineering tool. The growing demands drive the development
of techniques and methods of TO, which can be helpful and effectively used in engineering
implementations and practical problems.

Heuristic methods are becoming more popular and useful in engineering applications
of topology optimization. Their simplicity of implementation and fast convergence, which
does not require a large number of finite element analyses, make heuristics a useful basis
for different approaches applied to the topology optimization of realistic engineering
problems. Among very powerful heuristic methods are those based on physical and
chemical phenomena or population intelligence. The latter are very effective, but their
greatest weakness is the need to refer to computation of the objective many times, i.e.,
for each individual at each iteration step. This means the necessity of multiple finite
element analyses of designed structures, which may be very time consuming for coarse
mesh. Solving this problem efficiently is an important task for designers. Nevertheless,
heuristic techniques are widely discussed and continuously applied in engineering topology
optimization. As an example, they may serve topology optimization with the use of an
ant colony approach [8] or a genetic algorithm [9], simulated annealing [10], or binary
particle swarm optimization [11]. Less popular examples may serve a meta-heuristic
using probabilistic learning [12], a heuristic algorithm mimicking a self-evolution of a
structure [13], the big bang–big Crunch algorithm [14], and the recently published hunter–
prey optimization algorithm [15].

As already mentioned in the introduction, an approach based on the concept of
Cellular Automata (CA) is applied in this paper. Cellular Automata mimic the behavior of
complex systems in a relatively easy way. Hence, a sequence of simple decision making
rules is implemented. These rules control the performance of a considered system. The
engineering implementation requires the decomposition of the considered domain into
a lattice of cells which usually form a uniform lattice. The examples of plane and spatial
neighborhoods for regular cells are presented in Figures 1 and 2, respectively:
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Each cell, together with cells it is connected to, forms a neighborhood. The cells carry
only local information. It is assumed that the interaction between cells is limited to their
neighborhood. Local homogenous rules govern the evolution of cells state. The rules are
applied simultaneously to each cell, and they are identical for all neighborhoods. The
physical quantities are also updated repetitively and as a result, the process covers the
global behavior of the system. Since the late 1940s when von Neumann and Ulam proposed
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the concept of Cellular Automata, this idea has been found interesting by researchers
representing various research fields.

Cellular Automata have proved to be an effective tool in engineering optimization
for both size optimization (e.g., [16,17]) and topology optimization, as started by Inou
et al. [18]. The effectiveness of the CA approach in the generation of structural topolo-
gies and its versatility can be observed in various engineering problems starting from
compliance minimization problems (e.g., [19]), including problems with stress and dis-
placement constraints (e.g., [20]), through reliability-based topology optimization (e.g., [21])
or dynamic–static coupling topology optimization ([22]) to the topology optimization of
energy absorbers ([23,24]) or the optimization of multi-materials structures ([25] or [26]),
composites ([27]), and design of materials (e.g., [28,29]). The mentioned papers may serve
only as examples of numerous applications of the Cellular Automata method. Additionally,
a new trend in developing this method can be observed, namely, a hybridization of CA
with other methods, pertaining to both classical methods ([19,30,31] for size optimization)
and heuristics. Among hybridization CA with heuristics applied to topology optimization,
the following can be mentioned: a Cellular Automaton mimicking colliding bodies [32], a
hybrid evolutionary bi-directional Cellular Automaton [33], and the cuttlefish algorithm
(CFA) for truss topology optimization utilizing the Cellular Automata approach [34]. The
survey of combinations of CA with heuristics in broad fields of engineering computations
is presented in [35,36], where, among others, the cellular grey wolf optimizer (CGWO) is
proposed. In that paper, utilizing the hunting mechanism of grey wolves, the analysis steps
need to be performed for each individual at each iteration, which may cause a significant
increase in computation time for large engineering problems. It is worth stressing that in
the present paper, which also refers to GWO, the idea is different—the analysis is performed
once for each iteration and the derived rules of Cellular Automata govern the behavior of
the system.

In general, the effectiveness of the population-based algorithms strongly depends
on the population size. An extensive discussion of this aspect of topology optimization
problems can be found, e.g., in [37]. In the optimization process at each iteration the
fitness function must be calculated for each individual. As a result, the population-based
methods usually require a larger number of functional calls than other non-population-
based heuristics.

