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Abstract: In the present study, the removal of both As(III) and As(V) from aqueous solutions using
synthesized ZnO nanomaterials was achieved. The ZnO nanomaterial was synthesized using a
precipitation technique and characterized using XRD, SEM, and Raman spectroscopy. XRD confirmed
the ZnO nanoparticles were present in the hexagonal wurtzite structure. SEM of the particles
showed they were aggregates of triangular and spherical particles. The average nanoparticle size
was determined to be 62.03 ± 4.06 nm using Scherrer’s analysis of the three largest diffraction peaks.
Raman spectroscopy of the ZnO nanoparticles showed only ZnO peaks, whereas the after-reaction
samples indicated that As(V) was present in both As(V)- and As(III)-reacted samples. The adsorption
of the ions was determined to be pH-independent, and a binding pH of 4 was selected as the pH
for reaction. Batch isotherm studies showed the highest binding capacities occurred at 4 ◦C with
5.83 mg/g and 14.68 mg/g for As(III) and As(V), respectively. Thermodynamic studies indicated
an exothermic reaction occurred and the binding of both As(III) and As(VI) took place through
chemisorption, which was determined by the ∆H values of −47.29 and −63.4 kJ/mol for As(V) and
As(III), respectively. In addition, the change in Gibbs free energy, ∆G, for the reaction confirmed
the exothermic nature of the reaction; the spontaneity of the reaction decreased with increasing
temperature. Results from batch time dependency studies showed the reaction occurred within the
first 60 min of contact time.

Keywords: nanoparticles; ZnO; As(III); As(V); chemisorption

1. Introduction

Arsenic is an element of interest for both environmental and human health as it is a
well-known toxin and carcinogen. The natural sources of arsenic include volcanic eruptions,
mineral dissolution, and forest fires. Anthropogenic activities releasing arsenic into the
environment include smelting/mining activities, burning of fossil fuels, and sulfuric acid
production [1–6].

It is well known that inorganic and methylated As(III) compounds are typically
more toxic than As(V) [7–9]. In addition, inorganic arsenic compounds are known to
be more toxic than organic arsenic compounds [8–13]. After ingestion, soluble arsenic
species can be absorbed, and as a result, As(III) can inhibit sulfhydryl-containing enzymes,
which interrupt enzymatic activity [14]. As(V) is known to compete with phosphate,
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thus inhibiting the formation of adenosine triphosphate and interfering with normal cell
function [3,14]. Acute exposure to high doses of arsenic is known to cause health problems
such as hyperkeratosis, cutaneous malignant tumors, alopecia, peripheral neuropathy,
anemia, and skin cancer [1–3,14,15]. In order to reduce the risk of As exposure, numerous
countries have adopted a 10 µg/L limit as their drinking water standard, while other
countries have maximum As limits at 50 µg/L [2,7,16–19].

The removal of arsenic from aqueous solutions has been shown to be dependent on
the oxidation state, concentration, pH, and ionic strength. Arsenic removal from water has
been achieved using technologies such as membrane technology, adsorption, ion exchange,
coagulation/flocculation, reverse osmosis, electrochemical, and bioremediation [20–29].
However, many of these technologies are ineffective or inefficient, and cost-prohibitive [30].
There has been increased interest in adsorption methods due to their cost and lack of by-
products. Typically, adsorbents can be recycled, and process operation can be flexible [4,22].

Recently, the use of nanosorbents has become of interest due to their high surface area
to volume ratio, the high number of active sites, and strong reactivity. The most studied
nanoparticles to remove As from water include: metal oxides, metallic, bimetallic, zeolites,
ferrite, polymers, activated alumina, and activated carbon [4,22,31]. Various metal oxides
based nanosorbents for arsenic remediation have been prepared, which include Fe2O3,
Fe3O4, Mn3O4, MnFe2O4, and ZnO [4,32–36]. As well, mixed metal oxide materials such
as Fe-Ce, Fe-Mn, Fe-Ti, Ce-Ti, Fe-Zr, Fe-Cu, Mn-Co, and Fe-Cr have been synthesized and
tested for As adsorption [4,32–36].

