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Abstract: In the modern era, air pollution is one of the most harmful environmental issues on the
local, regional, and global stages. Its negative impacts go far beyond ecosystems and the economy,
harming human health and environmental sustainability. Given these facts, efficient and accurate
modeling and forecasting for the concentration of ozone are vital. Thus, this study explores an
in-depth analysis of forecasting the concentration of ozone by comparing many hybrid combinations
of time series models. To this end, in the first phase, the hourly ozone time series is decomposed into
three new sub-series, including the long-term trend, the seasonal trend, and the stochastic series, by
applying the seasonal trend decomposition method. In the second phase, we forecast every sub-series
with three popular time series models and all their combinations In the final phase, the results of
each sub-series forecast are combined to achieve the results of the final forecast. The proposed hybrid
time series forecasting models were applied to four Metropolitan Lima monitoring stations—ATE,
Campo de Marte, San Borja, and Santa Anita—for the years 2017, 2018, and 2019 in the winter season.
Thus, the combinations of the considered time series models generated 27 combinations for each
sampling station. They demonstrated significant forecasts of the sample based on highly accurate
and efficient descriptive, statistical, and graphic analysis tests, as a lower mean error occurred in the
optimized forecast models compared to baseline models. The most effective hybrid models for the
ATE, Campo de Marte, San Borja, and Santa Anita stations were identified based on their superior
out-of-sample forecast results, as measured by RMSE (4.611, 3.637, 1.495, and 1.969), RMSPE (4.464,
11.846, 1.864, and 15.924), MAE (1.711, 2.356, 1.078, and 1.462), and MAPE (14.862, 20.441, 7.668,
and 76.261) errors. These models significantly outperformed other models due to their lower error
values. In addition, the best models are statistically significant (p < 0.05) and superior to the rest of
the combination models. Furthermore, the final proposed models show significant performance with
the least mean error, which is comparatively better than the considered baseline models. Finally, the
authors also recommend using the proposed hybrid time series combination forecasting models to
predict ozone concentrations in other districts of Lima and other parts of Peru.

Keywords: short-term ozone concentration forecasting; seasonal trend decomposition method; time
series models; hybrid models
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1. Introduction

The stratosphere is the atmospheric layer characterized by the significant presence of
ozone (O3), which benefits all kinds of life on the planet due to the filtering process of solar
ultraviolet radiation that occurs in the environment. Its presence in the biosphere is harmful
to the health of all living beings and the environment because ozone is not only a green-
house gas but also a powerful oxidant that contributes to global warming [1]. In addition,
the impact caused by this atmospheric pollutant on crop production is known [2].

Recently, the atmospheric levels of ozone in the air have increased, affecting more
and more people, especially in the cardiovascular system, causing inflammation, oxidative
stress, and imbalances that have been related to mortality and morbidity [3]. It is important
to develop stricter controls on O3 precursors to mitigate the increased risks of ozone
pollution episodes [4]. Tropospheric ozone monitoring represents a practical tool to analyze
spatiotemporal trends in the behavior of this polluting agent in the air [5]. Thus, accurately
forecasting ozone concentration is crucial to safeguarding vulnerable individuals, such as
children, the elderly, and outdoor workers, from air pollution during hazardous periods
of the day. Ground-level ozone concentrations are of significant concern due to their
toxic agents, which can adversely affect the respiratory systems of people who inhale
high ozone concentrations for extended periods. These adverse health effects can lead to
decreased lung function, chest pain while breathing, coughing, throat infections, congestion,
and worsening symptoms of asthma.

Time series record the observations made in a particular place and are associated with
the evolution over time of a particular variable; observed behavior cannot be replicated
with repeated experiments, and observations are often time-dependent. This information
has allowed the development of traditional deterministic modeling and statistical models.
Although chemical transport models have generally been applied to differentiate emission
sources and meteorological variables to explain short- or long-term ozone fluctuations,
temporal analysis can show spatial and seasonal changes in the distribution of ozone
concentrations [6]. At the same time, statistical models are generated by relational analysis
between factors influencing pollutants, producing powerful statistical prediction equa-
tions [7]. However, when you want to study the behavior in the spatiotemporal distribution
of a pollutant, the problem lies in the variability of pollutant concentrations, which are
strongly influenced by the fluctuations of the emitting sources and the meteorological state—
hourly, daily, seasonal, and annual. Thus, the impact exerted by trends in the behavior of
air pollutants may be beneficial to optimize the performance of modeling [7].

Currently, statistical modeling is evolving, including the management of time series
that deserves to be compared with traditional models, mainly multiple linear regression.
However, it is still necessary to continue exploring new studies to improve the prediction of
reliable models, the reduction of noise through filters, and the organization of the numerical
information of contaminants [7]. Decomposition is a methodology applied to analyze time
series air pollutant data; the decomposition in ensemble empirical mode is counted to
process these non-stationary and nonlinear signals and allows one to gradually separate
the different fluctuation components [8]. Generally, the numerical data of the ozone time
series have various types of patterns, so it is essential to break the database into several
components or sub-classes in such a way that each one is a unique pattern of the data.
Furthermore, the time series for an air pollutant is considered to be additive and may
comprise elements over time [6]. Interrupted time series designs are a powerful tool for
comparing the variation of levels and the trend of results [9].

According to Din [6], the ozone concentration at time t is given by the sum of each
component (from decomposition). One component is given by the “trend” of time in the
time series and is relevant to the persistent decrease or increase in ozone concentration
driven via emission sources or meteorological variables. For its part, the second component,
“seasonality”, describes the fluctuations of the periodic seasons (decomposed), and the
third, fixed by a short-term component, shows the “rest” of the random data once the
first two components have been separated. In addition, other combined decomposition
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methods or structures have been proposed in series and time convolution and long-term
short-memory bidirectional networks [10]. Other models use a non-parametric Theil–Sen
estimator as a robust Kendall [11] line-fit method or locally estimated scatterplot models
for smoothing to filter the data obtained and subsequently decompose the time series
models into trend, seasonal, and residual components of data and then recombine them
appropriately [12]. After the decomposition of the time series into components or sub-
series, the data can be used in standardized time series modeling as linear, nonlinear
autoregressive, or autoregressive moving averages. Linear models such as autoregressive
are difficult to handle with nonlinear and time-varying data [13]. However, the application
of combined auto-correlation function (ACF) and partial autocorrelation function (PACF)
graphs overcomes the limitations of simple techniques by showing the correlation between
the time series and the lags after excluding the contributions from previous lags [14].
Iftikhar et al. [15,16] applied a nonlinear autoregressive model relating a past value and
smoothed functions of the original values of the time series. An autoregressive moving
average was also applied to take into account the errors that make up the model, as well
as linear models of combination for all lag observations and the lag error term. On the other
hand, machine learning models have also been used to forecast ozone levels.For instance,
the researchers in [17] proposed a deep learning model for the prediction of ozone levels in
Aarhus using a grid search technique and implemented it as an accuracy tool for forecasting
ozone levels in smart cities. The ozone concentration in India is predicted [18] using eight
machine learning models, including XGboost, random forest, k-nearest neighbor, support
vector regression, decision tree, Adaboost, linear regression, and bidirectional long-short-
term memory, which achieved the predictive capabilities with a R2 of 0.75 in winter. The
researchers further divided the predicted capabilities in terms of season, and the winter
season was found to be more predictable with 97.3%, post-monsoon 92.8%, monsoon 90.3%,
and summer 88.9%. The authors in [19–21] applied time series, hybrid decomposition,
machine learning, and deep learning models for forecasting ozone concentration in Tehran,
Iran, in 11 municipal districts of Nanjing, China, and 8 out of 35 stations in Turkey.

