
Citation: Huang, Y.; Yu, Y.; Guo, J.;

Wu, Y. Self-adaptive Artificial Bee

Colony with a Candidate Strategy

Pool. Appl. Sci. 2023, 13, 10445.

https://doi.org/10.3390/app131810445

Academic Editors: Agostino

Forestiero and Antonio

Fernández-Caballero

Received: 15 June 2023

Revised: 27 August 2023

Accepted: 4 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Self-adaptive Artificial Bee Colony with a Candidate
Strategy Pool
Yingui Huang 1,† , Ying Yu 1,† , Jinglei Guo 1,† and Yong Wu 2,*,†

1 School of Computer Science, Central China Normal University, Wuhan 430079, China;
yinguihuang960813@163.com (Y.H.); yuying@ccnu.edu.cn (Y.Y.); guojinglei@ccnu.edu.cn (J.G.)

2 School of Automation, Wuhan University of Technology, Wuhan 430070, China
* Correspondence: wuyong@whut.edu.cn
† These authors contributed equally to this work.

Abstract: As a newly developed metaheuristic algorithm, the artificial bee colony (ABC) has garnered
a lot of interest because of its strong exploration ability and easy implementation. However, its
exploitation ability is poor and dramatically deteriorates for high-dimension and/or non-separable
functions. To fix this defect, a self-adaptive ABC with a candidate strategy pool (SAABC-CS) is
proposed. First, several search strategies with different features are assembled in the strategy pool.
The top 10% of the bees make up the elite bee group. Then, we choose an appropriate strategy and
implement this strategy for the present population according to the success rate learning information.
Finally, we simultaneously implement some improved neighborhood search strategies in the scout
bee phase. A total of 22 basic benchmark functions and the CEC2013 set of tests were employed to
prove the usefulness of SAABC-CS. The impact of combining the five methods and the self-adaptive
mechanism inside the SAABC-CS framework was examined in an experiment with 22 fundamental
benchmark problems. In the CEC2013 set of tests, the comparison of SAABC-CS with a number
of state-of-the-art algorithms showed that SAABC-CS outperformed these widely-used algorithms.
Moreover, despite the increasing dimensions of CEC2013, SAABC-CS was robust and offered a higher
solution quality.

Keywords: evolution; optimization; artificial bee colony; multi-strategy; self-adaptive mechanism;
modified neighborhood operator

1. Introduction

Optimization problems are omnipresent in industrial manufacturing and science
activities. In general, these problems are complex and characterized by non-convexity,
non-differentiability, discontinuity, etc. These kinds of problem are hard to handle with
traditional methods in mathematics because they require strict limits on mathematical
properties in optimization problems. In recent years, swarm algorithms (SAs) have received
much attention as a powerful tool for solving these kinds of complex optimization problem.
Since the need for SAs was recognized, a wide variety of SAs have been developed, often
inspired by modeling the behaviors of organisms in the natural world, including the genetic
algorithm (GA) [1,2], the firefly algorithm (FA) [3], the ant colony algorithm (ACO) [4],
the differential evolution algorithm (DE) [5–7], the particle swarm algorithm (PSO) [8,9],
and artificial bee colony (ABC) [10,11], etc.

The ABC algorithm, which replicates the tight collaborative activity of employed
bees, onlooker bees, and scout bees in discovering suitable food sources, was initially
described by Karaboga et al.[12] in 2005. Due to its straightforward design, few variables,
and strong resilience, the ABC has attracted researcher interest and is applied in route
planning, resource scheduling, and other related problems. However, it is very difficult to
apply a single operator to perfectly solve all kinds of optimization problem. The ABC is no
exception and faces the following challenges:

Appl. Sci. 2023, 13, 10445. https://doi.org/10.3390/app131810445 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0005-7619-1135
https://orcid.org/0009-0003-2495-9857
https://orcid.org/0000-0002-8155-8342
https://orcid.org/0000-0002-2244-5559
https://doi.org/10.3390/app131810445
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810445?type=check_update&version=1

Appl. Sci. 2023, 13, 10445 2 of 21

• In comparison to other SAs, ABC has a sluggish convergence, due to the 1-D update in
the search equation. It is crucial to figure out how to increase the convergence speed
to improve ABC’s performance. One difficulty that should be addressed is how to
increase the algorithm’s convergence speed, while maintaining high performance, by
enhancing the method;

• The problems that can be solved using the artificial bee colony algorithm are limited in
variety, due to the simplicity and singularity of the ABC algorithm’s updating method;

• According to certain pertinent literature studies [13], ABC has a significant capacity
for exploration because of a single search equation in the evolution process. As a
result, a popular area of research is how to improve exploitation, while maintaining
exploration.

Many ABC variants have been designed to address these deficiencies, and the modified
techniques can be divided into three groups: modifying search equations [14], assembling
a multi-strategy [15], and hybridizing other metaheuristic search frameworks [16].

In order to resolve these difficult optimization issues, this study suggests a novel
variation of ABC called SAABC-CS, which stands for self-adaptive ABC with a candidate
strategy pool. Its main characteristics can be summed up as follows:

• Five alternative search methods are combined to generate a candidate strategy pool
that improves ABC’s exploitation capability, without sacrificing exploration capability.
In addition, we include multi-dimensional updates in each strategy, which consid-
erably increases the frequency of individual updates and boosts the convergence
speed. A self-adaptive method is also suggested for choosing the right search tech-
nique. The knowledge from the previous information is used to adaptively update the
selection probability of each strategy;

• Our approach, in contrast to other algorithms, performs quite well, without adding
additional control parameters when applying each strategy, which is aligned to the
artificial bee colony program’s original intention—simplicity and effectiveness;

• By improving the method, we make it more useful for solving actual, practical issues
in the real world.