Singh et al. found that acetate-functionalized ZnO particles effectively removed
arsenic from 2000 ppb to less than 10µg/L [37]. Kataria and Garg studied the adsorption of
Cd(II), Pb(II), As(III), and Se(IV) using ZnO nanoflowers in multi-metal systems using an
adsorption dose of 0.8 g/mL [38]. The removal efficiency was 57% for Cd(II) and 99% for
Pb(II). Cu (II), As(III), and Se(IV) adsorption efficiencies were greater than 75% [38], whereas
Gu et al. found that ZnO nanoparticles removed up to 88.57 mg/g of Cr(III) ions under
optimal reaction conditions [39]. Cantu et al. investigated the binding of As(III) and As(V)
to Fe7S8 and showed a pH-independent binding process and approximately 100% binding
of both ions from pH 3 through pH 6 [40]. Parsons et al. developed Fe3O4, Mn3O4, and
FeMn2O4 nanomaterials for the removal of As(III) and As(VI) from solution [30]. The Fe3O4,
Fe2MnO4, and Mn3O4 showed binding capacities of 0.0323, 0.7182, and 0.0089 mg/g for
As(III), respectively, whereas the binding of As(V) from aqueous solution showed capacities
of 1.575, 2.125, and 0.212 mg/g for the Fe3O4, Fe2MnO4, and Mn3O4, respectively. Luther
et al. investigated the binding of As(III) and As(V) to Fe3O4 and Fe2O3 nanomaterials,
which showed pH-independent binding of both As(III) and As(V) from pH 6–10 [41]. In
addition, the binding capacities after 1 h of contact showed binding capacities of 1.250
and 4.600 mg/g for As(III) and As(V) for Fe2O3. The Fe3O4 nanomaterial showed binding
capacities of 8.196 and 6.711 mg/g for the binding of As(III) and As(V), respectively.

In the present study, ZnO was synthesized through a precipitation method. The syn-
thesized ZnO nanoparticles were characterized using XRD, SEM and Raman spectroscopy
to determine crystallinity, phase, and morphology. In addition, the samples were analyzed
using XRD and Raman spectroscopy after reaction with the As(III) and As(V) ions to deter-
mine if any changes in the material phase or the presence of reaction products could be
observed. Batch studies were performed to determine the effects of pH, temperature, time,
and binding capacity on the As(III) and As(V) binding. The batch isotherm studies, and
time dependency studies were performed to investigate the thermodynamic parameters
of the binding and the time dependency of the binding process. ZnO was selected as the
adsorbent to be investigated because of its properties, especially its cost-effective synthesis.
The favorable synthesis properties did not require the need of surfactants, aqueous solution
chemistry, and nor the need to calcine or convert the product at high temperatures. In fact,
there is a potential for ZnO to be widely used for the removal of As(III) and As(V) from
aqueous solution.
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2. Methods
2.1. Materials

All chemicals were of analytical grade and used without further purification. NaOH,
NaCl, KCl, Zn(NO3)2·6H2O, MgCl2·6H2O, NaNO3, Na2SO4, and Na2HPO4 were obtained
from Fischer Scientific and As2O3, and Na2HAsO4·7H2O were obtained from Alfa Aesar.
The deionized water used in the studies had a resistance of 18 MΩ·cm and was generated
by a Milli-Q water purification system (Millipore, Burlington, MA, USA). As(III) and As(V)
solutions were prepared dissolving either As2O3 or Na2HAsO4·7H2O in 18 MΩ·cm DI
water, respectively.

2.2. Synthesis of ZnO Nanomaterials

The ZnO nanoparticles were synthesized by dissolving Zn(NO3)2 in 18 MΩ cm DI
water and precipitated as the metal hydroxide using NaOH. In brief, 150 mL of 1 molL−1

NaOH solution was added dropwise to 500 mL of 60 mmolL−1 Zn(NO3)2 solution under
continuous stirring. The resulting mixture was heated at 50 ◦C for 2 h resulting in a
milky white solution. The solution was centrifuged at 3000 rpm for 5 min, and the ZnO
nanoparticles were collected. The collected nanoparticles were washed three times with DI
water, and once with acetone. The washing was performed by centrifuging the particles,
followed by resuspension of the nanoparticle in clean solvent. Once the particles were
separated from the solution, they were dried overnight in an oven at 75 ◦C.