Peru is a country located in South America in the Southeast Pacific Region, and its
capital, Lima, is no stranger to ozone air pollution. Lima has become a megacity with
more than 10 million inhabitants and severe air pollution problems. Romero et al. [22]
evaluated the impact of meteorological variables on the ozone concentration and other
pollutants present in the air through linear correlations made for data obtained between
2015 and 2018 at eight sampling stations in metropolitan Lima and reported that this
pollutant increased with solar irradiation around 10:00 and 16:00 h, especially in spring,
possibly caused by the interaction of primary NOx and hydrocarbon emissions from vehicle
engines. Carbo-Bustinza et al. [23] instead studied the behavior of ozone in winter using
machine learning algorithms in four stations in the city of Lima and found the highest
critical levels (165.80 µg/m3) in the Ate district (ATE). However, we observed, in general,
a drop in values in the cold season (O3 < 100 µg/m3), similar to another study [24]. At the
same time, there is a need to comprehensively analyze the time series of the most polluted
districts to optimize the prediction of ozone concentration. In this context, this research
aims to propose an improved tool to forecast tropospheric ozone concentration using hybrid
combinations of time series models in four districts of the megacity of Metropolitan Lima
in a very precise way, through an innovative methodology based on the decomposition
of a time series of data and the combination of traditional methods to achieve efficient
predictions. The following are the contributions of this research:

• We improve the efficiency and accuracy of one-hour-ahead ozone concentration fore-
casting using a proposed hybrid combination of time series models based on the
seasonal trend decomposition technique and various standard time series models.

• We apply the seasonal trend decomposition method of the ozone concentration
database in four districts—ATE, Campo de Marte (CDM), San Borja (SB), and Santa
Anita (STA)—with severe episodes of ozone contamination between 2017 and 2019.
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• We evaluate the performance of the proposed hybrid combination of time series
models, by determining five different accuracy mean errors: two relative mean errors,
two absolute mean errors, and one correlation measure, such as root mean square
error, root mean square percentage error, mean absolute error, and mean absolute
percentage error; a statistical test, the Diebold–Mariano test; and a visual evaluation.

• In this study, the results of the final best combination model are compared with the
best model proposed in the literature as well as the considered baseline models and
the comparative results are recorded. Based on these results, the proposed final best
combination model from this work is highly accurate and efficient compared to the
best models reported in the literature.

• We present a methodological proposal applicable to the environmental management
system in order to mitigate ozone pollution aimed at the stakeholders of the national
air quality program.

• Finally, the current work uses only the four district datasets in Lima, Peru. This can
be extended to other districts of Lima, other regions of Peru, and even the world
level to evaluate the performance of the proposed hybrid time series modeling and
forecasting technique.

This article describes the proposed hybrid time series forecasting methodology and
explains its construction step by step in Section 2. The results of the case study for each
district studied are in Section 3. Discussion about the best combination model of this study
versus the standard time series models is detailed in Section 4, and the conclusions, along
with limitations and future challenges, are presented in Section 5.

2. The Proposed Hybrid Time Series Forecasting Methodology

Before starting the modeling, it often makes sense to prepare the data. The goal of
preprocessing is usually to simplify the modeling of the data. To do this, the database
is sorted, classified, and analyzed for each monitoring station, taking into account the
winter period of the city, which runs from 21 June to 22 September, for ozone. From 2017
to 2019, four monitoring stations located at strategic points in the capital of Lima were
considered. It should be noted that the number of monitoring stations in the capital of
Lima is ten; however, four were selected due to a lack of data in the registry. The hourly
ozone concentrations were measured with a Teledyne analyzer (an instrument with about
15 sensing technologies used in the monitoring and manufacturing of gas, liquid analy-
sis, and medical fields). Analyzer operations include zero and span testing, calibration,
and leak detection. Data are transmitted by telemetry to SENAMHI (National Meteorology
and Hydrology Service of Peru) for validation after correcting zeros, duplicates, and/or
anomalies. Similarly, SENAMHI has a systematic network of stations that normally and
automatically monitor and report the variables studied to a processing center. These sta-
tions use high-quality instruments and sensors to measure temperature, relative humidity,
wind speed, and direction on an hourly scale. In addition, an inductive algorithm called
Multiple Imputation by Chained Equations was applied. This algorithm is based on a
fully conditional specification, where each incomplete variable is specified by a separate
model [25]. This performs multiple assignments to replace missing values in a dataset,
in this case, for hourly rate records details (see Table 1).

Table 1. This table is based on 6768 observations taken throughout the winter season encompassing
three years (2017, 2018, and 2019). It includes the percentage of imputation for each monitoring site.

Station ATE CDM SB STA

Total hours 6768 6768 6768 6768
Available hours 6654 6634 6614 6613
Imputed hours 114 134 154 155

Imputed% 1.68% 1.98% 2.27% 2.29%
Note: Campo de Marte (CDM), San Borja (SB), and Santa Anita (STA).
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After obtaining the imputed ozone time series (free from missing values), we then
proceed with the imputed ozone series and achieve a one-hour-ahead ozone concentration
using the proposed hybrid combination of time series models. As explained previously,
the hourly time series of ozone contains specific properties, such as a nonlinear long-run
trend, an hourly cycle, and a different mean and variance. Considering these particular
features in the model improves forecast accuracy significantly. To get these results, the ozone
concentration in time series (Cn) is divided into three new sub-series: the first is a long-
run trend (ln), the second is a seasonal series (hn), and the third is a residual (rn) series.
The mathematical description of the decomposed subsequence is given by

Cn = ln + hn + rn (1)

however, these sub-series are obtained using the seasonal trend decomposition method
described in the following subsection.

