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Over more than a century of systematic observational seismology, the instrumental
capabilities to detect, record, and analyze elastic waves and other physical variables associ-
ated with the source, medium, and recording site of earthquakes have evolved substantially.
In fact, during the last two decades, technologies have frequently emerged to facilitate
real-time monitoring processes or to complement early warning systems. Several emerging
and cutting-edge technologies are being explored and implemented for monitoring seis-
micity and volcanic activity. Some of the leading technologies for monitoring these natural
phenomena include:

• Fiber Optic Sensors: Distributed Acoustic Sensing (DAS) and Distributed Temperature
Sensing (DTS) using fiber optic cables are increasingly being utilized for seismic
monitoring. These sensors can detect ground motion and temperature changes along
the entire length of the cable, providing evolutive and high-resolution data [1–3].

• Magnetotelluric deployments (MT): Time-frequency MT techniques can be integrated
into permanent monitoring systems. Surficial or even at depths near earthquake or
volcanic sources, changes in electrical resistivity may serve to identify transient or
precursor signals [4–6]. Including MT data in a comprehensive monitoring system can
improve the accuracy of early warnings. An appropriate example of this approach is
being developed by the Geophysical Network of the National University of Colombia
(RGUNAL), where complementing MT analysis with light gases suggests the migration
of fluids and possible gradients in pore pressure in the phase before earthquakes
and/or volcanic eruptions (Figure 1).

• Quantum Sensors: Quantum gravimeters and quantum magnetometers can enhance
our ability to detect subtle changes in the Earth’s gravitational and magnetic fields
associated with seismic activity and bulk changes in magmatic and hydrothermal
systems [7–9].

• Satellite-based Radar Interferometry (InSAR): InSAR measures ground deformation
caused by seismic and volcanic activity. It involves comparing radar images of the
same area at different times to detect even small ground movements. Improving the
resolution could provide more detailed deformation during the evolution of a region’s
seismic or volcanic cycle [10–12].

• GNSS (Global Navigation Satellite System): GNSS technology, including GPS, moni-
tors crustal movements. It helps track the slow buildup of tectonic stress that can lead
to earthquakes and volcanic eruptions [13–15].

• Drone Technology: Drones with various sensors, including LiDAR and photogramme-
try, can quickly assess earthquake or volcanic evolution and damage in hard-to-reach
or dangerous areas, aiding disaster response and recovery efforts [16–18].

• Low-Cost Seismic Sensors: Miniaturized and low-cost seismic sensors are being
developed, making deploying large sensor networks in earthquake-prone or active
volcanic regions easier. These sensors can be used for early warning systems and
volcano–tectonic research [19–21].
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• Next-Generation Seismometers: Advancements in seismometer technology continue
to improve the sensitivity and accuracy of ground motion detection, enabling better
earthquake characterization [22–24].

In addition, data analysis for these purposes is improving rapidly. Some of the most
representative approaches for evaluating advanced technologies in seismic and volcanic
monitoring are covering some of these topics:

• Machine Learning and AI: Advanced machine learning and artificial intelligence
techniques are employed to process and analyze vast amounts of seismic data. These
technologies can identify patterns, predict seismic events, and enhance early warning
systems [25–27].

• Advanced Data Visualization: Data visualization tools, including virtual reality (VR)
and augmented reality (AR), create immersive experiences for researchers and emer-
gency responders, allowing them to explore seismic data in three dimensions [28–30].

• Crowdsourced Data: Mobile apps and citizen science initiatives enable seismic data
collection from smartphones. These crowdsourced data streams can supplement
traditional monitoring networks and provide real-time information [31–33].

• Real-time Data Streaming: High-speed, real-time data streaming and cloud computing
are essential for quickly processing and analyzing seismic data, facilitating rapid
earthquake alerts and early warning systems [34–36].

• Blockchain for Data Security: Blockchain technology is being explored to ensure
seismic data security and integrity, especially in critical applications such as early
warning systems [37–39].

When integrated and combined, these technologies offer a comprehensive approach to
seismic monitoring, enabling better earthquake forecasting, early warning, and post-event
assessment. Some of these technologies may vary depending on the region’s seismic or
volcanic activity and the available resources.
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Figure 1. Time–frequency record of apparent resistivity calculated at the USME station of the Geo-
physical Network of the National University of Colombia. On the left is the location map of the 
Mw5.9 earthquake that occurred on 28 August 2023, in the Panama Fracture Zone (as suggested by 
the focal mechanism), which has been linked to apparent resistivity anomalies generated by fluid 
mobility under pore pressure gradients from the seismic source. On the right, the temporal variation 
in apparent resistivity with the location of the earthquakes at depth is observed (upper panel). The 
middle panel represents the resistivity anomaly for the average at each depth. The lower panel 
shows the variations in the Kp solar index, ruling out possible anomalies induced by solar activity. 
The hypocentral solution has been provided by the USGS [40]. 
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Figure 1. Time–frequency record of apparent resistivity calculated at the USME station of the
Geophysical Network of the National University of Colombia. On the left is the location map of the
Mw5.9 earthquake that occurred on 28 August 2023, in the Panama Fracture Zone (as suggested by
the focal mechanism), which has been linked to apparent resistivity anomalies generated by fluid
mobility under pore pressure gradients from the seismic source. On the right, the temporal variation
in apparent resistivity with the location of the earthquakes at depth is observed (upper panel). The
middle panel represents the resistivity anomaly for the average at each depth. The lower panel shows
the variations in the Kp solar index, ruling out possible anomalies induced by solar activity. The
hypocentral solution has been provided by the USGS [40].
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