2.3. Adsorbent Characterization

ZnO nanoparticle characterization was performed using powder X-Ray Diffraction
(XRD). The ZnO nanomaterial was homogenized by grinding the sample into a fine powder
in a mortar and pestle. The XRD data were collected using a Bruker D2 phaser diffrac-
tometer fitted with a cobalt source (Kα = 1.789Å) and an iron filter. The patterns were
collected from 10 to 80◦ 2θ with a 0.05◦ step and a 1s counting time. The fitting of the
crystal structure was performed using the Le Bail fitting procedure in the Fullprof Suite
software (Version January-2021) and crystallographic data from the literature [42,43]. SEM
data were collected using a Zeiss LEO LS 10 SEM microscope operating at 9 keV and
a 2.5 A current with a working distance of 6.0 mm. The sample preparation for SEM
characterization consisted of sputter coating the samples with a AuPd alloy for 30 s Zeta
potential of the ZnO nanoparticles was measured by a Malvern Zetasizer Nano Series Nano
ZS90 instrument at pH values between 2 and 6. The ZnO NPs were suspended in 18 MΩ
water while the pH of the ZnO aqueous solution was adjusted to the desired pH value
using either dilute HNO3 or NaOH. The NPs were then equilibrated in solution to mimic
the reaction conditions. The Zeta potential measurements were taken using the DTS1070
disposable cells. The RAMAN spectra were recorded using a Rigaku FirstGaurd hand-held
RAMAN spectrometer equipped with a 754 nm laser. The spectra collection consisted of
100 co-additions at a 1000 ms sampling time and recorded from 200 cm−1 to 1000 cm−1 and
the laser power was set to 100 mW.

2.4. ICP-OES Analysis

The ICP-OES analysis of the samples was performed using a Perkin Elmer Optima
8300 ICP-OES (Shelton CT) with the Winlab32 software. The data collection parameters are
shown in Table 1. All calibration curves obtained had correlation coefficients of (R2) 0.99
or better.
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Table 1. Operational parameters for ICP-OES.

Parameter Setting

L 193.696 nm
RF power 1500 W
Nebulizer Gemcone (low flow)

Plasma flow 15 L min−1

Auxiliary flow 0.2 L min−1

Nebulizer flow 0.55 L min−1

Sample flow 1.50 L min−1

Injector 2.0 mm Alumina
Spray chamber Cyclonic
Integration time 20 s

Replicates 3

2.5. pH Studies

The binding of the As(III) and As(V) was performed over a pH range of 2 through 6
using either 300 ppb As(III) or As(V) solutions. The pH adjustment of the As stock solutions
was performed using either dilute NaOH or dilute HCl solutions. The reaction samples
were prepared by adding 4 mL of the pH-adjusted solutions of either As(III) or As(V) to
10 mg of ZnO nanoparticles into 5 mL polyethylene test tubes. Control samples consisted
of only As(III) and As(V) solutions without ZnO nanoparticles. All reaction and control
samples were tested in triplicate for statistical purposes. The reaction and control samples
were equilibrated for one hour at room temperature on a nutating mixer at a constant speed
of 24 rpm. After equilibration, the samples and controls were centrifuged at 3500 rpm for
5 min, and the supernatants were decanted and stored in clean test tubes for analysis using
ICP-OES.

2.6. Adsorption Isotherms

Batch adsorption isotherm studies were performed at the optimum binding pH of pH
4. Stock solutions of either As(III) or As(V) were prepared at concentrations of 3, 30, 100,
300, and 1000 ppm, and pH adjusted to pH 4. The samples were prepared by adding 4 mL
of either As(III) or As(V) solutions to 10 mg of ZnO nanoparticles in a 5 mL polyethylene
test tube. Control samples consisting of only As(III) and As(V) solutions were also prepared
and treated the same as the samples. Both the reaction and control samples were prepared
in triplicate for statistical purposes. All samples were equilibrated on a nutating mixer at a
speed of 24 rpm. The reactions were performed at temperatures of 4, 22, and 45 ◦C. After
equilibration, the samples were centrifuged at 3500 rpm for 5 min, and the supernatants
were decanted and stored for analysis using ICP-OES.

2.7. Time Dependency Studies

Batch studies were performed to determine time dependency of the binding of either
As(III) or As(V) to the synthesized ZnO nanomaterial. Solutions of either 30 ppm of As(III)
or 30 ppm As(V) were prepared at the optimum binding pH of 4.0. The samples were
prepared by adding 4 mL of the pH-adjusted solutions of either As(III) or As(V) to 10 mg
of ZnO in 5 mL polyethylene test tubes. Control samples consisted of only As(III) or As(V)
ions in solution without the ZnO nanoparticles. The reaction and control samples were
performed in triplicate for statistical purposes and were then equilibrated at time intervals
of 15, 30, 60, and 90 min on a nutating mixer at a mixing speed of 24 rpm. Furthermore,
the reactions were performed at temperatures of 4, 22, and 45 ◦C. After equilibration, the
samples were centrifuged at 3500 rpm for 5 min, and the supernatants were decanted and
stored in clean test tubes for analysis using ICP-OES.
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3. Results and Discussion
3.1. X-ray Diffraction