The remaining part of this paper is divided into the following sections: The works
pertaining to the fundamental ABC and its variations are detailed in Section 2. In Section 3,
the suggested algorithm SAABC-CS is described. The effectiveness of our suggested
approach and the analysis of the results of our algorithm in comparison to other algorithms
are provided in Section 4. The last Section provides a summary of our work.

2. Related Work
2.1. ABC Algorithm

The initialization period, employed bee period, onlooker bee period, and scout bee
period make up the primary foundation of the ABC. All bees have different responsibilities
at different stages. It should be noted that each bee has its own food resources in each
period, and the number of bees in each period is consistent. The food resource in this
statement often represents a candidate solution to the optimization problem. The evolution
framework of the ABC is seen in Figure 1.

Like all SAs, the ABC needs to go through an initialization stage before performing the
other three stages of work cyclically. The following are the relevant contents of each phase:

(i) Initialization phase

In this phase, the entire population is randomly initialized, each individual represents
a food resource and this is generated using Equation (1).

Xi,j = Lower + rand · (Upper− Lower) (1)

where i = 1, 2, · · · , SN and j = 1, 2, · · · , D. D stands for the dimension of the optimization
problems, while SN is the number of solutions in a swarm. rand is a random number

Appl. Sci. 2023, 13, 10445 3 of 21

belonging to (0,1), Xi,j represents the element of jth dimension of the ith individual. Lower
and Upper denote the minimum value and maximum value in all dimensions of each
individual, respectively.

Figure 1. The ABC framework.

(ii) Employed bee phase

The evolution reaches the employed bee phase after startup. According to Equation (2),
each employed bee searches the full search area for new food sources during this phase.

Vi,j = Xi,j + φi,j · (Xi,j − Xk,j) (2)

The random number φi,j has the value (−1,1). Unlike Xi, which belongs to the whole
population, Xk is a randomly chosen solution. The value of Vi,j is reinitialized using
Equation (1) if it oversteps either the lower or higher barrier. Vi takes the place of Xi if its
object function value is superior to that of Xi.

In addition, there are a number of updated individuals (NUI) for each solution. Thus,
NUI is recorded using a 1·SN matrix. At the beginning, every element of NUI is initialized
to zero. After that, once the Xi has successfully been replaced by Vi, the ith value of NUI is
reset to zero. Otherwise, the ith value of NUI is increased by one. The NUI matrix has an
effect on the subsequent scout bee phase.

(iii) Onlooker bee phase

Appl. Sci. 2023, 13, 10445 4 of 21

The bee continues to search for new food sources during the onlooker bee phase.
In contrast to the employed bee phase, the onlooker bee only has to seek in the vicinity
of the chosen food resource, which is equivalent to expanding the utilization of the food
resource. At this stage, not every food resource can be selected to search in its vicinity, but a
probability search is carried out according to its fitness value. The calculation equation for
the fitness value is as shown in Equation (3).

Fiti =

1

1 + f (Xi)
if f (Xi) ≥ 0

1 + abs(f (Xi)) otherwise
(3)

where Fiti and f (Xi) are the fitness values of Xi and objective function result, correspond-
ingly. f (Xi) is calculated in the employed bee phase. Equation (4) determines the selection
probability of each food resource.

pi =
Fiti

∑SN
j=1 Fitj

(4)

After that, the onlooker bees use the classic roulette wheel selection strategy to select a
food resource. Obviously, the larger the fitness value obtained, the greater the chance the
food resource is selected. Equation (2) is also used as an update equation for the onlooker
bees. In addition, the same process is used as for the employed bees after generating a
candidate solution.

(iv) Scout bee phase

At scout bee phase, the element value NUI associated with each individual is checked.
Once an individual’s NUI exceeds a predefined value, it is believed that this food resource
has been exhausted, which implies that the individual may be trapped at a local optima.
As a result, in this circumstance, the employed bee is transformed into a scout bee to help
Equation (1) generate new solutions.

2.2. ABC Variants

Although the ABC algorithm has a good optimization performance, it also has certain
shortcomings, such as it being easy to fall into local optimum, the imbalance between
exploration and exploitation, and a slow convergence speed. Due to the existing problems
with the ABC, researchers have proposed many different methods to solve them. Most
solutions can be divided into three distinct categories:

(1) Modifying the search equation

The performance of the ABC algorithm depends heavily on the solution search equa-
tion. In a basic ABC, the solution search equation does well in exploration but poorly in
exploitation, since each individual Xk shown in Equation (2) is chosen randomly from
the overall population. Thus, inspired by [17,18], Wang and Zhou et al. [19] proposed an
ABC variant (KFABC). KFABC is based on knowledge fusion and its viability was tested
against 32 benchmark functions. Lu et al. [20] designed Fast ABC (FABC), which made use
of two extra alternative search equations for employed bees and onlooker bees, respectively.
These two equations also utilized the bees’ individual information and employed a Cauchy
operator to equilibrize the global and local search capacities of individuals. In order to
prove its effectiveness, the performance of FABC was compared with that of 10 bench-
mark functions and a genuine path planning issue. Gao et al. [21], inspired by differential
evolution (DE), presented an improved search equation using a modified ABC (MABC).
This variant enabled the bees to search around the best solutions found in the previous
iteration, to improve the exploitation. A total of 28 benchmark functions were used in
the comparison experiments. When compared to two ABC-based algorithms, the findings
showed that MABC performed well when addressing complicated numerical optimization
problems.The improved algorithm that Guo et al. [22] developed based on MABC is called

Appl. Sci. 2023, 13, 10445 5 of 21

the global artificial bee colony search algorithm. Guo incorporated all the employed bees’
historical best positions based on the information about food sources into the search equa-
tions to develop this algorithm. Yu et al. [23] proposed another form of ABC variant called
the adaptive ABC (AABC). It adjusted the greedy degree of the original ABC using a novel
greedy position update strategy and an adaptive control scheme. Using a set of benchmark
functions, AABC outperformed the original ABC and subsequent ABC iterations in their
tests.

