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Abstract: In order to enhance the accuracy of the traditional extended Kalman filter (EKF) algorithm in
the estimation of the state of charge (SoC) of power batteries, we first derived the state space equation
and measurement equation of lithium power batteries based on the Thevenin battery model and
the modified Ampere-Hour integral algorithm. Then, the basic principles of EKF, backpropagation
neural networks (BPNNs), and a biogeography-based optimization (BBO) algorithm were analyzed,
and the arc curve mobility model was used to improve the global search ability of the BBO algorithm.
By combining these three algorithms, this paper proposes a BP neural network method based on the
BBO algorithm. This method uses the BBO algorithm to optimize the incipient weight and threshold
of the BP neural network and uses this improved neural network to modify the estimated value of
the extended Kalman filter algorithm (BBOBP-EKF). Finally, the BBOBP-EKF algorithm, the extended
Kalman filter algorithm based on the BP neural network (BP-EKF), and the EKF algorithm are used
to estimate the error value of the SOC of a power battery, and according to the experimental data,
it was confirmed that the proposed BBOBP-EKF algorithm has been improved compared to other
algorithms with respect to each error index term, in which the maximum error is 1% less than that of
the BP-EKF algorithm and 2.4% less than that of the EKF algorithm, the minimum error is also the
smallest, and the estimation accuracy is improved compared to the traditional algorithms.

Keywords: extended Kalman filter algorithm; biogeography-based optimization algorithm; BP neural
network; state of charge estimate

1. Introduction

The recent problems with energy and the degradation of the environment have posed
significant difficulties for individuals. The current rapid development of electric vehicles
(EVs) not only effectively reduces the pressure on oil resources but also reduces the harm
noise and air pollution inflict on people. As the key component of an electric vehicle, a
power battery is not only the energy source of an electric vehicle but also an important
energy storage device, which enormously influences the safety as well as performance
of electric vehicles. In accordance with formula (1), the state of charge (SoC) of a power
battery is the proportion between the battery’s remaining capacity and its maximum
capacity under certain conditions. Accurate battery estimates are a vital factor in ensuring
battery performance, enhancing service safety and extending service life according to
the SoC [1,2].

SoC =
Qt

Q
× 100% (1)

In the equation above, Qt denotes the capacity of a battery at time t, and Q denotes a
battery’s maximum capacity.