Figure 1 shows the X-ray diffraction pattern collected for the ZnO nanoparticles
prepared by the precipitation technique. The observed diffraction peaks located at 37, 40.05,
42, 51, 67.05, 74.97, and 79◦ were indexed to ZnO and correspond to the 100, 002, 101, 102
and 110 diffraction planes observed in the hexagonal wurtzite structure, respectively [42,44].
The diffraction pattern confirmed the synthesized nanomaterial was ZnO. The diffraction
pattern was fitted using the Le Bail fitting procedure in the Fullprof software, and the fitting
results are shown in Table 2. The fitting showed the ZnO had a hexagonal space group
(P63/mc) with refined lattice parameters of a = 3.245 Å, b = 3.245 Å, c= 5.199 Å with cell
angles of α = β = 90◦, and γ = 120◦, which are in agreement with results reported on ZnO. In
addition, the χ2 value (indicator of goodness of fit) of the fitting was 3.08, which indicated a
good agreement between the data and reported results on the ZnO crystal structure [42,44].
Further analysis of the diffraction data showed that the average crystalline size of the ZnO
nanosorbent was calculated using Scherrer’s equation, as shown below:

d =
0.9λ

BCos 2θ
2

(1)

where d is the diameter or crystallite size, 0.9 is a correction factor for the Gaussian fitting, λ
is the Co Kα = 1.789 Å, B is the Full-Width Half Maximum (FWHM) of the diffraction peak,
cos2θ/2 is the position of the diffraction peak. The average crystallite size was determined
based on the most prominent diffraction peaks: the 100 (27.21 nm), 002 (30.0 nm), and 100
(23.9 nm) diffraction planes, which averaged to 62.0 ± 4.06 nm.
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Figure 1. Powder XRD and Le Bail fitting of the synthesized ZnO nanomaterial.

Table 2. Le Bail fitting results of ZnO nanoparticle sample.

Sample a (◦A) b (◦A) c (◦A) α◦ β◦ γ◦ χ2

ZnOsyn 3.245(8) 3.245(8) 5.199(8) 90.0 90.0 120.0 3.08
ZnOlit 3.2417 3.2417 5.1876 90.0 90.0 120.0

The SEM of the synthesized ZnO nanoparticles is shown in Figure 2. The image
showed that the nanoparticles were clustered and consisted of a mixture of triangular-
shaped platelets and small spherical particles. The observed clustering of the particles,
more than likely, was due to the lack of surfactants used in synthesis. The exclusion of
surfactants aimed at generating the ZnO nanoparticles with a clean surface available for
the binding of the As(III) and As(V) ions.
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3.2. pH Profile Studies