(2) Hybridizing another metaheuristic search framework

Hybrid algorithms are mainly based on the combination of two or more metaheuristic
algorithms, so that the advantages of one algorithm can be used to offset the deficiencies
of other algorithms. This method could improve the optimization performance of an
algorithm. The following are some examples of hybrid ABC algorithms that combined the
ABC algorithm with other heuristic algorithms. Jadon et al. [24] proposed a hybridization
of ABC and DE algorithms (HABCDE), to develop a more efficient algorithm than ABC
or DE individually. Over twenty test problems and four actual optimization issues were
used to evaluate the performance of HABCDE. Alqattan et al. [25] presented a hybrid
particle movement ABC algorithm (HPABC). This algorithm adapted the particle moving
process to improve the exploitation of the original ABC variant. The algorithm variant
was provided, and seven benchmark functions were utilized to validate it. Chen et al. [26],
on the other hand, introduced a simulated annealing algorithm into the employed bees’
phase and proposed the simulated annealing-based ABC algorithm (SAABC). To improve
algorithm exploitation, the simulated annealing algorithm was added in the employed
bee search process. The experimental results were validated against a collection of numer-
ical benchmark functions of varying size. This demonstrated that the SAABC algorithm
outperformed the ABC and global best guided ABC algorithms in the majority of tests.

(3) Assembling multi-strategy

Multi-strategy search refers to the implementation of different search strategies in
the different search stages of the ABC or for different food resources. In recent years,
some algorithms that introduced multi-strategy search into ABC have been proposed,
but their effectiveness varied. Gao et al. [27] formed a strategy pool using three distinct
search strategies and adopted an adaptive selection mechanism to further enhance the
performance of the algorithm. It was evaluated using a set of 22 benchmark functions and
compared against other ABCs. In almost every case, the comparison findings revealed
that the suggested method provided superior results. Song et al. [28] designed a novel
algorithm called MFABC. MFABC improved the search ability of the ABC algorithm with a
small population by fusing multiple search strategies for both employed bees and onlooker
bees. MFABC’s accuracy, stability, efficiency, and convergence rate were demonstrated
experimentally on a set of benchmark functions. Chen et al. [29] proposed a new algorithm
called self-adaptive differential artificial bee colony (sdABC) by incorporating multiple
diverse search strategies and a self-adaptive mechanism into the original ABC algorithm.
The sdABC technique was tested on 28 benchmark functions, including both common
separable and difficult non-separable CEC2015 functions. The experimental findings
suggested that sdABC obtained substantially better outcomes on both separable and non-
separable functions than earlier ABC algorithms. In addition to the above ABC algorithm
variants, Zhou et al. [30] developed a modified neighborhood search operator by utilizing
an elite group, which is called MGABC. Their experiments employed 50 well-known test
functions and one real-world optimization issue to validate the technique, which included
22 scalable basic test functions and 28 complicated CEC2013 test functions. The comparison
included seven distinct and well-established ABC variations, and the findings suggested
that the technique could obtain test results that were at least equivalent in test performance
for most of the test functions.

Assessing these three improvement directions, the first is too simple and the second
makes the algorithm extremely complicated. Thus, we choose the third direction as our

Appl. Sci. 2023, 13, 10445 6 of 21

main interest. We based our research partially on prior work from other researchers.
By assembling a multi-strategy search, a wider range of issues can be tackled and the
outcomes are better.

3. The Proposed Algorithm SAABC-CS
3.1. Candidate Strategy Pool

In most cases, different problems have different characteristics, and they are hard to
describe clearly in advance. Thus, problems are usually black boxes. Moreover, different
update strategies for ABC have unique characteristics. It is unrealistic to rely on only
one strategy to solve all problems. These observations make us reconsider how to select
strategies or construct novel strategies to improve the robustness when facing different
problems. Based on the motivations above, we selected five search strategies with different
characteristics from the relevant literature [18,31] to construct our candidate strategy pool.
In addition, we employed the binomial crossover method to enable the algorithm to find
optimal solutions more effectively. Considering both exploration and exploitation during
the entire evolution process, five strategies were selected and are described in detail, as
follows:

(i) “rand”:
Vi,j = Xr1,j + φi,j · (Xr1,j − Xr2,j) (5)

(ii) “pbest-1”:
Vi,j = Xe,j + φi,j · (Xr1,j − Xr2,j) (6)

(iii) “pbest-2”:

Vi,j = Xe,j + φi,j · (Xr1,j − Xr2,j) + ϕi,j · (Xr3,j − Xr4,j) (7)

(iv) “current-to-pbest”:

Vi,j = Xi,j + φi,j · (Xi,j − Xr1,j) + ϕi,j · (Xe,j − Xi,j) (8)

(v) “pbest-to-rand”:
Vi,j = Xe,j + φi,j · (Xe,j − Xi,j) (9)

where Xr1, Xr2, Xr3, and Xr4 are the different individuals selected randomly in the pop-
ulation, and they are all distinctive from Xi. A homogeneous random number between
[−1,1] is φi,j. A solution from an elite group is represented by Xe. The top q·SN solutions
are chosen to form the elite group, after all the individuals are sorted according to their
fitness values. The size of the elite group is controlled by q, which is set at 0.1. ϕi,j is a
homogeneous random number between [0,1.5].