Based on relevant investigations, a variety of methods are frequently employed to
estimate the SoC of power batteries. Some of these methods include the Ampere-Hour
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integral method [3], the open circuit voltage (OCV) method [4], the model-based Kalman
filter (KF) [5], and data-based neural networks [6]. Regarding the estimation of SoC, there
is a cumulative error in the open-circuit voltage method, and the Ampere-Hour integral
method cannot make estimates in real time. The model-based Kalman filter [7] is an optimal
recursive estimation method for dynamic linear system state estimation. It is a recursive
predictive filtering algorithm. This method has good path-tracking performance and high
accuracy. It is an effective online SoC estimation method [8], but the observation equation
required by this method must be linear. To solve the optimal estimation problem in non-
linear systems, scholars have proposed an extended Kalman filter (EKF) [9] algorithm for
nonlinear system models. Plett [10–12] first proposed a series of EKF-based SoC estimation
algorithms for electric vehicle power batteries, which laid a theoretical foundation for
the development of the EKF algorithm. However, the EKF algorithm linearizes nonlinear
systems through Taylor series expansion, omits the high-order term, and thus introduces
high-order loss error. Lee et al. [13] implemented the dual extended Kalman filter (DEKF)
in an electrochemical model and proposed a battery SoC estimation method based on
OCV-SoC. The obtained simulation results showed that the model method had good ac-
curacy, and the initial error was less than ±5%. Mastali et al. [14] used EKF and DEKF
methods to estimate the SoC of a LiFePO4 battery under different state models, and the
results showed that the maximum error of the estimated SoC was 4%. Xiong et al. [15,16]
proposed an online estimation method of battery open circuit voltage using an adaptive
extended Kalman filter (AEKF) and evaluated four different types of lithium batteries’
(LiB) SoC according to the improved Thevenin model and the OCV-SoC relationship. This
method reduces the SoC estimation error by 4%. With the rapid development of the field of
machine learning, the authors of [17] obtained battery parameters such as current, voltage,
and temperature through experiments and used the improved backpropagation neural
network (BPNN) to estimate the SoC value of a battery. In order to further improve the
SoC estimation accuracy of power batteries, the researchers combined a data-based neural
network with a filtering algorithm to compensate for the inaccuracy of the model and the
complexity of calculation. The authors of [18,19] used a BP neural network to compensate
for the error caused by the EKF linearization process to optimize SoC estimation accuracy.
Although BP neural networks have the advantages of a simple structure, strong parameter
adjustability, and high reliability, the uncertainty of the initial weights and thresholds of
these networks makes their convergence speed slow and easily prone to falling into a local
minimum. For this reason, we selected an intelligent algorithm, biogeography-based opti-
mization (BBO) [20], which is simple in structure and easy to implement. This algorithm
is a good complement to a BP neural network. At the same time, we also improved the
traditional linear mobility model of this algorithm and introduced a nonlinear mobility
model to improve the global search ability and adaptability of this algorithm. The im-
proved BBO algorithm is used to optimize the initial weight and threshold of a BP neural
network, and the optimized BP neural network is used to modify the SoC estimation value
predicted by the EKF algorithm so as to obtain a more accurate SoC estimation value than
the traditional algorithm. Numerical examples are used to verify the performance of the
proposed BBOBP-EKF algorithm. The experimental results show that the error result of
this algorithm is significantly improved compared with that of the EKF algorithm, and it is
also improved compared with that of the BP-EKF algorithm.

2. Battery State Space Model

The EKF algorithm is used to estimate the dynamic SoC of a battery. A nonlinear
observer is often combined with a battery model. The selection of a battery model has
an important impact on obtaining an accurate SoC value. The common SoC estimation
models include the electrochemical model (EM), the electrochemical impedance model
(EIM), and the equivalent circuit model (ECM). It must be considered that it is difficult for
the electrochemical model to determine all parameters, and the corresponding calculation is
complex and time consuming [21], while the electrochemical impedance model is difficult,
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complex, and limited in terms of the actual matching process [22]. The equivalent circuit
model can more accurately describe the dynamic behavior of a battery, and it is easy to
implement and readily improves the accuracy in SoC estimation. For the Rint model [23],
Thevenin model [15], and the second-order resistance capacitance parallel model [24] in
the equivalent circuit model, fully considering the complexity and accuracy of the model,
the commonly used Thevenin equivalent circuit model with a first-order RC circuit was
selected to establish the battery state space model, as Figure 1 illustrates.
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Based on the Thevenin equivalent battery model, and according to Kirchhoff’s law, the
continuous state space equation of the battery is obtained, that is, the voltage and current
are as follows (2) [25]: {

UL(t) = UOCV(t)−Ub(t)− I(t) · Ra(t)
I(t) = Ub(t)

Rb
+ Cb ·

d(Ub(t))
dt

(2)

In the formula, UL(t) represents the output voltage at time t; UOCV(t) is the battery
open circuit voltage at time t, which is a nonlinear function varying with SoC; Ub(t)
represents the voltage of the RC circuit at time t; Ra,Rb, and Cb represent the internal
resistance of the battery, the resistance of the battery circuit, and the capacitance of the
battery circuit, respectively; I(t) represents the total charging and discharging current at
time t.

From Equation (2), the discrete state space Equation (3) [25] can be derived{
Ub(k) = Ub(k− 1) · e−

∆t
RbCb + I(k− 1) · Rb(1− e−

∆t
RbCb )

UL(k) = UOCV(k)− I(k) · Ra −Ub(k)
(3)

where ∆t is the sampling interval time, which is usually 1. k represents the number of
sampling times. Then, the SoC value of lithium battery can be estimated using a modified
Ampere-Hour integral method [26].