Figure 3 shows the adsorption of As(III) and As(V) over the pH range from 2 to 6
at room temperature. The binding of the As(III) and As(V) was almost pH-independent
across the studied range. A slight decrease in the binding can be observed in Figure 3
with As(III) and As(V) binding at pH 5. However, even though the As(III) binding does
increase again at pH 6, it was still lower than pH 4. Similarly, the binding of the As(V) was
lower at pH 6 than at pH 4. Thus, pH 4 was chosen as the optimal binding pH for further
reactions. The binding of both As(III) and As(V) has been shown to be pH-dependent
when binding to different materials [45–48]. For example, the binding of As(III) to TiO2
nanoparticles has shown pH independence from pH 2 through pH 5, and has been observed
to increase after pH 5 then decrease from pH 6 to 10, whereas the binding of As(V) to
TiO2 nanoparticle has been shown to increase almost linearly from pH 3 through 6.5 and
subsequently decrease from pH 6.5 to pH 10 [45]. Jezequel et al. investigated the binding
of Arsenate from aqueous solution using TiO2 nanoparticles, which showed the highest
binding was observed at a pH of 2 and a linear decrease in binding was observed up to
pH 8 where no binding was observed [46], whereas Feng et al. investigated the binding
of As(III) and As(V) to high surface area Fe3O4 nanoparticles and showed both ions had
high binding at pH 2 [47]. However, the binding decreased with increasing the removal of
As(III) using ZnO nanoparticles. After calcining the particles at 500 ◦C for 3 h in a limited
air supply, the pH study showed a decrease in binding with increasing pH from 2 to 10 [48].
The pH results in the current study are consistent with those reported in the literature for
arsenic binding to other materials [30,49–56]. In addition, pH independence of the binding
of As has been observed with the binding of As(III) and As(V) by Fe7S8 nanoparticles,
MnFe2O4 and Mn3O4, in the pH range of 2–6 [30,40], whereas Fe2O3 and Fe3O4 have shown
pH-independent binding at higher pHs 6 through 10 [41]. The pH-independent behavior
of the binding has been shown to be related to the surface charge of the nanoparticles
and the arsenic species in solution. In the literature, the point of zero charge for ZnO
has been determined to be at pH 9.4, and the isoelectric point has been determined to be
at pH 6.4 [57]. Below the PZC pH 9.2, the nanomaterials have a positive charge, while
above the PZC, the surface of the nanomaterial will become negatively charged. Thus at
a pH below the PZC, the nanoparticles will have a positive charge and attract the arsenic
ions. Above the PZE, the nanoparticles will repulse the As ions. Alternatively, the pH-
independent binding behavior may be due to the relatively low concentration of As and the
high number of active sites on the nanomaterial surface. A high number of surface binding
sites and a low concentration of ions in solution would ensure the complete binding of the
As(III) and As(V) to the nanomaterial surface and would not show a strong dependence
on pH. Furthermore, the lack of surfactant used in the synthesis of the nanoparticles may
have generated nanoparticles with a highly active clean surface for As binding. In the
present study, a nanomaterial that showed low pH dependency has been synthesized
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without the requirement of surfactants or calcination at high temperature. The lack of
calcination and surfactant results in the generation of a more cost-effective adsorbent for
the removal of As(III) and As(V) from aqueous solution. In addition, the low dependence
on pH makes the nanomaterial possibly effective in the treatment of industrial waste as
well as drinking water.
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3.3. Zeta Potential of the ZnO Nanoparticles

Figure 4 shows the Zeta potential of the synthesized non-surface functionalized ZnO
nanoparticles measured in aqueous solution at pH 2 through 6. As can be seen in Figure 4,
the Zeta potential is very and slightly positive and close to neutral from pH 2 through pH
4. At pH 5, the zeta potential starts to become negative, and the negative value increases to
a larger value at pH 6. The low zeta potential indicates the suspension with a low stability
and high aggregation, which is supported by the presence of clustered nanoparticles
observed in the SEM images shown in Figure 2 [58]. The Zeta potential also indicates a
small positive or neutral surface charge present on the nanoparticles up to pH 5 where
the surface charge becomes negative [59]. Uncoated ZnO nanoparticles showed positive
surface charges [59]. The surface charge is reflected in the pH adsorption data for the As(III)
and As(V) adsorption studies, as shown in Figure 3.
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3.4. Particle Characterization after Reaction

The XRD patterns of the ZnO after reacting with either As(III) or As(V) are presented
in Figure 5A,B, respectively. The patterns of the reacted ZnO show the same diffraction
peaks the 100, 002, 101, 102 and 110 at the same position as the unreacted ZnO, indicating
that the As does not influence the crystalline structure after reaction. Furthermore, using
Scherrer’s analysis of the diffraction peaks, the average grain size of the ZnO after reaction
with As(III) was 61.96 nm ± 0.97 and with As(V) was 71.56 nm ± 1.58, whereas the
unreacted ZnO nanoparticles had an average size of 62.03 ± 4.06 nm. The data indicate no
significant change in the ZnO nanoparticle size before and after reaction with As, which
indicates the ZnO nanoparticles are stable. Furthermore, the Le Bail fitting of the ZnO after
reaction with either As(III) or As(V), which is presented in Table 3, shows no change in the
lattice parameters of the ZnO after reaction. The X2 values for the fittings indicate a great
agreement between the current experimental data and those reported in the literature on
the same material. Also, there were no new phases observed in the diffraction patterns.
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Table 3. Le Bail fitting results of ZnO nanoparticles after reaction with As(III) and As(V).