Figure 2 roughly depicts the behavior of each strategy, the individuals in ellipse are
the elite individuals, and the remaining triangle icons represent other common individuals.
The red circle in Figure 2 represents the new individual generated by the corresponding
strategy. With the “rand” strategy, the position of the new individual in Figure 2a is be-
tween two different individuals, and it is close to the first random individual. Actually, its
position falls within a circle with Xr1 as the center and |Xr1 − Xr2| as the radius. The be-
havior of the “rand” strategy makes the algorithm focus more attention on a global search.
Similarly, the position of the new individual in Figure 2b is between an elite individual
and two different common individuals with the “pbest-1” strategy. This strategy leads
the algorithm to learn the elite’s information, while focusing on a global search. With
the “pbest-2” strategy, the position of the new individual in Figure 2c is also in the center
of the selected individuals, this makes our algorithm utilize more individual sampling
information. As shown in Figure 2d, the position of the new individual is affected by the
current individual, an elite individual, and a randomly selected individual in the “current-
to-pbest" strategy. The position of the new individual in Figure 2e is based on the elite

Appl. Sci. 2023, 13, 10445 7 of 21

individual and current individual, which comprehensively takes the current individual
and elite individual into consideration.

Figure 2. Schematic diagrams of five different strategies. (Stars represent elite individuals, triangles
represent common individuals,red circles represent new individual,dashed arrows represent search
direction).

In order to further reflect the different characteristics of the five strategies in seeking
optimal solutions, we performed an experiment on the Rastrgin function [32] under the
same conditions. The formula of Rastrigin is as follows, and its dimension was set to 2:

f (X) = 10 · D +
D

∑
i=1

[X2
i − 10 · cos(2 · π · Xi)] (10)

where X is a 2-dimensional individual.
In this experiment, we obtained the two-dimensional individual distribution for the

five strategies after 20 generations, and present the results in Figure 3. The initial population
size of each strategy was 100. From Figure 3a, these individuals may be seen to disperse
around local maxima, although the local maxima are still distant from the global maxima.
Thus, it is obvious that the “ABC/rand” strategy has a strong exploration ability but weak
exploitation ability. We can see clearly that all individuals converge around one local
optimum in Figure 3b, but the local optimum is not the global optimum. Thus, it has
a strong exploitation ability but weak exploration ability. The “ABC/pbest-2” strategy
originates from “ABC/pbest-1”, but with increased exploration ability. This modification
causes most individuals to distribute around global optimum, with some individuals
located around other local optima. The results in Figure 3c further demonstrate that the
“ABC/pbest-2” strategy increased its exploration ability while keeping its exploitation
ability. As for the results in Figure 3d, the “ABC/current-to-pbest” strategy uses the
information of the current individual, a random different individual, and a random elite
individual. Thus, it has a strong exploration ability during early generation and a strong
exploitation ability during late generation. As we can see from Figure 3e, under the
influence of “ABC/pbest-to-rand”, the individuals mainly converged around the global
optimum, with others also located near local optima. This was dominated by Xe but
also uses the current individual information. Thus, it maintains a significant capacity for
exploitation, while also having the opportunity to leave the local optima and go to a global
or nearby one.

Appl. Sci. 2023, 13, 10445 8 of 21

(a) rand (b) pbest1

(c) pbest2 (d) current−to−pbest

(e) pbest−to−rand

Figure 3. Five strategies’ contour graphs based on the two-dimensional Rastrigin function. (Red dots
represent individuals. Subfigures (a–e) represent individual distribution map of the five strategies in
the current generation, respectively).

With the exception of the “ABC/rand” technique, the other four search methods all
utilize the information of the elite group. The following two benefits result from using an
elite group instead of the elite with the best fitness:

(1) In the first place, this allows the entire population to fully utilize the knowledge of
the elite solution group during the evolution process and evolve in a better way.

(2) Second, the whole population is prone to becoming locked in local optima if the
population only uses the present global optimal solution as the search traction. However,
the population may evolve in numerous good directions and are provided better solutions
by the elite group. As a result of using an elite group, it is simple for the population to
move away from the local optima and reach the global or approximated optimal region.

Additionally, the original ABC search approach performs poorly for some issues with
variable inseparability, since it only updates one variable at a time. Therefore, to update

Appl. Sci. 2023, 13, 10445 9 of 21

many dimensions at once, these techniques combine mutation and crossover, as in GA.
In this approach, using various update techniques inside the adaptive mechanism en-
hances the algorithm’s efficiency, while simultaneously strengthening its robustness. Thus,
to create a trial vector Ui,j, we apply a binomial crossover operator to Xi,j and Vi,j.

Ui,j =

{
Vi,j if rand≤M or j = k
Xi,j Otherwise

(11)

where i = 1, 2, . . . , SN, j = 1, 2, . . . , D. A number chosen at random between [1, D] called k
is utilized to make certain that at least one element is updated. rand is an arbitrary number
ranging from 0 to 1 with a uniform distribution.

In our algorithm, we also precisely apply the boundary correction technique to im-
prove the outcome. If the jth dimension element of Ui is outside of the boundary, we make
the following revisions:

Ui,j =

{
Lower if Ui,j < Lower
Upper if Ui,j > Upper

(12)

To join the following generation, we choose the superior source vector Xi over the trial
vector Ui.

XG+1
i =

{
Ui if f (Ui) < f (Xi)
Xi otherwise

(13)

The following values are set for the strategy’s self-definition parameters: The elite
community’s size is q·SN. The dimension update is controlled by parameter M, which is
set at 0.5.

3.2. Self-adaptive Mechanism

To maximize the algorithm’s efficiency, we must choose a more appropriate approach
in different phases of the algorithm, due to the distinctive characteristics of the aforemen-
tioned five alternative search strategies. As a result, we include an adaptive mechanism
in our suggested algorithm, to choose the best strategy. The fundamental principle of
self-adaptation is to dynamically modify the potential for choosing an appropriate ap-
proach, in accordance with the success information about producing superior solutions.
The selection likelihood of one strategy increases when an exceptional solution is produced
by this strategy. Additionally, any tactic has the chance to be picked out during the evo-
lution, owing to the roulette selection system. Such a self-adaptive system can help the
population move beyond the local ideal, as well as toward the optimal. The combination of
this self-adaptive mechanism with the aforementioned five techniques is depicted in the
flowchart in Figure 4.