SoC(t) = SoC(0)−
∫ t

0 Tkη Idt
Q

(4)

where η is the charging and discharging efficiency of the battery, Tk is the temperature
correction factor, and Q indicates the rated capacity of the battery. They are all definite
values in the numerical experiments. The discretization of Equation (4) [26] can be obtained
as follows:

SoC(k + 1) = SoC(k)− Tkη∆t
Q

I(k) (5)

To sum up, the equation expression of the model’s state space can be deduced, which
can be seen in Equation (6):
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[

SoC(k)
Ub(k)

]
=

[
1 0

0 e−
∆t

RbCb

][
SoC(k− 1)
Ub(k− 1)

]
+

[
− Tkη∆t

Q

Rb(1− e−
∆t

RbCb )

]
I(k− 1) + w(k− 1)

UL(k) = UOCV(k)−Ub(k)− Ra I(k) + v(k)

(6)

In the equation, w(k),v(k) represents the process noise and observation noise of the
system at time k, and the corresponding variances are qk and rk, respectively.

In this paper, 18,650 individual lithium-ion power batteries are used. Because the
temperature will have a certain impact on the activity of the reactants inside the battery,
excessively low activity will reduce the battery’s capacity, and excessively high activity
will damage the battery, so the experiment was carried out at a constant temperature of
25 ◦C. The battery tester used was a Xinwei BTS-5V6A charge–discharge tester. During the
experiment, the SoC and OCV values of charge and discharge were calibrated many times
at the same time, and the mean values of these values were calculated [27]. It was necessary
to perform a few criteria charging and discharging operations on the tester: according to
the results of the experiment, a group of open-circuit voltage and state-of-charge records of
average charge and discharge were ultimately gained, and the data were fitted using the
least-squares method. The fourth-order fitting expression is presented in Equation (7) for
further details, and the OCV-SoC fitting curve is shown in Figure 2.

UOCV = −10.3263SoC4 + 22.4018SoC3 − 16.3058SoC2 + 5.0034SoC + 3.2026 (7)

where UOCV stands for the battery’s open-circuit voltage.
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3. Algorithm Design
3.1. EKF Algorithm

The classical Kalman filter is an optimal recursive estimation prediction method
widely used in dynamic linear system state estimation. In the actual operation of an electric
vehicle’s lithium battery, the system is highly nonlinear, and the extended Kalman filter
algorithm can linearize this nonlinear system so as to estimate the battery’s SoC. The
filtering algorithm involves two steps: prediction and correction. Equation (6) has been
derived from the Thevenin battery equivalent model. In order to facilitate the operation
of the algorithm later, the nonlinear system model (Equation (8)) is obtained by rewriting
Equation (6) in compact form{

xk = f (xk−1, Ik−1) + wk−1
zk = h(xk, Ik) + vk

(8)
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where f (·) and h(·) represent the state function and observation function of the system,
respectively, and are the inputs of the system at a given time. From Equation (6), we
can obtain xk = [SoC(k) , Ub(k)]

T , wk−1 = w(k − 1) = [w1(k− 1) , w2(k− 1) ]T , and
zk = UL(k), vk = v(k).

In order to facilitate further research on the EKF algorithm, Equation (2) can be used
to create the state transition matrix of system A, noise matrix B, and observation matrix C,
as shown in Equation (9) [25]. See Figure 3 for a specific flow chart of the EKF algorithm.