2.1. Seasonal Trend Decomposition Method

Cleveland et al. [26] proposed the decomposition technique where a seasonal time
series model is split into three components of trend, seasonal, and stochastic. Seasonal
trend decomposition (STLD) uses losses to decompose the seasonal component of a time
series into other three components, including seasonal, trend, and stochastic. In particular,
the steps included in STLD are: first de-trending; second cyclic smoothing of a sub-sequence,
which creates the sequence of each seasonal component and smooths them individually;
third, the regular sub-string is smoothed by a low-pass filter, which recombines and smooths
sub-strings; fourth, we clean up the season series; fifth, the seasonal component computed
in the previous step is used to de-trend the original series, and sixth, the seasonal sequence
smoothing is used to get the trend component. To graphically explore the performance
of the STLD method described above, the decomposed sub-series are shown in Figure 1.
In each sub-figure (a to d) over a year (only winter season), the top panel indicates the
long-term trend (ln), the seasonal component is shown in the middle panel (hn), and the
residual component is presented in the bottom panel (rn). Hence, the STLD technique was
applied to decompose (Cn) to properly extract the long-term trend and hourly cycle in the
ozone concentration time series. Moreover, the considered decomposition method extracts
the specific features in all four station ozone concentration time series very well.
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Figure 1. Cont.
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Figure 1. Ozone concentration in the metropolitan area of Lima (µg/m3): the hourly ozone concen-
tration of the decomposed time series by the STLD method; ATE (a), Campo de Marte (b), San Borja
(c), and Santa Anita (d), in each sub-figure, the top panel shows the long-run trend (ln), the middle
shows the seasonal (hn) component, and the bottom shows the residual (rn) component over a year.

2.2. Modeling the Decomposed Sub-Series

Once the sub-series are obtained from the hourly ozone concentration time series using
the STL decomposition technique, the extracted sub-series are fit by applying the three
considered standard time series models, including linear autoregressive (AR), nonlinear
autoregressive (NLAR), and autoregressive moving averages (ARMA) [27,28]. These three
models are explained in the following subsections.

2.2.1. Autoregressive Model

The autoregressive model (AR) model uses a linear combination of x lagged observa-
tions of Cn to explain the short-term dynamics of Cn [29] and can be expressed as

Cn = I + ξ1Cn−1 + ξ2Cn−2 + .... + ξxCn−x + εn, (2)

where ξi (i = 1, 2, . . . , r) are the parameters of AR model and εm denotes the white noise
process. In the present study, the maximum likelihood method is used for parameter
estimation. The lags 1, 2, 3, 4, and 5 were included in the model due to their significant
results after the plotting of autocorrelation function (ACF) and partial autocorrelation
function (PACF) for the series.

2.2.2. Nonlinear Autoregressive Model

The nonlinear autoregressive model (NLAR) is the additive counterpart of the AR
model, in which there is no specific linear form between zn and its corresponding lag
values [30]. Mathematically, it can be expressed as

Cn = w1(Cn−1) + w2(Cn−2) + . . . + wx(Cn−x) + εn, (3)

where wi represents each lag value, and smoothing function Cn expresses the relationship
between Cn. In this study, the function wi is described by a cubic regression spline, and
lags 1, 2, 3, 4, and 5 are used for NLAR modeling.

2.2.3. Autoregressive Moving Average Model

The autoregressive moving average (ARMA) model includes both error terms and
lagged values of the time series. In this work, the sub-series are modeled with a linear
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combination of x lagged values and delayed error terms [31]. Mathematically, the model
equation can be expressed as

Cn = µ + ξ1Cn−1 + ξ2Cn−2 + ... + ξxCn−x + εn + ψ1εn−1 + ψ2εn−2 + ... + ϕεn−s, (4)

where µ is the intercept, ξi (i = 1, 2, . . . , x) and ψj (j = 1, 2, . . . , s) are the parameters for
the MA and AR models, respectively, and εn ∼ N(0, σ2

ε ). In this work, the descriptive and
graphical analysis indicates that, in the MA part, the first two lags are significant, whereas
in the AR part, only lags 1, 2, 3, 4, and 5 are significant.

In this research study, each combined model is denoted with the STLD method by
lnSTLDhn

rn , where the ln in the top left corner represent the long-run component/sub-series,
the hn in the top right indicates the seasonal component/sub-series, and the residual
component/sub-series is represented in the bottom right by rn. In the forecasting models,
we assign the codes “a”, “b”, and “c” to the autoregressive, the nonlinear autoregressive,
and the autoregressive moving average models, respectively. For example, aSTLDb

c de-
scribes the estimate of the long-term trend (ln) with AR model, the seasonal series (hn)
estimated with the NLAR model, and the residual series (rn) estimated by using ARMA.
The individual forecast models are combined to obtain the final one-hour-ahead forecasts
of ozone concentration.

Ĉn+1 =
(
l̂n+1 + ĥn+1 + r̂n+1

)
(5)

2.3. Accuracy Measures

In order to check the performance of the forecasting models in previous studies,
many researchers used various performance measures and statistical tests [32–35]. Hence,
in this study, for model evaluation, first, we used five accuracy mean errors: two relative
mean errors, two absolute mean errors, and one correlation measure for observed versus
forecasted values, such as root mean square error (RMSE), root mean square percentage
error (RMSPE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
The mathematical formula for accuracy means errors are expressed as

RMSE =

√
1
n

n

∑
i=1

(Ci − Ĉi)2, (6)

RMSPE =

√
1
n

n

∑
i=1

(
(Ci − Ĉi)2

Ci

)
× 100, (7)

MAE =
1
n

n

∑
i=1

(
|Ci − Ĉi|

)
, (8)

MAPE =
1
n

n

∑
i=1

(
|Ci − Ĉi|
|Ci|

)
× 100, (9)

CC = correlation
(
Ci, Ĉi

)
. (10)