Sample a (◦A) b (◦A) c (◦A) α◦ β◦ γ◦ χ2

As(III)ZnO 3.245(8) 3.245(8) 5.214(8) 90.0 90.0 120.0 3.08
As(V)ZnO 3.261(1) 3.261(1) 5.220(9) 90.0 90.0 120.0 3.35

Figure 6 shows the Raman spectra collected for the ZnO nanoparticles before and after
reaction with As(III) and As(V). The ZnO stretches are identified in red in Figure 6 and
the Identified As-O stretches are shown in black. ZnO vibrations were located at 382 cm−1

(A1(LO)), 333 cm−1 (E1high-E1Low), 438 cm−1 (E2high), 546 cm−1 (2Blow), 576 cm−1 (A1LO)
and 662 cm−1 (TA + LO); these are consistent with the peaks identified in the literature.
The Raman results are consistent with the ZnO spectra in the literature [60–62].
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In the As-O region, two broad weak vibrations were observed centered at 770 cm−1

and 856 cm−1. In several minerals containing As(V), the As-O interaction is observed in the
range 767–778 cm−1 [63–66]; the authors assigned these stretches asymmetric stretching of
the As-O interaction. The As(V) (As-O symmetric stretch) bound to schwertmannite, an
Fe-O-based mineral, which has been observed at 854 cm−1 [67,68]. In the present study, the
stretches at 770 cm−1 and 856 cm−1 are consistent with the literature and were assigned to
the asymmetric As-O stretching and the symmetric As-O stretch, respectively. The spectra
do not show As(III) stretches after binding, signifying that As(III) was oxidized to As(V).
The oxidation of the As(III) to As(V) was not completely unexpected as the reactions were
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performed in air; the As(III) may have oxidized after binding to the ZnO surface. However,
the data confirm that the arsenic was surface-bound to the ZnO.

3.5. Adsorption Isotherms

The adsorption of both As(III) and As(V) ions to the ZnO nanoparticles was observed
to follow the Langmuir isotherm. The linear form of the Langmuir isotherm equation is
given below:

1
qe

=
1

qm
+

1
KaqmCe

(2)

where qe is defined as the removal capacity at any concentration, qm is the maximum
binding capacity, Ce is the equilibrium concentration, and Ka is the Langmuir adsorption
constant. Figure 7 shows the Langmuir isotherm plots for the binding of both As(III) and
As (V) to the ZnO nanomaterial at 4, 22, and 45 ◦C. The isotherm plots had correlation
coefficients (R2) of 0.99 or better. Table 4 shows the binding capacity of ZnO nanoparticles
for the As(III) and As(V) ions at 4, 22, and 45 ◦C. Table 4 shows the binding capacity
of ZnO nanoparticles for the As(III) and As(V) ions at 4, 22, and 45 ◦C. Table 4 shows
the binding capacity of ZnO nanoparticles for the As(III) and As(V) ions at 4, 22, and
45 ◦C. As can be seen in Table 4, the highest binding capacities for As(III) and As(V)
were 5.8 mg/g and 14.68 mg/g, respectively, and were observed at 4 ◦C. At the highest
tested temperature, 45 ◦C, the ZnO showed the lowest binding capacities for both As(III)
and As(V) than at 4.4 and 12.1 mg/g. The lower binding capacities are more than likely
due to the thermodynamics of the reaction, as discussed below, the binding reaction was
exothermic. The lower binding of the As(III) is typical for nanomaterials; in general, As(V)
is more readily adsorbed than As(III) [36,69,70]. Different studies have shown increased
removal of As(III) based on the oxidation of As(III) to As(V) and subsequent adsorption to
nanomaterials. Furthermore, it has also been observed that metal oxides generally have a
higher capacity to remove As(V) than As(III) [27]. Other metal oxide nanomaterial-based
adsorbents have shown high binding capacities for both As(III) and As(V). For example,
Mn3O4 has shown binding capacities in the range of 10–11.5 mg/g [50]. Parsons et al.
showed MnFe2O4 nanomaterials had binding capacities of 0.7 and 2.1 mg/g for As(III)
and As(V) at pH 4, respectively. [30]. Luther et al. showed that As(III) to Fe2O3, and
Fe3O4 had binding capacities of 1.3 and 8.5 mg/g within 1 h of contact at pH above 7.
Luther et al. further showed As(V) had binding capacities of 4.6 and 6.7 mg/g to Fe2O3
and Fe3O4 nanomaterials, respectively [41]. TiO2 has shown binding capacities close to
30 mg/g, which has been shown to be dependent on the TiO2 phase present [56]. ZnO
nanoparticles coated with acetate have shown a binding capacity of 25.9 mg/g [71], while
ZnO embedded in aluminosilicate has been shown a binding capacity of 123.94 mg/g [72].
ZnO nanorods have been found to have a binding capacity up to 52.63 mg/g at pH 7 [73].
The variation in binding capacities may be due to the specific isotherm model used to
determine the binding capacities. For example, Yuvaraja et al. used a Langmuir isotherm
on the ZnO nanorods, and the binding capacity changed dramatically from 52.62 mg/g
with the Temkin isotherm model to 0.00165 mg/g or 1.65 µg/g The binding capacity results
of the current study fall within the range of binding capacities reported in the literature for
metal oxide-based nanomaterials. In fact, the binding capacities for the current study using
ZnO nanomaterials are on the higher end for metal oxide nanoparticles and especially for
non-surface modified nanoparticles. The high binding capacities indicate the ZnO NPs
would result in a material that potentially has long lifetime. A long lifetime, due to the
binding capacity in conjunction with the cost-effective synthesis could reduce the cost of
water treatment.
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Table 4. Binding capacity for As(III) and As(V) to the synthesized ZnO nanomaterial.