A =

[
1 0

0 e−
∆t

RbCb

]
, B =

[
− Tkη∆t

Q

Rb(1− e−
∆t

RbCb )

]
, Ck =

∂h
∂x
∣∣x=xk =

[
dUOCV
dSoC

∣∣∣SoC=SoC(k) − 1
]

(9)Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16 
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3.2. BP Neural Network

The BP neural network is the first and foremost network put forward by Rumelhart
and McClelland. It is an error-backpropagation-based multi-layer feed-forward neural
network training model. It has a broad range of nonlinear input–output mode-mapping
interactions that it can learn [28]. During the training process, taking the error as a sample,
it constantly adjusts the weight and threshold between each layer so as to make the error
meet the requirements [29]. Its neural network framework consists of an input layer, a
hidden layer, and an output layer. In the course of estimating a battery’s SoC using the EKF
algorithm, the SoC estimation results will produce errors due to various external factors. In
order to compensate for this error, the BP neural network is introduced to compensate for
and optimize the estimated value of the EKF.



Appl. Sci. 2023, 13, 10547 6 of 14

3.2.1. Data Sources and Pretreatment

Regarding the data sources and pretreatment, firstly, the current, voltage, and tem-
perature of the battery were collected through experiments and used as the basic data.
Then, they were incorporated into the model expression to obtain the input data of the BP
neural network using the EKF algorithm. For the sake of reducing the influence of singular
sample data on the neural network, the input and output parameters need to be normalized
through Equation (10), that is, the data must be processed into decimals between [–1, 1],
and the predicted data also need to be denormalized. For the input and output data, q,

q′ = 2× q− qmin
qmax − qmin

− 1 (10)

where q′ is the normalized value, and the input and output data’s minimum and maximum
amounts are qmin and qmax, respectively.

3.2.2. Structure Design of BP Neural Network

The current study establishes one hidden layer in a BP neural network structure.
Each time the SoC value is estimated, the battery temperature T at time k + 1, the Kalman
gain matrix Pk, and the SoC state value difference ∆x̂k+1(= x̂k+1 − x̂k) estimated via the
EKF algorithm at time k and time k + 1 are input into the trained neural network model,
and the SoC estimation error ∆SoCk+1 is taken as the output to remove the estimation
error ∆SoCk+1 from the estimated value x̂k+1. Finally, the estimated value SoCk+1 of the
SoC quantity of a state at time k + 1, namely, SoCk+1 = x̂k+1 + ∆SoCk+1, is obtained (see
Figure 4 below).
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Let m, n, and s in Figure 4 equal the quantity of nodes in the input layer, hidden
layer, and output layer; i, j, and l denote the input layer, hidden layer, and output layer,
with i, j, and l neurons in each case. In this paper, the number of input layer nodes is
m = 3, the quantity of output nodes is s = 1, and the quantity of hidden layers of the BP
neural network may be determined via a trial-and-error method; the common formula is
n =
√

m + s + a (where a is the constant within the range from 1 to 10) [30]. After many
simulation tests, when the quantity of hidden layer nodes is n = 7, the network prediction
accuracy is higher, and the convergence speed is faster. w1

ij and w2
jl denote the weights that

travel from the i-th input layer node to the j-th hidden layer node in addition to the j-th
hidden layer node to the l-th output layer node in the network, respectively. The j-th nodes
across the network in the hidden layer contain a threshold of b1

j ; meanwhile, the l-th nodes

across the network in the output layer have a threshold of b2
l .
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According to the quantity of nodes in each layer determined in this paper, from the
input layer to the hidden layer, the weight matrix equals W1, and the threshold matrix
equals B1. The weight matrix from the hidden layer to the output layer equals W2, and
the threshold matrix equals B2. The input vector equals X, the output vector equals Y, the
expected output vector equals O, the hidden layer output value vector equals V, the hidden
layer error value vector equals U1, and the output layer error value matrix equals U2, as
shown in Equations (11) and (12)

W1 =

 w1
11 w1

12 · · · w1
17

w1
21 w1

22 · · · w1
2n

w1
31 w1

32 · · · w1
37

 , B1 =


b1

1
b1

2
...

b1
7

 , W2 =


w2

11
w2

21

w2
71

 , B2 =
[
b2

1

]
(11)

X =

 α1
α2
α3

 =

 T
Kk

∆x̂k+1

 , Y = [θ1] = y , O = [o1] , V =


δ1
δ2
...