Here, the observed value is Ci of the time series, and Ĉi represent the forecasted ozone
concentration value of the ith observation (i = 1, 2, . . ., n), with the size of n in the testing set.
Second, the Diebold and Mariano (DM) test [36] was conducted to test the significance of
the differences among the performance of the forecasting models. The DM test is a broadly
used statistical test for the comparison of forecasts extracted from various models [37–39].
To understand it, consider two forecasts, Ĉ1n and Ĉ2n, that are available for the time series
Cn for n = 1, . . . , N. The associated forecast errors are e1n = Cn − Ĉ1n and e2n = Cn − Ĉ2n.
Let the loss associated with forecast error {ein}2

i=1 be L(ein). For example, the absolute loss
in time n would be L(ein) = |ein|, and the differential loss between forecast 1 and forecast
2 for time t is then wn = L(e1n)− L(e2n). The null hypothesis of equal forecast accuracy
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for two forecasts is E[wn] = 0. The DM test needs the differential loss to be covariance
stationary, i.e.,

E[wn] = µ, ∀ n (11)

cov(wn −wn−τ) = γ(τ), ∀ n (12)

var(wn) = σw, 0 < σw < ∞ (13)

Under these assumptions, the DM test of equal forecast accuracy is

DM =
w̄
σ̂w̄

d−→ N(0, 1)

where w̄ = 1
N ∑N

n=1 wn is the differential loss of the sample mean, and σ̂w̄ is a consistent
estimate of standard error wn. Finally, we verify the superiority of the proposed hybrid
combination of time series forecasting models using various figures, such as the box plot,
line plot, bar plot, and dot plot in this work. To conclude this section, the design of
the proposed hybrid combination of time series modeling and forecasting technique is
presented in Figure 2.

Ozone hourly
Time Series

Decomposed
STL Method

HourlyTrend Residual

Time Series Method
(AR, NPAR, ARMA)

Combined
Forecast

Evaluation Criteria

Graphical
Analysis

Accuracy
Measures

The DM
test

Final best Model

Figure 2. A flowchart of the proposed forecasting methodology.
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3. Case Study Results

This work uses hourly ozone concentration datasets from four monitoring stations:
ATE, CDM, SB, and Santa Anita, in Metropolitan Lima, for the duration of three consecutive
years: 2017, 2018, and 2019. Within each year, only winter days are considered. Therefore,
there are 6768 data points for one station. The graphic presentation of all four stations’
hourly time series can be seen in Figure 3. The descriptive statistics and non-stationary
statistics (augmented Dickey–Fuller (ADF) [40] test) for all four stations’ imputed hourly
ozone time series and the log imputed hourly ozone time series are listed in Table 2. Hence,
descriptive metrics are a collection of methods for summarising and describing the key
characteristics of a dataset, such as its central tendency, variability, and distribution. These
statistics give an overview of the data and aid in determining the presence of patterns
and linkages. It can be seen from Table 2 that the clear effect of the log and without log
time series is in terms of all descriptive statistics, especially the variance and standard
deviation stabilization. To conclude, the log-filtered series has the least descriptive statistic
values. In addition to the above, we check the unit root issue for all four stations’ imputed
hourly ozone time series and the log imputed hourly ozone time series statistically by the
ADF test. The results (statistic values), listed in Table 2, suggest that both the log-filtered
imputed hourly ozone time series and the log-imputed hourly ozone time series have a
higher negative statistic value, which indicates that the series is stationary. Therefore, once
the database addresses all the essential treatments, we proceed further, and for forecasting
and model estimation purposes, the data are divided into two parts: a training part (for
model fit) and a testing part (for out-of-sample forecast). The training part contains the data
for 5424 h, which is about 80% of the overall data, and 1344 h are used as the out-of-sample
(testing).
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Figure 3. Ozone concentration in the metropolitan area of Lima (µg/m3): the hourly ozone concen-
tration time series for ATE (1st panel), Campo de Marte (2nd panel), San Borja (3rd panel), and Santa
Anita (4th panel).

To obtain the forecast for ozone concentration one step ahead of an hour using the
proposed hybrid methodology time series forecasting presented in Section 2, the given steps
need to be followed: first, the STL method of decomposition was used to get a long-run
trend (ln), a seasonal (hn), and the residual (rn) of the time sub-series. Second, the previously
explained three famous models of times series were used for each sub-series. Therefore,
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the forecast of an hour ahead was obtained by using the rolling window technique for 1344 h
and the models were estimated accordingly. Finally, the ozone concentration forecasts
were achieved through Equation (5). The performance measures, including RMSE, RMSPE,
MAE, MAPE, and CC, are then used for the evaluation and comparative performance of
the models. Therefore, the following subsections detail the results from four monitoring
stations: Ate, Campo de Marte, San Borja, and Santa Anita, all located in Metropolitan Lima.

Metropolitan Lima Stations

This subsection elaborates on the results and discussion about the Metropolitan Lima
station. First, the hourly time series of the ATE, the CDM, the SB, and the SBA station’s
ozone concentration (Cn) are decomposed into a long-run trend (ln), seasonal (hn) and a
residual sub-series (rn); the STL decomposition method was implemented in this study.
For obtaining the forecasts of the sub-series, three univariate time series models were used.
Ensemble models for sub-series forecast of (3ln × 3hn × 3rn = 27) different combinations
for all four considered monitoring stations were used. For these 27 different combination
models, the performance measures (RMSE, RMSPE, MAE, MAPE, and CC) for one hour
ahead of out-of-sample forecasts for the ATE, the CDM, the SB, and the SBA stations are
listed in Table 3.

In the first attempt, the case study results of the ATE station accuracy performance
measures (RMSE, RMSPE, MAE, MAPE, and CC) show that the aSTLDb

c hybrid combina-
tion model produces the best forecasts compared to all other possible hybrid combinations
of time series models. The aSTLDb

c is the best forecasting model, which produced 4.611,
4.464, 1.711, 14.862, and 0.949 for RMSE, RMSPE, MAE, MAPE, and CC, respectively. How-
ever, the cSTLDb

c (4.636, 4.480, 1.704, 14.985, 0.948), cSTLDb
b (5.601, 4.817, 1.882, 16.179,

0.924), and aSTLDb
b (5.622, 4.906, 1.871, 16.081, 0.923) models produced the second, third,

and fourth best results. Similarly, in the second attempt, the case study results of the CDM
station and the results of the performance accuracy measures show that the bSTLDc

c model
yields better forecasts compared to all other possible hybrid combination models. The best
forecasting model, cSTLDc

c, produced 3.637, 11.846, 2.356, 20.441, and 0.978 for RMSE,
RMSPE, MAE, MAPE, and CC, respectively. However, the cSTLDb