When considering the topology optimization problems using Cellular Automata, it
is necessary to mention the valuable and groundbreaking papers of Tovar et. al, e.g., [38],
where the hybrid Cellular Automata (HCA) is introduced. It must be underlined, however,
that in those papers, hybridization refers to the interaction of analyses based on finite
elements with the Cellular Automaton approach.

3. TABASCO Algorithm—Two-Level Sorting and Update Rules Inspired by the Grey
Wolf Optimizer

Formulating the topology optimization problem, in the present stud, the attention
is focused on the minimization of structural compliance c (see Equation (1)). This is the
classical approach (a discussion of the problem can be found in the early paper [39]).
In this paper, the approach based on finite elements has been applied and the structural
topology optimization problem formulation takes the form known from the well-recognized
paper by Sigmund [40]. Hence, it is assumed that only a specified volume fraction κ of a
material is distributed within the final structure. This results in the constrained volume V,
Equation (2):

minimize c(d) = uTku = ∑N
i=1 dp

i uT
i kiui, (1)

with respect to V(d) = κV0, (2)

k u = f (3)
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0 < dmin ≤ di ≤ 1. (4)

The following quantities have been introduced at the element level: displacement
vector ui, stiffness matrix ki, design variable di, defined as the relative material density, and
number of elements N, as well as the global quantities: stiffness matrix k, displacement
vector u, and force vector f from Equation (3). In order to avoid singularity, the simple
bounds related to the design variables with minimal non-zero density dmin (e.g., 10−9) have
been introduced in Equation (4). In the above formulation, the convenient finite element
approach has been adopted.

The broadly accepted material model SIMP—Solid Isotropic Material with Penaliza-
tion [35]—has been adopted, meaning that the elasticity modulus Ei for each cell/element
is the function of the design variable di as shown in Equation (5):

Ei = dp
i E0. (5)

The quantity E0 is the elasticity modulus of a solid material, whereas p, usually
equal to 3, plays the role of penalization power. The SIMP approach is the most common
material interpolation scheme, and it is widely discussed and exploited in literature. The
majority of papers on topology optimization use SIMP (or SIMP modifications) while
performing calculations, using at the same time new techniques for updating the design
variables—i.e., those conventional or newly developed heuristics. It is worth mentioning
here the various modifications of the SIMP method (e.g., [41–43] and many more) created
to prevent some difficulties in the application of SIMP in selected complex problems such
as multi-material topology optimization, dynamic problems, design-dependent loads,
thermodynamic problems.

While performing the optimization process, the values of the design variables associ-
ated with cells are updated based on the local rules.

In order to solve the problem, a heuristic local CA update rule is proposed, utilizing
the information gathered from a selected neighborhood. New values of design variables can
be calculated based on the Gauss–Seidel iteration mode, i.e., a cell updates its state based
on updated values found for cell neighbors in the current and previous iteration, or on the
Jacobi iteration mode, i.e., a cell updates its state based on the states of the surrounding
cells obtained in the previous iteration only. This scheme was chosen for this paper.

The Jacobi scheme of updating is utilized, which means that the states of neighbor-
ing cells known from the previous iteration are the basis for the update process, as in
Equation (6):

dnew
i = di + ∆di. (6)

The quantity ∆di represents the update component implemented in each iteration. Its
selection decides the effectiveness of the updating scheme; therefore, this is the important
research issue. The original proposal is included in this paper. It can be treated as an
extension and modification of the rule discussed in the paper [44].

The updating process consists of a few steps. First, structural analysis is performed
and the compliances values for N cells are computed. Next, the compliances are sorted
in ascending order and divided into three subsets: N1 cells having the lowest values,
N–N2 cells with the largest values, and the remaining cells having intermediate values of
compliances. The cells from the first subset have–C value assigned, the ones from the second
subset have a value of C, whereas for cells from the intermediate interval, a function f (i) of
local compliances is defined. Finally, the function mapping local compliances, which utilize
results of the global sorting, take the form of Equation (7), where i denotes a cell index:

F(i) =


−C i f i < N1

f (i) i f N1 ≤ i ≤ N2
C i f i > N2

. (7)
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Having finished with the analysis at the global level, the local rules of design variables
updating can be established. Therefore, for each cell, the neighboring cells are taken
into consideration. In the former papers, in dealing with the implementation of Cellular
Automata rules, in the process of topology generation, information gathered within all cells
forming neighborhood has been considered.