δ7

 , U1 =


u1

1
u1

2
...

u1
7

 , U2 =
[
u2

1

]
(12)

where we also obtain V = g1(W1′X+B1) and Y = g2(W2′V+B2). The activation functions
for the hidden layer and the output layer in each case are g1(·) and g2(·), and the two
activation functions can be the same.

The objective function of the BP neural network training is shown in Equation (13)

F =
1
S

S

∑
λ=1

(yλ
1 − oλ

1 )
2

(13)

where S is the quantity of training samples, the quantity of output layer nodes is 1, oλ
1 is the

expected output value of the output node of sample λ, and yλ
1 is the actual output value of

the output node under the action of sample λ.

3.3. Combination of BP Neural Network Optimized by BBO Algorithm and EKF
3.3.1. BBO Algorithm

In an attempt to imitate the migratory behavior of biological groups in nature, Si-
mon [20] originally put forward a biogeography optimization method in 2008, which was
centered on the migration operation of a linear model. The algorithm is uncomplicated in
principle, easy to implement, contains fewer parameters, and has good global search capa-
bility and robustness. It is extensively applied in engineering [20,31,32], data analysis [33],
and image processing [34]. The BBO algorithm mainly realizes the exchange of information
through species migration and mutation between habitats. It then calculates the fitness
value after exchange, and finally searches for the optimal solution through continuous
iteration. Because the BP neural network is prone to falling into a local optimal solution in
the training process, the application of the BBO algorithm to optimize the initial weight
and threshold of a BP neural network can solve this problem to a certain extent, which
helps to improve the optimization performance of a BP neural network and increase the
number of opportunities to find a global optimal solution.

Because the core of the BBO algorithm is a migration operation, the traditional BBO
algorithm is a linear mobility model (LMM) (see expression (14)), which has shortcomings
in terms of its global search ability. This paper proposes a nonlinear mobility model, the
arc curve mobility model (ACMM), as shown in expression (15), which advances the global
search ability of the BBO algorithm.{

λn = I(1− n
m )

µn = E · n
m

(14)
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(15)

Above, λn and µn are the immigration rate and emigration rate when the quantity of
biological populations in the current habitat is n, and their respective maximum values
are equal to I and E. m is the maximum quantity of biological populations that the habitat
can accommodate.

When the maximum quantity of biological populations m = 50, I = 1 and E = 1,
as shown in Figure 5, can be obtained. It can be observed from the above expression or
figure that the immigration rate λ and emigration rate µ will change with the change in the
quantity of species n. When there are few species in the ecosystem, the circular arc curve
mobility model can increase the immigration rate and slow decline, and the emigration rate
will become small and slowly rise, which can increase the exchange of species information
between habitats as well as boost the algorithm’s capacity for global search; when the
quantity of species in the habitat is large, the immigration rate is small and the emigration
rate is large, which also enhances the algorithm’s capacity for global search; when the
quantity of species in the habitat is equal to half of the maximum quantity of species, the
immigration rate is equal to the emigration rate, thus reaching a balance state. Please refer
to Figures 5 and 6 for further information.
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The habitat suitability index (HSI) is a metric utilized to assess whether an area is
suitable for a species’ existence. The larger the value, the more suitable the habitat is for
species survival. The HSI is composed of many factors, including temperature, rainfall,
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vegetation and geological diversity, and land area. These factors affecting HSI are known as
suitability index variables (SIV). Due to the limited resources of habitats, habitats with high
suitability tend to accommodate more species, and local species are more likely to migrate
to other habitats, while the immigration rate of alien species is low. However, habitats with
low suitability tend to contain fewer species, and alien species are more likely to migrate
to the local area and less likely to leave. In addition, large change events such as natural
disasters may also change the state of habitats, thereby affecting the HSI.