c (3.762, 11.689, 2.464,
20.847, 0.976), aSTLDc

c (3.746, 11.68, 2.458, 20.882, 0.976), and cSTLDb
c (3.794, 11.906, 2.514,

21.323) models produced the second, third, and fourth best results. In the same way, in the
third attempt, the case study results of the SB station and the results of the performance
accuracy measures show that the bSTLDb

c model yields better forecasts compared to all
other possible combination models. The best forecasting model is bSTLDb

c , which gives
outcomes of 1.495, 1.864, 1.078, 7.668, and 0.989 for RMSE, RMSPE, MAE, MAPE, and CC,
respectively. However, the cSTLDb

c (1.559, 1.568, 1.136, 7.897, and 0.987), aSTLDb
c (1.535,

1.644, 1.118, 7.793, and 0.987), and bSTLDc
c (1.721, 2.021, 1.301, 9.293, and 0.985) models

produced the second, third, and fourth best results. Finally, in the fourth attempt, the case
study results of the SB station and the results of the performance accuracy measures show
that the cSTLDb

c model yields better forecasts compared to all other possible combina-
tion models. The best forecasting model is cSTLDb

c , which gives outputs of 1.969, 15.924,
1.462, 76.261, and 0.989 for RMSE, RMSPE, MAE, MAPE, and CC, respectively. However,
the cSTLDc

c (2.141, 19.925, 1.605, 88.958, and 0.988), cSTLDa
c (2.143, 19.669, 1.603, 89.367,

and 0.988), and cSTLDb
b (3.190, 21.490, 2.298, 95.063, and 0.972) models produced the

second, third, and fourth best results.
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Table 2. This table contains descriptive statistics for the time series of ozone concentration and the logarithmic time series of the ozone concentration for all
considered monitoring stations.

Measure Min Q1 Median Mean Mode Var S.D Skewness Kurtosis Q3 Max ADF (Statistic)

ATE 0.80 5.50 8.50 28.36 5.20 1606.08 40.08 1.89 2.30 29.30 165.80 −8.61
log(ATE) −0.22 1.70 2.14 2.55 1.65 1.50 1.23 0.49 −0.54 3.38 5.11 −8.70

CDM 0.80 8.98 24.50 28.13 1.00 454.02 21.31 0.53 −0.67 44.03 117.10 −6.03
log(CDM) −0.22 2.19 3.20 2.86 0.00 1.37 1.17 −0.89 −0.19 3.78 4.76 −6.53

SB 0.20 8.30 15.10 17.09 6.50 122.05 11.05 0.83 0.51 24.00 83.90 −13.02
log(SB) −1.61 2.12 2.71 2.56 1.87 0.78 0.88 −1.46 3.38 3.18 4.43 −10.35

STA 0.10 1.80 6.20 10.56 0.40 149.09 12.21 1.94 5.54 14.80 152.60 −16.17
log(STA) −2.30 0.59 1.82 1.59 −0.92 2.02 1.42 −0.44 −0.61 2.69 5.03 −14.38

Table 3. Ozone concentration in four Metropolitan Lima stations (µg/m3): out-of-sample one-hour ahead mean forecast error for all models combined with the STL
decomposition method.

Station ATE Campo de Marte San Borja Santa Anita

S.No Models RMSE RMSPE MAE MAPE CC RMSE RMSPE MAE MAPE CC RMSE RMSPE MAE MAPE CC RMSE RMSPE MAE MAPE CC

1 aSTLDa
a 5.529 5.414 2.209 20.827 0.932 5.073 16.53 3.329 25.735 0.957 2.115 2.600 1.587 11.217 0.975 5.279 40.464 3.958 196.406 0.916

2 aSTLDa
b 5.699 4.828 2.076 18.005 0.921 5.145 16.406 3.354 24.908 0.955 2.081 2.417 1.547 10.817 0.976 5.338 40.070 3.959 188.568 0.913

3 aSTLDa
c 4.675 4.628 1.913 18.257 0.947 3.993 12.117 2.719 22.96 0.973 1.818 1.854 1.376 9.768 0.982 3.958 33.264 2.965 158.543 0.954

4 aSTLDb
a 5.410 4.976 1.950 17.562 0.937 4.889 16.474 3.136 25.196 0.96 1.974 2.497 1.448 10.279 0.979 5.224 36.786 3.878 179.823 0.917

5 aSTLDb
b 5.622 4.906 1.871 16.081 0.923 4.921 16.336 3.108 24.118 0.959 1.973 2.333 1.439 10.174 0.979 5.310 36.972 3.907 172.380 0.914

6 aSTLDb
c 4.611 4.464 1.711 14.862 0.949 3.774 11.89 2.504 21.293 0.976 1.535 1.644 1.118 7.793 0.987 3.909 30.357 2.937 148.290 0.955

7 aSTLDc
a 5.529 5.414 2.209 20.827 0.932 4.717 16.474 2.848 26.253 0.963 2.115 2.600 1.587 11.217 0.975 5.277 40.431 3.959 197.407 0.916

8 aSTLDc
b 5.699 4.828 2.076 18.005 0.921 4.685 16.271 2.764 24.623 0.963 2.081 2.417 1.547 10.817 0.976 5.337 40.071 3.963 190.219 0.913

9 aSTLDc
c 4.675 4.628 1.913 18.258 0.947 3.746 11.68 2.458 20.882 0.976 1.818 1.854 1.376 9.767 0.982 3.958 33.365 2.970 159.531 0.954

10 bSTLDa
a 5.607 5.313 2.277 21.015 0.933 5.485 16.957 3.697 26.817 0.949 2.213 2.872 1.664 11.793 0.974 5.319 41.263 3.977 199.487 0.915

11 bSTLDa
b 5.730 4.845 2.067 17.830 0.922 5.579 16.845 3.776 26.481 0.947 2.231 2.711 1.680 11.819 0.973 5.375 40.769 3.979 191.434 0.912

12 bSTLDa
c 4.709 4.683 2.033 19.601 0.947 4.187 12.464 2.984 24.15 0.971 1.721 2.021 1.301 9.293 0.985 3.991 33.742 2.979 160.368 0.953

13 bSTLDb
a 5.509 4.895 2.047 17.770 0.937 5.247 16.859 3.458 26.089 0.954 2.132 2.803 1.597 11.384 0.976 5.257 37.440 3.894 182.865 0.916

14 bSTLDb
b 5.672 4.951 1.909 16.143 0.924 5.305 16.733 3.507 25.446 0.952 2.182 2.661 1.643 11.671 0.975 5.339 37.506 3.927 175.424 0.913