Sample Capacity (mg/g)

As(III) 4 ◦C 5.83
As(III) 22 ◦C 5.03
As(III) 45 ◦C 4.44
As(V) 4 ◦C 14.68

As(V) 22 ◦C 12.56
As(V) 45 ◦C 12.09
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Table 5 shows the thermodynamic parameters for the adsorption of As(III) and As(V)
at 4, 22 and 45 ◦C. In addition, Figure 8 shows the thermodynamic plots for the binding of
both As(III) and As(V) to the ZnO nanomaterials. The Gibbs free energy of the process was
determined using the equation below based on the distribution coefficient:

∆G = −RTlnKd (3)

where ∆G is the change in Gibbs free energy, R is the gas constant (8.314 J mol−1 K−1),
T is the temperature in Kelvin, and Kd is the distribution coefficients. The Gibbs free
energy in an equilibrium process can be related to the equilibrium constant for a reaction
or the distribution constant, as shown above. The relationship between ln Kd can be
substituted in the Gibbs free energy equation and be related to ∆H and ∆S, as shown in the
equation below:

lnkd =
∆S
R

− ∆H
RT

(4)

where kd is the distribution coefficient, ∆S is the change in entropy, ∆H is the change in
enthalpy, T is the temperature in Kelvin, and R is the gas constant (8.314 J mol−1 K−1).
The values of enthalpy and entropy changes were calculated from the slope and the
intercept of the plot of ln Kd versus 1/T. Figure 8A shows the thermodynamic plot for
the binding of As(III) to the ZnO, and Figure 8B shows the thermodynamic plot for the
binding of As(V) to ZnO. The calculated thermodynamic data are shown in Table 5; the
enthalpy change for As(III) and As(V) sorption was determined to be −63.44 kJ mol−1 and
−47.29 kJ/mol kJ mol−1, respectively. From the enthalpy data both the As(III) and As(V)
bind to the ZnO through an exothermic reaction, as dictated by the negative sign. The
higher observed enthalpy for the binding of As(III) may be due to the oxidation of the As(III)
in conjunction with the chemisorption process. The oxidation of the As(III) was indicated
in the Raman data, a chemical process may have increased the enthalpy of the reaction.
The Gibbs free energy for the sorption process for both As(III) and As(V) was observed
to be spontaneous at low and medium temperatures and became nonspontaneous at the
highest temperature, 45 ◦C, as can be seen in Table 5. The increase in ∆G with increasing
temperature indicates the binding reaction becomes less favorable for both As(III) and
As(V), indicating the binding is occurring through an exothermic reaction. Exothermic
binding for As(III) and As(V) has been observed for different materials, including Fe7S8,
ZnO, CeO2, CuO nanomaterials, and As(V) binding to red mud [40,51,73–76]. These results
suggest that As(III) and As(V) adsorption onto ZnO nanoparticles is an exothermic process
and proceeds through chemisorption. As(V) ∆H is around −40 kJ/mol and indicates
chemisorption may be the binding mechanism. However, the As(III) enthalpy was very
high at −63.4 kJ/mol, which is well above the accepted 40 k/mol, the maximum energy
value for physisorption. It has been shown in the literature that chemisorption occurs at
enthalpies between 40 and 200 kJ/mol [77–79]. The higher enthalpy for As(III) binding
may also be a reflection of the reaction occurring between As(III) and ZnO, causing the
oxidation of the As(III), as is indicated by the binding shown in the Raman data. The
Raman results for both, the As(III) and As(V) binding to the ZnO after reaction, are shown
in Figure 6 and show that only As(V) is present. The absolute values of enthalpy of binding
for both As(III) and As(V) are comparable to values reported in the literature on other
nanomaterials. For example, Cantu et al. determined that the binding of As(III) and
As(V) had binding enthalpies of 43.5 and 7 kJ mol−1, respectively [40]. Goswami et al.
showed that As(III)showed an enthalpy of binding of 120 kJ mol−1 to copper(II) oxide
nanoparticles [51]. Lui et al. showed As(III) and As(V) binding to magnetite particles,
which had enthalpies of 13.5 and 13.7 kJ/mol, respectively [69], whereas the Gibbs free
energy was in the range of −35 kJ/mol, and the entropy was positive 163 kJ/mol and
154 kJ/mol for the As(V) and As(III), respectively. The binding of As(III) and As(V) to the
magnetite nanoparticles was spontaneous at all temperatures and followed an endothermic
reaction. From the results of the thermodynamics of the binding process in the present
study, As(V) is preferentially bound to the ZnO nanoparticles compared to As(III).
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Table 5. Thermodynamic parameters for binding of As(III) and As(V) to synthesized ZnO nanomaterial.