The novel proposal, inspired by the grey wolf optimizer strategy, where the process of
updating design variables refers to the positions of the three best fitted wolves, assumes
that information from only three of the most influential cells is the basis for forming the
update rule. Hence, on the local level, for each cell, the compliances are sorted as absolute
values within the cell neighborhood. As the result of local sorting, the three values F1, F2, F3
are chosen, and these are the basis from which to build the CA rule for the updating the
design variables. The rule then takes the following final form:

dnew
i = di +

F1 + F2 + F3

3
m. (8)

Updating design variables results in either adding material to or removing it from a cell
i. The quantity m in Equation (8) limits the possible change of the design variables’ values.
The function f (i), introduced in Equation (7), is adopted here in the form of Equation (9):

f (i) = C
tanh

[
β
(

i−N1
N2−N1

− 1
2

)]
tanh

(
1
2 β
) . (9)

The above form enables flexibility of the function, which is controlled by the quantity
β. One can observe that β tending to zero f (i) approaches linear function, while for large
values of β f (i), these are close to the step function. As mentioned above, f (i) is defined for
cells from the interval [N1, N2]. Its width can be altered in the iteration process influencing
the elimination of void cells if it is wide and forcing the elimination of cells of intermediate
densities if it is narrow (for details, see [44]).

As to the move limit m, it plays in (8) the role of a multiplier. It becomes active if the
updated design variable value is outside the admissible interval:

max(dmin, di − m) ≤ dnew
i ≤ min(1, di + m). (10)

The m value is kept constant in the iteration process. The value of 0.2 is a common
choice in the literature, e.g., [40,45]. The already-gathered experience from dealing with
setting the move limit is that for its small values, the topology generation process slows
down and the tendency of creating thin lines of generated topology can be observed. On
the other hand, large values of the move limit change the structure topology and the
compliance value, which may also cause the topology generation process to diverge.

4. The TABASCO Algorithm in Use

To illustrate how the TABASCO algorithm works, introductory examples have been
proposed and detailed calculations are presented in this section. The Cellular Automata
method allows for two approaches: simultaneous analysis and design, or the sequential
approach chosen in this paper. So, the analysis using the finite element method is per-
formed first and the design updating scheme is applied separately at each iteration. The
updated value of design variable for each cell is based on the states of the neighboring
cells determined in the preceding iteration, according to the Jacobi iteration scheme. The
Moore-type neighborhood has been implemented. Each application of local update rules is
preceded by finite element analysis performed using Matlab R2020b or Ansys 14 software.
The diagram presenting the TABASCO workflow is given in Figure 3.
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The present paper proposes the new, original concept of a novel topology generator.
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therefore, the results of computations refer to some earlier concepts. To test the versatility
of the new idea, selected 2D and 3D structures were examined.

The rectangular, plain structure has been selected as the first test example (see Figure 4).
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The regular mesh of 20,000, 200 × 100 4-node elements of edge length 1 mm has been
implemented to perform the FEM analysis and the process of topology generation. The
value of applied load has been set to P = 100 N, while the Young modulus and Poisson
ratio have been set to values of E = 10 GPa and ν = 0.3, respectively. The value of global
constraint, i.e., the volume fraction 0.3, has been assumed.

The resulting topology and the overview of the topology generation process are
presented in Figures 5 and 6, respectively.
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The iteration history, illustrating a good convergence to the optimized solution, is
given in Figure 7.

A large number of iterations has been performed for all examples to allow comparisons
of its performance for all considered problems. It is also intended to underline a fast
decrease in the objective and a stable behavior when approaching minimal value. In
Figure 7, presenting compliance history, the additional figure for the narrow interval of
objective function values has been added, which gives us a closer look at the compliance
behavior.