15 bSTLDb
c 4.669 4.552 1.893 16.799 0.949 3.886 12.183 2.687 22.163 0.975 1.495 1.864 1.078 7.668 0.989 3.933 30.607 2.941 148.480 0.954

16 bSTLDc
a 5.607 5.313 2.277 21.015 0.933 4.921 16.764 2.979 26.353 0.959 2.213 2.872 1.664 11.793 0.974 5.317 41.231 3.978 200.433 0.915

17 bSTLDc
b 5.730 4.845 2.067 17.830 0.922 4.921 16.575 2.995 25.119 0.959 2.231 2.711 1.680 11.820 0.973 5.374 40.771 3.984 193.141 0.912

18 bSTLDc
c 4.709 4.683 2.033 19.601 0.947 3.637 11.846 2.356 20.441 0.978 1.721 2.021 1.301 9.293 0.985 3.991 33.843 2.985 161.576 0.953

19 cSTLDa
a 5.545 5.581 2.197 20.797 0.932 5.092 16.544 3.34 25.732 0.956 2.124 2.506 1.606 11.322 0.975 3.267 25.624 2.460 125.732 0.973

20 cSTLDa
b 5.678 4.753 2.081 17.964 0.922 5.166 16.42 3.363 24.898 0.955 2.075 2.316 1.554 10.821 0.976 3.289 25.472 2.435 117.338 0.971

21 cSTLDa
c 4.700 4.659 1.900 18.266 0.946 4.013 12.134 2.73 22.965 0.973 1.858 1.807 1.421 10.163 0.981 2.143 19.669 1.603 89.367 0.988

22 cSTLDb
a 5.427 5.143 1.940 17.535 0.936 4.909 16.487 3.146 25.199 0.96 1.965 2.384 1.441 10.090 0.979 3.125 20.593 2.277 99.420 0.975

23 cSTLDb
b 5.601 4.817 1.882 16.179 0.924 4.942 16.35 3.118 24.128 0.959 1.947 2.212 1.415 9.869 0.979 3.190 21.490 2.298 95.063 0.972

24 cSTLDb
c 4.636 4.480 1.704 14.985 0.948 3.794 11.906 2.514 21.323 0.976 1.559 1.568 1.136 7.897 0.987 1.969 15.924 1.462 76.261 0.989

25 cSTLDc
a 5.545 5.581 2.197 20.797 0.932 4.734 16.481 2.855 26.204 0.962 2.124 2.506 1.606 11.322 0.975 3.262 25.637 2.460 126.306 0.973

26 cSTLDc
b 5.678 4.753 2.081 17.963 0.922 4.704 16.28 2.771 24.576 0.963 2.075 2.316 1.554 10.821 0.976 3.286 25.540 2.432 116.842 0.971

27 cSTLDc
c 4.700 4.659 1.900 18.267 0.946 3.762 11.689 2.464 20.847 0.976 1.858 1.807 1.421 10.163 0.981 2.141 19.925 1.605 88.958 0.988
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From all twenty-seven models, in each monitoring station, the best four hybrid com-
bination models are selected for comparison and compared with other models in each
case. The outcome of all these best hybrid combination models is tabulated in Table 4.
For example, in the case of the ATE station, based on the performance accuracy measure
findings, it is evident that the aSTLDb

c give the least values (RMSE = 4.611, RMSPE = 4.464,
MAE = 1.711, MAPE = 14.862, and CC = 0.949). Therefore, it is concluded that the aSTLDb

c
is the best model among the best models as well as all twenty-seven models. In the same
way, in the case of the CDM station, from Table 4, it is confirmed that the bSTLDc

c pro-
duced the smallest values (RMSE = 3.637, RMSPE = 11.846, MAE = 2.356, MAPE = 20.441,
and CC = 0.978). Hence, it is concluded that the bSTLDc

c is the best model among the best
models as well as all twenty-seven models. However, in the case of the SB station results, it
is evident that the cSTLDb

c produced the smallest values (RMSE=1.969, RMSPE = 15.924,
MAE = 1.462, MAPE = 76.261, and CC = 0.989) within the final best hybrid combination
models. Thus, it is concluded that the cSTLDb

c is the best hybrid combination model among
the best models as well as all twenty-seven models. Likewise, within the best hybrid
combination model outcomes from the STA stations, the bSTLDb

c produced the smallest
values (RMSE = 1.495, RMSPE = 1.864, MAE = 1.078, MAPE = 7.668, and CC = 0.989). Based
on these results, it is concluded that the bSTLDb

c is the best model among the best models
as well as all twenty-seven models.

Table 4. Ozone concentration in four Metropolitan Lima stations (µg/m3): mean forecast error of
one-hour-ahead post-sample for the best four models among all twenty-seven models.

ATE Station

Models RMSE RMSPE MAE MAPE CC
aSTLDb

c 4.611 4.464 1.711 14.862 0.949
cSTLDb

c 4.636 4.480 1.704 14.985 0.948
cSTLDb

b 5.601 4.817 1.882 16.179 0.924
aSTLDb

b 5.622 4.906 1.871 16.081 0.923

Campo de Marte Station

Models RMSE RMSPE MAE MAPE CC
bSTLDc

c 3.637 11.846 2.356 20.441 0.978
cSTLDc

c 3.762 11.689 2.464 20.847 0.976
aSTLDc

c 3.746 11.68 2.458 20.882 0.976
cSTLDb

c 3.794 11.906 2.514 21.323 0.976

San Borja Station

Models RMSE RMSPE MAE MAPE CC
bSTLDb

c 1.495 1.864 1.078 7.668 0.989
cSTLDc

c 1.559 1.568 1.136 7.897 0.987
aSTLDb

c 1.535 1.644 1.118 7.793 0.987
bSTLDc

c 1.721 2.021 1.301 9.293 0.985

Santa Anita Station

Models RMSE RMSPE MAE MAPE CC
cSTLDb

c 1.969 15.924 1.462 76.261 0.989
cSTLDc

c 2.141 19.925 1.605 88.958 0.988
cSTLDa

c 2.143 19.669 1.603 89.367 0.988
cSTLDb

b 3.190 21.490 2.298 95.063 0.972

To confirm the dominance of models for all monitoring stations (the ATE, the CDM,
the SB, and the STA) listed in Table 4, in this work, we performed the DM test on each pair
of models. The null hypothesis is that the two models on the columns and rows are equally
accurate, and the alternative hypothesis is that the model on the columns is more accurate
than the model on the rows (using the loss-squared function). The results (p-values) of the
DM test are given in Table 5 for all four stations (ATE, CDM, SB, and STA) of Metropolitan
Lima. The results of the ATE station show that the final best (aSTLDb