Sample ∆G (kJmol−1) ∆H (kJ mol−1) ∆S (J mol−1K−1)

As(III) 4 ◦C −5.76
As(III) 22 ◦C −2.60 −63.4 −233.6
As(III) 45 ◦C 1.72
As(V) 4 ◦C −2.04

As(V) 22 ◦C −0.18 −47.29 −164.25
As(V) 45 ◦C 3.52
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3.6. Time Dependency Studies

Figure 9 shows the results of the time dependency for the binding of As(III) and
A(V) to the ZnO nanomaterials at room temperature (22 ◦C). Both, As(III) and As(V)
show increasing binding with increasing time. The As(III) binding at room temperature
shows increasing binding of the As(III) up to 1 h of contact time, and the binding becomes
constant thereafter. Similarly, the As(V) binding to the synthesized ZnO nanomaterial
showed increasing binding up to approximately 60 min and was constant between 60 and
90 min. For both ions, the majority of the binding occurs in the first 15 min of contact and
increases gradually with increasing contact up to 60 min and becomes relatively constant
thereafter. This behavior has been observed in the literature, with the saturation of the
binding sites occurring very quickly. Cantu et al. observed similar behavior for As(III) and
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As(V) binding to F7S8 [40]. The majority of the binding was observed to occur in the first
15 min of contact, which is fast compared to many of the adsorbents where the authors
reported adsorption over more than 24 h of contact time. The binding was fast and high in
comparison to other nanomaterials studied in the literature.
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4. Conclusions

The present study investigated the use of ZnO nanoparticles as an adsorbent for
the treatment of water contaminated with As(III) and As(V). The binding indicated no
pH dependence from 2 to 4 and a slight decrease in the binding at pH 5 and pH 6. The
adsorption experimental results indicated that arsenic removal was best accomplished
for As(V). Batch adsorption studies performed showed that the adsorption of As(III) and
As(V) was rapid. The maximum adsorption of both As(III) and As(V) was observed at
pH 4.0 with percent As removals of 93% and 95% for As(III) and As(V), respectively.
The isotherm studies were determined to fit the Langmuir isotherm model, indicating a
monolayer adsorption of the ions. The data obtained from adsorption isotherms at different
temperatures were used to calculate the thermodynamic parameters ∆G, ∆H, and ∆S of
adsorption. The enthalpy for the adsorption was observed for both As(III) and As(V) was
negative and indicated an exothermic adsorption process. The values of ∆G for As(III)
and As(V) binding were found to be negative at the low and intermediate temperatures,
indicating spontaneous binding. However, positive ∆G were observed at the highest
temperatures, indicating the reaction became nonspontaneous at higher temperatures.
Furthermore, the ∆G data confirmed the adsorption was exothermic. The thermodynamic
data indicated that the reaction occurred through chemisorption for both As(V) and As(III)
ions, based on the ∆H values of −47.29 and −63.4 kJ/mol, respectively. Chemisorption is
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usually characterized by a formation of a bond between the nanomaterial and adsorbate
indicating a very strong bond. The formation of a strong bond would reduce the ability of
As release during its binding back into the solution. In addition, the binding was shown to
occur within the first 60 min and remain constant thereafter.
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