Figure 4. Flowchart of self-adaptive multiple strategies.

In the initialization phase, some variables are initialized by the self-adaptive mech-
anism. Prob is a 1 × 5 matrix, in which each element Probi corresponds to the selection
probability for the above strategyi, and the sum of all elements is 1. In the beginning,

Appl. Sci. 2023, 13, 10445 10 of 21

their selection probability is equal, to guarantee fairness. Two 1 × SN matrices sFlag
and fFlag are used, to mark whether the candidate solution is better or worse than the
original solution when using a corresponding strategy. SN is a measure of population
density. If the new generated solution is better, the associated sFlag matrix element is set to
1 and the corresponding fFlag matrix element is set to 0, and vice versa. We also use two
5·LP matrices, sCounter and fCounter, to count the proportion of triumphs and failures
of each generation in the LP generation, after updating using the corresponding strategy.
LP represents a fixed interval, and we set this to 10 here. For every LP generation, we use
sCounter and fCounter to update the Prob of each strategy. The statistical data information
of sCounter and fCounter are the main source for updating the Prob value. Moreover, every
time the selected strategy probability is updated, every element of sFlag, fFlag, sCounter,
and fCounter must be reset to 0, to avoid affecting the next LP generations. The update
equation of Prob is determined using the following Equation (14), and then the probability
is normalized using Equation (15).

Probi =

∑LP
k=1 sCounter[i][k]

∑LP
k=1 sCounter[i][k] + ∑LP

k=1 f Counter[i][k]

∑LP
k=1 sCounter[i][k] 6= 0

0.5 · Probi Otherwise

(14)

Probi =
Probi

∑5
i=1 Prob(i)

(15)

3.3. Scout Bee and Modified Neighborhood Search Operator

In this stage, we utilize the method proposed by Wang et al. in KFABC [19], adding two
methods based on opposition-based learning(OBL) and the Cauchy approach, to generate
two additional solutions. Then, we select the best solution from the random solutions, OBL
solution, and Cauchy solution, to replace the abandoned solution. The random operator,
the OBL operator, and Cauchy disturbance operator that produce the candidate solutions
are described in Equations (1), (16) and (17).

OXj = Lower + Upper− Xa,j (16)

where the space’s boundary is defined by Lower and Upper. j = 1, 2,. . . , D, and the
abandoned solution is represented by Xa.

CXj = Xa,j + Cauchy() (17)

where j = 1, 2, . . . , D, Cauchy() return a value from the Cauchy distribution.
In addition , we use a neighborhood search operator in our method as a supplementary

operator, which was suggested by Zhou et al. in MGABC [30]. The operator continues to use
the data from the elite group solution and determines whether to employ the supplemental
operator in this generation based on a certain possibility p (p is 0.1, as in MGABC [30].
The operator is shown in Equation (18).

TXi = r1 · Xi + r2 · Xe1 + r3 · (Xe2 − Xe3) (18)

where three solutions from the elite group, Xe1, Xe2, and Xe3, were chosen at random and
must be distinct from Xi. As positive numbers drawn at random from (0,1), r1, r2, and r3
must also satisfy the restriction that r1 + r2 + r3 = 1. If TXi is superior to Xi, TXi will take
the place of Xi.

Appl. Sci. 2023, 13, 10445 11 of 21

3.4. Framework of SAABC-CS

During the employed and onlooker bee phase, SAABC-CS employs five distinct search
algorithms, four of which make use of knowledge from the elite group. We provide an
adaptive mechanism based on prior knowledge to choose the best search technique, in
order to make better use of these five tactics. To enhance the algorithm’s efficiency and
speed of convergence, we update the search technique used for the scout bee and add an
additional neighborhood search operator. The pseudo-code for SAABC-CS is provided in
Algorithms 1 and 2 and, the flowchart for it can be viewed in Figure 5, which help to better
explain the entire process.

Algorithm 1: The pseudo-code of Modified neighborhood operator

1 for i = 1 to SN do
2 if rand ≤ p then
3 Generate a new solution TXi by Equation (18) and evaluate it;
4 FEs = FEs + 1;
5 if f(TXi) ≤ f(X) then
6 Substitude Xi to TXi;
7 end
8 end
9 end

Figure 5. Flowchart of SAABC-CS.

Appl. Sci. 2023, 13, 10445 12 of 21

Algorithm 2: The pseudo-code of SAABC-CS.

1 Randomly initialize and evaluate the population include SN food sources
X1, X2, . . . , XSN and set FEs = SN;

2 Initialize parameter Prob, sFlag, fFlag, sCounter, fCounter, MR, q, p, LP;
3 while FEs ≤MaxFes do
4 Select a strategy using roulette wheel selection mechanism;
5 Select the elite Group belongs to top q·SN sorted by fitness value;

/* Employed bee phase */
6 for i = 1 to SN do
7 Generate a candidate solution Vi using current strategy and evaluate it;
8 if f(Vi) ≤ Xi then
9 Substitude Xi to Vi;