c ) model within all
four best models is statistically superior to the other best combination models at the 5%
level of significance. However, in the CDM, the SB, and the STA stations, the final best
combination models, the (bSTLDc

c), the (bSTLDb
c ), and (cSTLDb

c ), are statistically superior
to the other best combination models at the 5% level of significance.
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Once the proposed hybrid time series combination models’ performance was eval-
uated by accuracy performance measures (RMSPE, RMSE, MAE, MAPE, and CC) and a
statistical test (the DM test), we then processed the models for graphic analysis. For in-
stance, a graphical representation of mean errors (RMSE, RMSPE, MAE, and MAPE) for
all twenty-seven models is shown in Figure 4a for the ATE station, Figure 4b for the CDM
station, Figure 4c for the SB station, and Figure 4d for the STA station. From Figure 4a–d,
we can see that within all twenty-seven models, the cSTLDb

c model in the ATE station,
the cSTLDb

c model in the CDM station, the cSTLDb
c model in the SB station, the cSTLDb

c
model in the STA station produce the highest accuracy measures (RMSE, RMSPE, MAE,
and MAPE) in comparison to the rest of all combination models. On the other hand, from all
twenty-seven models in each monitoring station, the best four hybrid combination models
are selected for comparison and compared with other models in each station. The results of
all these best hybrid combination models are plotted in Figure 5. For example, see the ATE
station in Figure 5a, the CDM station in Figure 5b, the SB station in Figure 5c, and the STA
station in Figure 5d It can be observed from these plots that the aSTLDb

c , aSTLDb
c , and

aSTLDb
c show the least mean errors, respectively. In addition to the above, we plot the

scatter diagrams for each station using their respective best model, which were obtained
previously. For instance, Figure 6 displays the scatter plots for all considered monitoring
stations. This figure showed that the best model produces greater correlation coefficient
values, and it indicates that the correlation between forecast and actual ozone concentration
values is highly significant. In the same way, the forecasted and observed values for the
supermodel in each monitoring station are plotted in Figure 7. In Figure 7, forecasts of the
best models follow the observed concentration of ozone very closely; from this, we can
conclude that the supermodel in each considered station has accurate and efficient forecasts.
Thus, from the descriptive statistical analysis, tests, and graphical results, we can conclude
that the proposed hybrid combination of time series models is highly efficient and accurate
in forecasting hourly ozone concentration.

Table 5. Ozone concentration in four Metropolitan Lima stations (µg/m3): results (p-value) of the
DM test for the best four models given in Table 4.

ATE Station

Models aSTLDb
c

cSTLDc
c

cSTLDb
c

aSTLDb
b

aSTLDb
c - 0.229 0.988 0.992

cSTLDc
c 0.771 - 0.991 0.993

cSTLDb
b 0.012 0.009 - 0.332

aSTLDb
b 0.008 0.007 0.668 -

Campo de Marte Station

Models bSTLDc
c

cSTLDc
c

aSTLDc
c

cSTLDb
c

bSTLDc
c - 0.965 0.944 0.963

cSTLDc
c 0.036 - 0.000 0.716

aSTLDc
c 0.056 1.000 - 0.806

cSTLDb
c 0.037 0.284 0.194 -

San Borja Station

Models bSTLDb
c

cSTLDb
c

aSTLDb
c

bSTLDc
c

bSTLDb
c - 0.989 0.945 1.000

cSTLDb
c 0.011 - 0.005 1.000

aSTLDb
c 0.055 0.996 - 1.000

bSTLDc
c 0.000 0.000 0.000 -

Santa Anita Station

Models bSTLDb
c

cSTLDb
c

aSTLDb
c

bSTLDc
c

bSTLDb
c - 1.000 1.000 1.000

cSTLDb
c 0.000 - 0.704 1.000

aSTLDb
c 0.000 0.296 - 1.000

bSTLDc
c 0.000 0.000 0.000 -
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Figure 4. Ozone concentration (µg/m3) in four Metropolitan Lima stations: (a) ATE, (b) Campo de
Marte, (c) San Borja, and (d) Santa Anita; the RMSPE (1st panel), MAPE (2nd panel), MAE (3rd panel),
and RMSE (4th panel) for all twenty-seven combination models using the proposed forecasting
methodology.
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Figure 5. Ozone concentration in four Metropolitan Lima stations (µg/m3): (a) Ate, (b) Campo de
Marte, (c) San Borja, and (d) Santa Anita evaluation measures; the barplot for the best four models
among all twenty-seven models.
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c ), (2nd) Campo de Marte
(bSTLDc

c), (3rd), San Borja (bSTLDb
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c ).
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Figure 7. Ozone concentration in four Metropolitan Lima stations (µg/m3): (a) Ate, (b) Campo de
Marte, (c) San Borja, and (d) Santa Anita: actual and forecasted ozone concentration values for four
of the best models over three weeks.

4. Discussion

Finally, according to the results (descriptive statistical analysis, tests, and visual analy-
sis), it is concluded that the final best models for forecasting hourly ozone concentration
were the aSTLDb

c , the bSTLDc
c, the bSTLDb

c , and the cSTLDb
c for the ATE, the CDM, the SB,

and the STA, respectively. However, to verify the superiority of these final best models,
we compare them with some standard baseline time series models, including parametric
autoregressive (PAR), nonparametric autoregressive (NPAR), and autoregressive integrated
moving averages (ARIMA) models. For example, the comparative results are presented
in Table 6 for all four monitoring stations. The results show that the considered baseline
time series models are significantly outperformed by the best-proposed model in each
station. In addition, to confirm the dominance of the best-proposed models given in Table 6
for each station, we performed a statistical DM test on each pair of models. The results
(p-values) of the DM test are listed in Table 7, indicating that the baseline time series
(PAR, NPAR, and ARIMA) models performed poorly in comparison to our best-proposed
models in the considered stations at the 5% level of significance. To conclude, based on
overall results, the performance measures of accuracy for the proposed methods of fore-
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casting are comparatively better and more efficient than all other benchmark models in the
competition.

Table 6. Ozone concentration in four Metropolitan Lima stations (µg/m3): mean accuracy measures
of the proposed versus the baseline models.