The resulting compliance value equals 133.22 Nmm for β = 0.1. The original FCA [44]
allows us to obtain the value of 134.14 Nmm for optimized topology. It is also observed
that the number of iterations needed to find the solution was reduced, i.e., it is 25 iterations,
whereas FCA requires 46.
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Figure 7. Compliance history for the short cantilever. The figure below provides a closer look,
referring to the narrowed interval of objective function values.

It can be noticed that the solution for this example is sensitive to the value of β, but
to avoid the necessity of adjusting this control parameter, the self-adaptive technique can
be implemented [46], which, in each step of the iteration process, can track the objective
function’s lowest value. This technique can be realized by updating the values of design
variables using, simultaneously, three values of β at each iteration, i.e., it can propose small,
middle, and large ones. The algorithm selects the set of design variables created by this
scheme for which the compliance has been found to be the smallest, and this set is the
starting point for the next iteration.

The effectiveness of the proposed sorted compliances optimization concept (see [44])
can be controlled not only by the β parameter; the adaptive technique for the width of the
interval [N1, N2] can be suggested. In the first exploration phase of the calculations, when
the preliminary layout of the structure is being sought, the interval [N1, N2] is proposed to
be wide. Then, in the exploitation phase, in order to guide the calculations to a black/white
(solid/void) structure, the interval is successively reduced. Based on the numerous tests
performed [44], the following unified strategy can be proposed: if the iteration number is
lower than 25, then N1 = 0.02 N and N2 = 0.98 N for the second phase; while, if the iteration
number is greater than 25, N1 = 0.6 N and N2 = 0.98 N, where N is a number of elements
(cells).

As one can notice, the solution is free from the checkerboard effect, without any of the
additional filtering or techniques reported in, e.g., [47]. The gray elements are absent in
the solutions obtained with the proposed method, which is a great advantage compared
with the OC method, for which the scale of occurrence of gray elements in the solution is
dictated by additional parameters.

To complete the discussion of generating the optimized topology conducted for the test
structure, the comparison with the results found using the well-known optimality criteria
method [40] was prepared. The final compliance for the mentioned code was 136.55 Nmm.

The long cantilever structure shown in Figure 8 has been chosen as the next test
example.
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The mesh of finite elements consists of 14,400 square elements, 240 × 60, regular mesh, 

Figure 8. Long cantilever: computational model including supports and applied loads.

In this example, the value of load equals P = 100 N, the parameter a is equal to
a = 10 mm, while for the Young modulus and Poisson ratio, E = 10 GPa and ν = 0.3,
respectively. The mesh of finite elements consists of 14,400 square elements, 240 × 60,
regular mesh, 4-node elements, an element edge length 1 mm. The calculations were
performed for the volume fraction 0.5, and the resulting topology is presented in Figure 9,
while the iteration history is presented in Figure 10. For the generated topology of the
second test structure, the value of the compliance equals 365.69 Nmm, and for original,
former FCA [44], the value of the compliance equals 371.97 Nmm.
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To sum up the investigation, the snail-like structure has been selected (see Figure 11)
as the third test example.
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The values of parameters P and a equal P = 100 N and a = 10 mm, while the Young
modulus and Poisson ratio equal E = 10 GPa and ν = 0.3, respectively. The assumed volume
fraction for this example is 0.5. The finite element mesh consists of 19,200 square elements
(240 × 80, regular mesh, 4-node elements, element edge length 1 mm).

The final topology and the iteration history illustrating the fast convergence to the
optimal solution are presented in Figures 12 and 13, respectively.
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The compliance value for the final topology of the third test structure equals 12.659 Nmm,
and for original, former FCA [44], the value is 12.662 Nmm. This result has been obtained
for β = 0.1.



Appl. Sci. 2023, 13, 10595 12 of 19

Appl. Sci. 2023, 13, 10595 11 of 18 
 

The values of parameters P and a equal P = 100 N and a = 10 mm, while the Young 
modulus and Poisson ratio equal E = 10 GPa and ν = 0.3, respectively. The assumed 
volume fraction for this example is 0.5. The finite element mesh consists of 19,200 square 
elements (240 × 80, regular mesh, 4-node elements, element edge length 1 mm).  

The final topology and the iteration history illustrating the fast convergence to the 
optimal solution are presented in Figure 12 and Figure 13, respectively. 

 
Figure 12. Snail-like structure results: the final topology. 