10 triali = 0, sFlagi = 1, f Flagi = 0;
11 else
12 triali = triali + 1, sFlagi = 0, f Flagi = 1;
13 end
14 end
15 Update sCounterj,k, f Counterj,k, j represent the jth strategy and k is the

generation number;
/* Onlooker bee phase */

16 Calculate the probability pi accoring to Equation (3);
17 Select the elite Group belongs to top q·SN sorted by fitness value;
18 for i = 1 to SN do
19 Choose a food source Xj by the roulette wheel selection mechanism;
20 Generate a candidate solution Vi using current strategy and evaluate it;
21 if f(Vi) ≤ Xi then
22 Substitude Xi to Vi; triali = 0, sFlagi = 1, f Flagi = 0;
23 else
24 triali = triali + 1, sFlagi = 0, f Flagi = 1;
25 end
26 end
27 Update sCounterj,k, f Counterj,k, j represent the jth strategy and k is the

generation number;
28 if (generation mod LP)==0 then
29 Update Prob using Equation (14) and (15);
30 Reset sFlag, nFlag, sCounter, fCounter;
31 end

/* Scout bee phase */
32 if Max(trial) ≥ limit then
33 Generate three solutions RX, OX and CX by Equations (1), (16) and (17)

respectively;
34 Evaluate the three solutions and FEs = FEs+3;
35 Select the best one from RX, OX and CX to replace Xi;
36 end

/* Modified neighborhood operator */
37 Algorithm 1;
38 end

Appl. Sci. 2023, 13, 10445 13 of 21

4. Experiments
4.1. Test Problems

We ran trials on 50 test issues that were separated into two sets of benchmarks, to
demonstrate the efficacy of our suggested algorithm SAABC-CS. The first benchmark set
included 22 basic functions, and the second benchmark set was referred to as CEC2013.
The dimensions of the CEC2013 benchmarks were set as 30, 50, and 100. We used two
values (Mean and Std) as metrics for algorithm comparison. ”Mean” represents the average
value of the optimal results obtained by the algorithm for the corresponding running
times, and “Std” represents the corresponding variance. Experiment 1 not only verified
the effectiveness of the strategy pool but also demonstrated the effectiveness of the self-
adaptive method. Experiment 2 compared the performance of SAABC-CS with that of the
other five algorithms in the CEC2013 function set. All algorithms designed in this section
were utilized in MATLAB R2020a. Tables 1–4 report the compared results, in which the
best result for each problem is marked in bold, and summarize the statistical findings.
“+/=/−” indicate that SAABC-CS outperformed, was comparable to, or underperformed
the compared algorithm in the test tasks.

Table 1. Results of five single strategies vs. multi-strategy ABC algorithms with self-adaptive/rand
on basic 22 function (D = 30).

Function ABC-Rand ABC-Pbest-1 ABC-Pbest-2 ABC-Current-to-PbestABC-Pbest-to-Rand RABC-CS SAABC-CS

F1 Mean 2.248526× 10−120 + 7.064515× 10−113 + 6.559319× 10−98 + 8.878308× 10−117 + 8.129275× 10−176 + 4.189678× 10−128 + 2.259275 × 10−176

Std 1.131182× 10−119 1.988608× 10−112 1.662559× 10−97 4.071247× 10−116 0.000000× 100 9.079933× 10−128 0.000000× 100

F2 Mean 4.119521× 10−62 + 3.388025× 10−90 + 3.362581× 10−49 + 4.777346× 10−59 + 1.004464× 10−56 + 4.135273× 10−65 + 8.188025× 10−91

Std 8.821390× 10−62 6.589025× 10−90 6.925141× 10−49 8.332598× 10−59 2.159204× 10−56 6.097771× 10−65 7.509025× 10−90

F3 Mean 7.906320× 10−95 + 9.642783× 10−89 + 8.755489× 10−83 + 3.004974× 10−94 + 5.845769× 10−125 + 3.300380× 10−100 + 6.201979× 10−130

Std 2.782121× 10−94 5.162428× 10−88 2.132246× 10−82 1.363288× 10−93 2.367933× 10−124 1.234790× 10−99 2.101411× 10−129

F4 Mean 5.442075× 10−54 + 1.176991× 10−50 + 1.281191× 10−45+ 7.984461× 10−52 + 5.442075× 10−54 + 2.471204× 10−56+ 2.899439× 10−80

Std 6.026015× 10−54 1.601701× 10−50 2.159118× 10−45 1.749531× 10−51 6.026015× 10−54 6.575316× 10−56 1.518933× 10−80

F5 Mean 2.466807× 101 + 2.575768× 101 + 2.523777× 101 + 2.543241× 100 + 2.076386× 101 + 2.402630× 101 + 2.352532× 100

Std 8.280997× 10−2 1.369552× 10−1 1.217680× 10−1 1.025347× 10−1 1.479236× 10−1 1.590104× 10−1 2.352992× 100

F6 Mean 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100

Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

F7 Mean 9.141111× 10−4 + 1.382338× 10−3 + 1.491601× 10−3 + 1.119361 × 10−4 = 5.043735× 10−4 + 1.060796× 10−3 + 1.119325 × 10−4

Std 3.535380× 10−4 5.575281× 10−4 6.834976× 10−4 5.475349× 10−4 2.076206× 10−4 4.821712× 10−4 7.547842× 10−4

F8 Mean 2.936318× 10−116 + 1.231300× 10−109 + 4.147755× 10−173 + 3.719664× 10−114 + 1.126064× 10−93 + 8.024818× 10−125 + 4.575380 × 10−181

Std 1.574936× 10−115 3.518575× 10−109 0.000000× 100 9.643898× 10−114 4.557991× 10−93 1.676287× 10−124 2.053852× 10−180

F9 Mean 1.600553× 10−177 + 1.534562× 10−113 + 3.379257× 10−99 + 1.924197× 10−117 + 2.223761× 10−122 + 5.549013× 10−128 + 4.336995 × 10−185

Std 0.000000× 100 5.281619× 10−113 1.046764× 10−98 7.117055× 10−117 6.496603× 10−122 2.377221× 10−127 1.740039× 10−185

F10 Mean 0.000000 × 100 = 5.224310× 10−280 + 3.861741× 10−219 + 3.696811× 10−293 + 0.000000 × 100 = 0.000000 × 100= 0.000000 × 100

Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

F11 Mean 1.687530 × 10−9 = 1.687530 × 10−9 = 1.687530 × 10−9 = 1.687530 × 10−9 = 1.687530 × 10−9 = 1.687530 × 10−9 = 1.687530 × 10−9

Std 1.261982× 10−24 1.261982× 10−24 1.261982× 10−24 1.261982× 10−24 1.261982× 10−24 1.261982× 10−24 1.261982× 10−24

F12 Mean 1.163545× 103 + 9.456324× 102 + 5.080409× 103 + 1.932564× 103 + 2.887515× 103 + 1.853151× 103 + 2.090269 × 102

Std 2.636002× 102 3.413073× 102 4.410889× 102 4.605312× 102 6.269367× 102 5.195663× 102 1.485411× 102

F13 Mean 0.000000 × 100 = 6.160741× 100 + 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100

Std 0.000000× 100 1.150776× 101 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

F14 Mean 4.440892× 10−15 + 4.085621× 10−15 + 3.967197× 10−15 + 4.440892× 10−15 + 4.440892× 10−15 + 4.322468× 10−15 + 1.204045 × 10−15

Std 0.000000× 100 1.084034× 10−15 1.228336× 10−15 0.000000× 100 0.000000× 100 6.486338× 10−16 9.013523× 10−16

F15 Mean 0.000000 × 100 = 0.000000 × 100= 0.000000 × 100= 0.000000 × 100 = 0.000000 × 1000 = 0.000000 × 100 = 0.000000 × 100

Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

F16 Mean 1.980643× 10−7 + 3.821659× 10−32 + 5.656174× 10−11 + 4.240471× 10−32 + 2.617575 × 10−32= 2.984035× 10−32 + 2.615389 × 10−32

Std 1.084843× 10−6 4.199724× 10−32 2.679150× 10−10 4.577028× 10−32 2.308711× 10−32 3.150553× 10−32 2.503190× 10−32

F17 Mean 3.949367× 10−33 + 6.448967× 10−33 + 1.063166× 10−10 + 7.719422× 10−10 + 5.149175× 10−33 + 4.199327× 10−33 + 1.465313 × 10−33

Std 4.750555× 10−33 8.215939× 10−33 5.062651× 10−10 3.540454× 10−9 6.479902× 10−33 5.820550× 10−33 7.798810× 10−33

F18 Mean 1.241186× 101 + 3.539242× 101 + 4.627517× 101 + 1.172911× 101 + 9.657119× 10−6 + 6.866667× 100 + 1.996023 × 10−6

Std 8.701415× 100 1.888478× 101 4.945725× 101 1.895325× 101 5.289422× 10−5 1.015308× 101 2.408278× 10−6

F19 Mean 4.052816× 10−62 + 1.897842× 10−57 + 3.779705× 10−50 + 1.364857× 10−59 + 1.997167× 10−90 + 4.217641× 10−65 + 5.174038 × 10−91

Std 5.462664× 10−62 3.765824× 10−57 4.345121× 10−50 1.995794× 10−59 3.848453× 10−90 1.137639× 10−64 1.715634× 10−90

F20 Mean 1.161948 × 10−28 = 1.161948 × 10−28 = 1.161948 × 10−28 = 1.161948 × 10−28 = 1.161948 × 10−28 = 1.161948 × 10−28 = 1.161948 × 10−28

Std 2.280406× 10−44 2.280406× 10−44 2.280406× 10−44 2.280406× 10−44 2.280406× 10−44 2.280406× 10−44 2.280406× 10−44

F21 Mean 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 =
Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

F22 Mean 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 = 0.000000 × 100 =
Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100

+/=/− 14/8/0 16/6/0 15/7/0 14/8/0 13/9/0 14/8/0 \

4.2. Effectiveness Analysis of the Proposed Strategy Pool and Self-adaptive Mechanism

In experiment 1, we wanted to probe the following two problems:

Appl. Sci. 2023, 13, 10445 14 of 21

• Problem 1: Is it necessary to assemble the five different strategies?
• Problem 2: Is the self-adaptive mechanism required and are the results affected when

the self-adaptive selection mechanism is replaced by a random selection mechanism?

To solve problem 1, each single strategy was embedded into the original ABC, to
make a result comparison between each strategy and SAABC-CS. As for problem 2, we
tested two different strategy selections. One was the random strategy selection mechanism,
and the other was the self-adaptive selection mechanism. The ABC algorithms including
various search methods mentioned below examined the efficacy of the strategy pool and
the self-adaptive mechanism.

• ABC-rand: the original ABC with rand strategy;
• ABC-pbest-1: the original ABC with pbest-1 strategy;
• ABC-pbest-2: the original ABC with pbest-2 strategy;
• ABC-current-to-pbest: the original ABC with current-to-pbest strategy;
• ABC-pbest-to-rand: the original ABC with pbest-to-rand strategy;
• SAABC-CS: ABC with self-adpative selection mechanism in the strategy pool;
• RABC-CS: ABC with random selection mechanism in the strategy pool.

The fundamental settings for the seven algorithms listed above were as follows: the SN,
D, limit, MaxFEs, and running times were set to 100, 30, 100, 5000·D, and 30, respectively.
Table 1 displays the outcomes of the ABC using the RABC-CS and SAABC-CS single search
techniques on the fundamental 22 functions. SAABC-CS in Table 1 outperformed ABC-
rand, ABC-pbest-1, ABC-pbest-2, ABC-current-to-pbest, and ABC-pbest-to-rand on 14, 16,
15, 14, and 13 of the 22 test functions, respectively. This demonstrated that the combination
of five techniques increased the test function accuracy. SAABC-CS outperformed RABC-CS,
which chooses methods at random, on 14 functions, while being comparable for 8 of them.
In this test suite, the self-adaptive selection mechanism performed better than the random
selection method.