ATE Station

Models RMSE RMSPE MAE MAPE CC
aSTLDb

c 4.611 4.464 1.711 14.862 0.949
PAR 5.607 5.313 2.277 21.015 0.933

NPAR 5.730 4.845 2.067 17.830 0.922
ARIMA 4.709 4.683 2.033 19.601 0.947

Campo de Marte Station

Models RMSE RMSPE MAE MAPE CC
bSTLDc

c 3.637 11.846 2.356 20.441 0.978
PAR 5.485 16.957 3.697 26.817 0.949

NPAR 5.579 16.845 3.776 26.481 0.947
ARIMA 4.187 12.464 2.984 24.150 0.971

San Borja Station

Models RMSE RMSPE MAE MAPE CC
bSTLDb

c 1.495 1.864 1.078 7.668 0.989
PAR 2.213 2.872 1.664 11.793 0.974

NPAR 2.231 2.711 1.680 11.819 0.973
ARIMA 1.721 2.021 1.301 9.293 0.985

Santa Anita Station

Models RMSE RMSPE MAE MAPE CC
cSTLDb

c 1.969 15.924 1.462 76.261 0.989
PAR 5.319 41.263 3.977 199.487 0.915

NPAR 5.375 40.769 3.979 191.434 0.912
ARIMA 3.991 33.742 2.979 160.368 0.953

Table 7. Ozone concentration in four Metropolitan Lima stations (µg/m3): results (p-value) of the
DM test for the final best-proposed model versus the baseline models given in Table 6.

ATE Station

Models aSTLDb
c PAR NPAR ARIMA

aSTLDb
c - 0.999 0.995 0.927

PAR 0.001 - 0.662 0.001
NPAR 0.005 0.338 - 0.006

ARIMA 0.073 0.999 0.995 -

Campo de Marte Station

Models bSTLDc
c PAR NPAR ARIMA

bSTLDc
c - 1.000 1.000 1.000

PAR 0.000 - 0.926 0.000
NPAR 0.000 0.074 - 0.000

ARIMA 0.000 1.000 1.000 -

San Borja Station

Models bSTLDb
c PAR NPAR ARIMA

bSTLDb
c - 1.000 1.000 1.000

PAR 0.000 - 0.907 0.000
NPAR 0.000 0.093 - 0.000

ARIMA 0.000 1.000 1.000 -

Santa Anita Station

Models bSTLDb
c PAR NPAR ARIMA

bSTLDb
c - 1.000 1.000 1.000

PAR 0.000 - 0.995 0.000
NPAR 0.000 0.005 - 0.000

ARIMA 0.000 1.000 1.000 -

In addition to the above, in the literature, Carbo-Bustinza [23] explored the correlations
between ozone and meteorological variables and predicted ozone concentration for the
same sites and winter periods selected in this study. They used models such as linear regres-
sion, support vector regression, decision trees, random forest, and multilayer perceptron
and based their arguments on R2, MSE, and MAE. The linear model presented the highest
prediction performance for all the places evaluated (R2: 0.9849–9923), supported by the
lowest calculated errors (MAE: 0.0087–0.0724 and MSE: 0.0036–0.0087). Conversely, when
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the ozone concentration model is represented exclusively as a function of time as a relevant
factor without considering meteorological factors, the decomposition methods have shown
great performance, since in this investigation the significant models (p < 0.05; R2 max: 0.949)
with errors less than 20% (RMSE, RMSPE, MAE, MAPE) showed great performance. These
errors have been comparable to other STL decomposition studies that used root mean
square error (RMSE: 6.8%) and mean absolute percentage error (MAPE: 10.49%) as bench-
marks for forecast reliability for ozone [10]. This evaluation of tropospheric ozone explains
its long-term and seasonal behavior with temporary ozone patterns [41], in accordance with
what was demonstrated by Carbo-Bustinza [23] for the winter months in these geographic
areas. This approach has presented high precision and strong performance that allows for
preventing serious tropospheric ozone pollution events and optimizing the powers of the
authorities and actors involved in decision making, especially at the urban level.

5. Conclusions

An improved tool for forecasting ozone concentration has been proposed using hybrid
combinations of time series models in four districts of Metropolitan Lima between the years
2017 and 2019. It was shown that the combination of the models through the decomposi-
tion of the series ozone temporal data into “long-term trend”, “seasonal”, and “stochastic”
series, by the use of the seasonal trend decomposition method, produced efficient model
performance. The combinations made of the autoregressive models, nonlinear autore-
gressive models, and autoregressive moving average models generated 27 combinations
for each sampling station. They demonstrated significant forecasts of the sample based
on highly accurate and efficient descriptive, statistical, and graphic analysis tests, as a
lower mean error occurred in the optimized forecast models compared to traditional mod-
els. Thus, the best hybrid models for the ATE (aSTLDb

c ), CDM (bSTLDc
c), SB (bSTLDb

c ),
and Santa Anita (cSTLDb

c ) stations were presented because they showed the best forecast
reflected in the measurement of RMSE, RMSPE, MAE, MAPE, and CC, which were very
small compared to the other models. The confirmation of the best models was statistically
significant (p < 0.05), being superior to the other models. The graphical representation of
the mean errors (RMSE, RMSPE, MAE, MAPE, and CC) for the twenty-seven models at
each sampling station presented a better precision for the supermodels compared to the
rest of all the models combined. These statistical tests and graphical results show that the
proposed forecast methodology is highly accurate and efficient in predicting hourly ozone
concentration, which meant that the independent AR, NPAR, and ARIMA models were
outperformed by our best models (p < 0.05).

The main drawback of this study is that it only provides hourly data on ozone con-
centration. It can be extended to include additional exogenous factors such as wind speed,
temperature, wind direction, and humidity, which may improve the short-term forecast of
ozone concentration. In addition, the current work uses only four district datasets in Lima,
Peru. This can be extended to other districts of Lima (San Juan de Lurigancho, Chorrillos,
Comas, San Juan de Miraflores, etc.) or to different regions of Peru (Huánuco, Coyhaique,
Traiguén, Padre Las Casas, Santiago, etc.). It could also be extended to the world level
(Mexico, China, Japan, Malaysia, Pakistan, etc.) to evaluate the performance of the pro-
posed hybrid time series modeling and forecasting technique. Moreover, only univariate
time series models were used in this study, which should be extended by machine learning
models such as deep learning and artificial neural networks. They can also be considered in
the current hybrid time series forecasting framework. It can also be extended and applied
to other approaches and datasets (for example, energy [42–44], air pollution [45,46], solid
waste [47], and academic performance [48]).
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