3.3.2. Implementation Process of BBOBP-EKF Algorithm

The BBO algorithm is coupled with a BP neural network and applied to the correction
of the estimated value of the EKF algorithm. Figure 7 shows the concrete implementation
process diagram of the BBOBP-EKF algorithm. The specific method of SoC estimation is as
follows: firstly, the EKF algorithm is used to estimate the SoC and calculate the input of the
BP neural network, that is, the Kalman gain matrix Pk and the SoC state value difference
∆x̂k+1(= x̂k+1 − x̂k) estimated by the EKF algorithm at time k and time k + 1 are used as
two inputs of the network. As the temperature has a certain impact on the battery, the
battery temperature T is also one of the inputs. Then, based on the neural network structure,
the BBO algorithm is used to optimize the initial weight and threshold of the BP neural
network, and the optimized weight and threshold are assigned to the neural network. Then,
the network is trained and tested, and the SoC estimation error is output after meeting
the conditions, which is the compensation value of the EKF algorithm’s estimation error.
Finally, the SoC value estimated using the EKF method is added to the compensation value
output by the BP neural network to obtain the final SoC estimation value.
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4. Experimental Results and Analysis

The experimental results were obtained using MATLAB simulation software (https:
//ww2.mathworks.cn/discovery/simulation-software.html). First, the SoC was estimated
via the EKF algorithm, which is depicted in Figure 3. The current, voltage, and temperature
data used were measured using the experimental equipment. The initial SoC value was set
to 90%, the time step was 1 s, and the total simulation time was 2000 s, where Ra = Rb = 15,
and τ = RbCb are time constants, which are generated by the normrnd function. The
normal distribution generated by the randn function was used as the initial value of noise
and observation noise, and the identity matrix generated by the eye function was used as
the initial value of the covariance matrix.

Further, the BBO algorithm was used to optimize the weight and threshold of the BP
neural network, and then the SoC estimation compensation value was output. Combined
with the estimation value obtained using the EKF method, the SoC estimation value was
finally obtained. By using the newff function to establish a forward-type BP neural network,
experiments were conducted on 1000 sets of data, and the predicted output of the network
was set to 1 × 10−5. After 2000 iterations, the network was trained. As a training set, the
first 900 collections of data were employed, while the last 100 groups of data served as the
test set. The learning rate was 0.01, and the training goal error was 1 × 10−7. The main
parameter-setting steps of the BBO algorithm include setting the weight and threshold
value range to [–3, 3], the maximum quantity of iterations to 100, the quantity of habitats to
50, the habitat retention rate to 0.2, and the maximum mutation rate to 0.01. The following
is a comparison of the results regarding the accuracy of the three algorithms for estimating
lithium battery SoC value obtained through simulation, as shown in Figure 8.
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Figure 8. Comparison of SoC accuracy.

As can be seen in Figure 8, with the increase in simulation time, the experimental
real value of the SoC of the power battery decreases, and the experimental measured
value of the SoC fluctuates in an interval due to the addition of noise perturbation to the
experiments, while the SoC value estimated via the BBOBP-EKF method is essentially in the
middle of the interval of the experimental value and is very stable and fluctuates with the