 

 
Figure 13. Compliance history for the snail-like structure. The figure below gives a closer look, re-
ferring to the narrowed interval of objective function values. 

The compliance value for the final topology of the third test structure equals 12.659 
Nmm, and for original, former FCA [44], the value is 12.662 Nmm. This result has been 
obtained for β = 0.1.  

5. Generation of 3D Topologies with TABASCO 
As the first example of the design of a spatial structure using the proposed method, 

the tower under four concentrated loads shown in Figures 14 and 15 has been selected. 

Figure 13. Compliance history for the snail-like structure. The figure below gives a closer look,
referring to the narrowed interval of objective function values.

5. Generation of 3D Topologies with TABASCO

As the first example of the design of a spatial structure using the proposed method,
the tower under four concentrated loads shown in Figures 14 and 15 has been selected.
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Figure 15. Tower structure: dimensions [mm].

The structure is discretized using 31,000 8-node elements. The quarter of a structure is
considered according to symmetry. For this example, the data are selected as E = 200 GPa
and ν = 0.3. Four concentrated loads values of 1000 N each are applied. The assumed
volume fraction equals 0.1. The calculation was performed for β = 0.1. The final layout of
the structure with the resulting compliance equal to 2.46 Nmm is illustrated in Figure 16,
while the overview of the topology generation process is presented in Figure 17. The
compliance history is presented in Figure 18. To make a comparison with the method
reported in the literature, the optimality criteria method was employed, and the final
compliance obtained in this way equals 2.76 Nmm.
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Figure 17. TAhe look inside the topology generation process: (a) Iteration 3; (b) Iteration 10;
(c) Iteration 30; (d) Iteration 70.
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then 25), N1 = 0.6 N and N2 = 0.98 N; and for the third phase (iteration number greater then 
50), N1 = 0.8 N and N2 = 0.98 N, where N is a number of elements (cells). This extension for 
the third phase is applied according to the bigger number of iterations needed for 3D 
examples (compared to 2D examples). 

The gray elements are absent in the solution obtained with the proposed method, 
which is illustrated in Figure 19 by the change in the percentage of gray elements at each 
iteration step.  

 
Figure 19. Percentage of gray elements at each iteration step for the tower structure. 

As the second example, the spatial rocker arm under bending loads shown in Fig-
ures 20 and 21 has been selected. 
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Figure 18. Compliance history for the tower structure.

One can notice a sudden decrease in the objective function values after 25 and
50 iterations; this is related to the implemented adaptive technique mentioned in
Sections 3 and 4. Due to the update rule flexibility, the interval [N1; N2] was reduced.
The unified strategy of adjustment for implementation is as follows: if the iteration number
is lower then 25, then N1 = 0.02 N and N2 = 0.98 N; for the second phase (iteration number
greater then 25), N1 = 0.6 N and N2 = 0.98 N; and for the third phase (iteration number
greater then 50), N1 = 0.8 N and N2 = 0.98 N, where N is a number of elements (cells). This
extension for the third phase is applied according to the bigger number of iterations needed
for 3D examples (compared to 2D examples).

The gray elements are absent in the solution obtained with the proposed method,
which is illustrated in Figure 19 by the change in the percentage of gray elements at each
iteration step.
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As the second example, the spatial rocker arm under bending loads shown in
Figures 20 and 21 has been selected.
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The structure is discretized using 164,964 8-node elements. Within the structure, the 
non-optimized volumes are defined and marked in Figure 20 as the dark gray regions. 
The design domain is marked as the light gray region. The vertical load of value of 4060 
N is distributed at selected nodes across the bottom edge of left cylinders (see Figure 20) 
and 8120 N across the bottom edge of right cylinder. The inner wall of the middle cylin-
der is fixed (see Figure 20, green color). The values of material properties are selected as E 
= 210 GPa and ν = 0.3. The calculations were performed for β = 8. The resulting topology 
is given in Figure 22. A final compliance for the volume fraction 0.2 equals 5212 Nmm, 
and the compliance history is presented in Figure 23. To attain a comparison with a 
method reported in the literature, the optimality criteria method was employed, and the 
final compliance obtained this way equals 5756 Nmm. 
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The adaptive technique mentioned in Sections 3 and 4 was adapted. The gray ele-
ments are absent in the solution obtained with the proposed method, which is illustrated 
in Figure 24 by the change in the percentage of gray elements at each iteration step.  

Figure 21. The rocker arm: dimensions [mm].

The structure is discretized using 164,964 8-node elements. Within the structure, the
non-optimized volumes are defined and marked in Figure 20 as the dark gray regions. The
design domain is marked as the light gray region. The vertical load of value of 4060 N is
distributed at selected nodes across the bottom edge of left cylinders (see Figure 20) and
8120 N across the bottom edge of right cylinder. The inner wall of the middle cylinder
is fixed (see Figure 20, green color). The values of material properties are selected as
E = 210 GPa and ν = 0.3. The calculations were performed for β = 8. The resulting topology
is given in Figure 22. A final compliance for the volume fraction 0.2 equals 5212 Nmm, and
the compliance history is presented in Figure 23. To attain a comparison with a method
reported in the literature, the optimality criteria method was employed, and the final
compliance obtained this way equals 5756 Nmm.
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Figure 23. Compliance history for the rocker arm structure.

The adaptive technique mentioned in Sections 3 and 4 was adapted. The gray elements
are absent in the solution obtained with the proposed method, which is illustrated in
Figure 24 by the change in the percentage of gray elements at each iteration step.
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6. Concluding Remarks 
The topology algorithm that benefits from the adaptation of sorted compliances op-

timization (TABASCO) has been developed. It is built as a Cellular Automaton with 
original update rules. Building the update rules, the function mapping local compliances 
distribution has been defined based on their sorted values on the global level, whereas on 
the local level, for each cell, the compliances have been additionally sorted within the cell 
neighborhood. The derived algorithm has successfully coped with the generation of both 
2D and 3D topologies. In the latter case, a step has been made towards engineering ap-
plications by linking TABASCO with ANSYS software. The implementation of local 
sorting improved algorithm performance as compared with former approaches, provid-
ing results with better objective function values. Moreover, the algorithm is versatile and 
easy to implement. It can also be underlined that it generates distinct solid–
void-resulting topologies without intermediate gray elements. This is thanks to the im-
plementation of the CA approach with local information exchanging among cells form-
ing a neighborhood. This approach practically eliminates the necessity of filtering tech-
niques’ implementation. The CA approach also offers the possibility of adaptation to 
problems with irregular meshes (see, e.g., [48]). To conclude, the above advantages 
hopefully place TABASCO among other topology generators which are worthy of the 
attention of designers in the field of structural optimization. 

Author Contributions: As far as conceptualization, methodology, software, investigation, and 
writing the paper are concerned, all authors contributed equally to this work. All authors have read 
and agreed to the published version of the manuscript. 

Funding: The APC was funded by the Faculty of Mechanical Engineering, Cracow University of 
Technology. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. 

Multidisc. Optim. 2014, 49, 1–38. 
2. Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidisc. Optim. 2013, 48, 1031–1055. 
3. Liu, J.; Gaynor, A.T.; Chen, S.; Kang, S.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future 

trends in topology optimization for additive manufacturing. Struct. Multidisc. Optim. 2018, 57, 2457–2483. 
4. Kentli, A. Topology optimization applications on engineering structures. In Truss and Frames-Recent Advances and New Perspec-

tives; IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.80173. 
5. Ribeiro, T.P.; Bernardo, L.F.A.; Andrade, J.M.A. Topology optimisation in structural steel design for additive manufacturing. 

Appl Sci 2021, 11, 2112. 
6. Logo, J.; Ismail, H. Milestones in the 150-Year History of Topology Optimization: A Review. Comput. Assist. Methods Eng. Sci. 

2020, 27, 97–132. 

Figure 24. Percentage of gray elements at each iteration step for the rocker arm structure.