https://ww2.mathworks.cn/discovery/simulation-software.html
https://ww2.mathworks.cn/discovery/simulation-software.html
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fluctuation of the real SoC value, which is closer to the actual battery SoC value compared
to the SoC value estimated by the BP-EKF algorithm and the EKF algorithm. Compared
with the BP-EKF algorithm and the EKF algorithm, the estimated SoC values are closer to
the actual battery SoC values, leading to the conclusion that the accuracy of the SoC values
obtained via the BBOBP-EKF method has been improved to a certain extent. Meanwhile,
after simulation, a comparison of the error curves of the EKF algorithm, BP-EKF algorithm,
and BBOBP-EKF algorithm with respect to estimating the battery SoC value is also shown
in Figure 9, which shows that the EKF algorithm fluctuates outside the error 0 value, and
the BP-EKF algorithm and BBOBP-EKF method essentially fluctuate above and below the
error 0 value, but the error float of the BBOBP-EKF method is much higher than that of the
BP-EKF algorithm or the EKF algorithm; however, the error fluctuation of the BBOBP-EKF
method is lower and more stable than that of the BP-EKF algorithm, so the BBOBP-EKF
method is more effective in the estimation of battery SoC.
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For the purpose of the better characterization of the error values of different algorithms,
the error values obtained by each algorithm are taken as absolute values, and the presented
error values are shown in Figure 10. It may be deduced that the BBOBP-EKF approach
has an absolute error value of 2000 times, which is basically within 2%. The error value
corresponding to a number of times less than 1% is also higher than that of the other
algorithms. Overall, it is superior to the BP-EKF algorithm and significantly better than the
EKF algorithm. The number of times the error values obtained by different algorithms fall
into different intervals is shown in Table 1.

Table 1. Comparison of the times of different algorithms in the absolute error range.

Error Taking Absolute Value Interval/% EKF BP-EKF BBOBP-EKF

0 ≤ e ≤ 1 459 1331 1412 1

1 < e ≤ 2 726 574 554
2 < e 815 95 34

1 The values in digital boldface denote better performance compared to other algorithms in the table.
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To further illustrate the effects of the three methods, the error results are shown in
Table 2. The smaller the index of the SoC estimation error, the better the accuracy of the
algorithm. Compared with the BP-EKF algorithm and EKF algorithm, the maximum error
of the BBOBP-EKF algorithm is 1% less than that of the BP-EKF algorithm and 2.4% less
than that of the EKF algorithm, and its minimum error is also the smallest. Furthermore,
the smaller the variance of the error, the more stable the estimation method. The error
index in Table 2 intuitively shows that the accuracy of battery SoC estimation based on the
BBOBP-EKF method is slightly better than that of the BP-EKF algorithm and obviously
better than that of the EKF algorithm.

Table 2. Comparison of error indicators of different algorithms.

Index Minimum Error /% Maximum Error/% Mean Absolute Value of Error/% Error Variance/%

EKF 1.6421 × 10−3 5.7156 1.8099 1.1731
BP-EKF 9.9855 × 10−4 4.2849 0.8207 1.0498

BBOBP-EKF 1.7112 × 10−4 2 3.2658 0.7483 0.9443
2 The values in digital boldface represent better performance compared to other algorithms in the table.

5. Conclusions

The lithium power battery space equation of state and the observed output equation
were constructed in this study by utilizing the Thevenin cell model. Furthermore, the
BBOBP-EKF method was developed to evaluate the SoC for batteries. The error of the EKF
algorithm was corrected using a BP neural network, and the BBO method was adopted
to improve the initial weights and thresholds of the BP neural network. In the end, the
BBOBP-EKF method was compared with the BP-EKF algorithm and the EKF algorithm
to obtain the SoC estimation error: the proposed method’s maximum error was 1% lower
than that of the BP-EKF algorithm and 2.4% lower than that of the EKF algorithm, and
the minimum error was also reduced, thus demonstrating that the accuracy of battery
SoC estimation founded on the BBOBP-EKF method was enhanced compared with that of
other algorithms.
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Abbreviations

EVs Electric vehicles
SoC State of charge
OCV Open-circuit voltage
KF Kalman filter
EKF Extended Kalman filter
DEKF Dual extended Kalman filter
AEKF Adaptive extended Kalman filter
LiB Lithium batteries
BPNN Backpropagation neural network
BBO Biogeography-based optimization
EM Electrochemical model
EIM Electrochemical impedance model
ECM Equivalent circuit model
LMM Linear mobility model
ACMM Arc curve mobility model
HIS Habitat suitability index
SIV Suitability index variables
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