6. Concluding Remarks

The topology algorithm that benefits from the adaptation of sorted compliances
optimization (TABASCO) has been developed. It is built as a Cellular Automaton with
original update rules. Building the update rules, the function mapping local compliances
distribution has been defined based on their sorted values on the global level, whereas
on the local level, for each cell, the compliances have been additionally sorted within the
cell neighborhood. The derived algorithm has successfully coped with the generation of
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both 2D and 3D topologies. In the latter case, a step has been made towards engineering
applications by linking TABASCO with ANSYS software. The implementation of local
sorting improved algorithm performance as compared with former approaches, providing
results with better objective function values. Moreover, the algorithm is versatile and
easy to implement. It can also be underlined that it generates distinct solid–void-resulting
topologies without intermediate gray elements. This is thanks to the implementation of the
CA approach with local information exchanging among cells forming a neighborhood. This
approach practically eliminates the necessity of filtering techniques’ implementation. The
CA approach also offers the possibility of adaptation to problems with irregular meshes
(see, e.g., [48]). To conclude, the above advantages hopefully place TABASCO among other
topology generators which are worthy of the attention of designers in the field of structural
optimization.
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32. Bochenek, B.; Tajs-Zielińska, K. Cellular Automaton Mimicking Colliding Bodies for Topology Optimization. Materials 2022, 15,
8057. [CrossRef]

33. Gan, N.; Yao, S.; Xiong, Y.; Hong, X. A hybrid cellular automaton–bi-directional evolutionary optimization algorithm for
topological optimization of crashworthiness. Eng. Opt. 2018, 12, 2054–2070. [CrossRef]

34. Mashayekhi, M.; Mehdizade, F. Size and topology optimization of truss structures using an enhanced cuttlefish method. Modares
Civ. Eng. J. 2020, 20, 133–144.

35. Evsutin, O.; Shelupanov, A.; Meshcheryakov, R.; Bondarenko, D.; Rashchupkina, A. The Algorithm of Continuous Optimization
Based on the Modified Cellular Automaton. Symmetry 2016, 8, 84. [CrossRef]

36. Chao, L.; Liang, G.; Jin, Y. Grey wolf optimizer with cellular topological structure. Expert Syst. Appl. 2018, 107, 89–114.
37. Bureerat, S.; Kunakote, T. Topological design of structures using population-based optimization methods. Inverse Probl. Sci. Eng.

2006, 14, 589–607. [CrossRef]
38. Tovar, A. Bone Remodeling as a Hybrid Cellular Automaton Process. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN,

USA, 2004.
39. Bendsoe, M.P.; Kikuchi, N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Comput.

Methods Appl. Mech. Eng. 1988, 71, 197–224. [CrossRef]
40. Sigmund, O. A 99 line topology optimization code written in MATLAB. Struct. Multidisc. Optim. 2001, 21, 120–127. [CrossRef]
41. Bendsøe, M.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654.

[CrossRef]
42. Yi, B.; Yoon, G.H.; Zheng, R.; Liu, L.; Li, D.; Peng, X. A unified material interpolation for topology optimization of multi-materials.

Comput. Struct. 2023, 282, 107041. [CrossRef]
43. Stople, M.; Svanberg, K. An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidisc.

Optim. 2014, 22, 116–124.
44. Tajs-Zielinska, K.; Bochenek, B. Topology algorithm built as an automaton with flexible rules. Bull. Pol. Acad. Sci. 2021, 69,

e138813.

https://doi.org/10.3390/ma12071152
https://www.ncbi.nlm.nih.gov/pubmed/30970609
https://doi.org/10.1016/j.istruc.2023.02.120
https://doi.org/10.1007/s00158-017-1650-3
https://doi.org/10.1007/s00158-019-02254-2
https://doi.org/10.3390/su13063435
https://doi.org/10.1038/s41598-022-09249-y
https://www.ncbi.nlm.nih.gov/pubmed/35379865
https://doi.org/10.1007/s00158-005-0528-y
https://doi.org/10.1007/s00158-020-02533-3
https://doi.org/10.1007/s00158-017-1652-1
https://doi.org/10.3390/ma15228057
https://doi.org/10.1080/0305215X.2018.1435645
https://doi.org/10.3390/sym8090084
https://doi.org/10.1080/17415970600573437
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s004190050248
https://doi.org/10.1016/j.compstruc.2023.107041


Appl. Sci. 2023, 13, 10595 19 of 19

45. Andreassen, E.; Clausen, A.; Schvenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in Matlab using 88 lines of
code. Struct. Multidisc. Optim. 2011, 4, 1–16. [CrossRef]
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