To determine the contribution of each strategy, we counted the use times of each
strategy during the whole processes for two multimodal functions (f 14, f 17) and three
unimodal functions (f 2, f 3, f 7). The outcomes are displayed in Figure 6. As shown in the
figure, the strategies with the highest frequency for f2, f3, f7, f14, and f17 were “pbest-1”,
“pbest-to-rand”, “current-to-pbest”, “pbest-2”, and “rand”, respectively. Among the five
single strategies in Table 1, “pbest-1”, “pbest-to-rand”, “current-to-pbest”, “pbest-2”, and
“rand” produced the best results for the f2, f3, f7, f14, and f17 functions, respectively. Taking
function f7 as an example, “current-to-pbest” had the best performance and “pbest-to-rand”
came second among the results of the five single techniques shown in Table 1. According
to Figure 6, the suggested self-adaptive mechanism chose the strategy “current-to-pbest”
most, followed by “pbest-to-rand”. This phenomenon explains why the adaptive selection
approach worked so well. The self-adaptive mechanism had the capability to adaptively
choose the best approach in accordance with the requirements of the problem, so that the
quality of the solutions was improved.

Figure 6. The frequency of strategies by function.

Appl. Sci. 2023, 13, 10445 15 of 21

Table 2. Results of SAABC-CS vs. the other five ABC algorithms on CEC2013 function with D = 30.

Function ABC ABCNG KFABC SABC-GB MGABC SAABC-CS

F1 Mean 1.045919× 10−12+ 1.193484× 10−10 + 7.217691× 103 + 1.818989× 10−13 + 0.000000 × 100 = 0.000000 × 100

Std 2.668884× 10−13 3.755755× 10−10 2.219269× 104 1.016846× 10−13 0.000000× 100 0.000000× 100

F2 Mean 1.584525× 107 + 2.021825× 107 + 3.260723× 107 + 2.684755× 107 + 1.836199× 106 + 6.459514 × 105

Std 3.053047× 106 4.651604× 106 5.793827× 106 1.144070× 107 6.914972× 105 1.937672× 105

F3 Mean 1.497846× 109 + 2.727830× 109 + 1.174722× 1010 + 2.548842× 109 + 5.483760× 108 + 5.004087 × 107

Std 5.525781× 108 1.142430× 109 2.631946× 109 1.558031× 109 6.431569× 108 4.567237× 107

F4 Mean 6.445392× 104 + 8.824601× 104 + 7.019652× 104 + 8.705039× 104 + 3.886162× 104 + 9.954682 × 103

Std 8.712809× 103 9.121559× 103 1.868345× 101 1.561130× 104 4.226200× 103 5.997636× 103

F5 Mean 2.320121× 10−10 + 7.825637× 10−7 + 6.645994× 100 + 1.136868× 10−13 + 8.293133× 101 + 6.821210 × 10−14

Std 9.315427× 10−11 1.813981× 10−6 1.137336× 101 0.000000× 100 2.104354× 102 6.226885× 10−14

F6 Mean 1.942986 × 101 − 2.343924× 101 − 9.750413× 101 + 2.043955× 101 − 4.370608× 101 − 4.797174× 101

Std 2.497262× 100 1.306460× 100 2.896130× 101 1.866870× 100 2.784367× 101 3.105646× 101

F7 Mean 1.102697× 102 + 1.233136× 102 + 9.123335× 101 + 1.380252× 102 + 1.797136× 102 + 6.868069 × 101

Std 1.167065× 101 1.915723× 101 9.150610× 100 1.887645× 101 1.126540× 102 5.374762× 101

F8 Mean 2.096425 × 101 = 2.096832 × 101 = 2.118192× 101 + 2.107899× 101 + 2.107992× 101 + 2.095631 × 101

Std 4.534480× 10−2 7.410263× 10−2 5.625405× 10−2 5.680530× 10−2 2.706550× 10−2 3.660565× 10−2

F9 Mean 3.053202× 101 − 2.836110× 101 − 3.278991× 101 + 3.176783× 101 + 2.785300× 101 − 3.136165× 101

Std 2.089771× 100 1.122232× 100 1.361819× 100 2.538868× 100 4.190502× 100 7.213594× 100

F10 Mean 6.111205× 100 + 1.573150× 101 + 7.155009× 101 + 8.302503× 100 + 2.671815× 10−1 + 2.607005 × 10−1

Std 1.180270× 100 5.412964× 100 1.259467× 101 2.664426× 100 1.315116× 10−1 9.298362× 10−2

F11 Mean 6.400001× 10−11 − 1.570459× 10−9 − 2.694004× 102 − 5.684342 × 10−14 − 1.145733× 102 − 5.492158× 101

Std 1.219411× 10−10 3.338045× 10−9 4.685348× 102 0.000000× 100 4.619428× 101 2.002800× 101

F12 Mean 2.454513× 102 + 1.618361× 102 + 6.321330× 102 + 1.721923× 102 + 1.541547× 102 + 1.493833 × 102

Std 3.657845× 101 2.710955× 101 3.283000× 102 3.414756× 101 6.149077× 101 7.723931× 101

F13 Mean 3.282447× 102 + 2.183721× 102 + 9.764368× 102 + 2.292618× 102 + 2.179081× 102 + 1.307685 × 102

Std 2.198303× 101 2.198283× 101 2.735796× 102 2.036628× 101 4.048664× 101 3.548699× 101

F14 Mean 6.335722× 101 − 4.171621 × 101 − 3.397454× 102 − 7.386230× 100 − 2.407904× 103 + 2.392425× 103

Std 3.525780× 101 2.524628× 100 4.087044× 102 3.475162× 100 9.732670× 102 9.783598× 102

F15 Mean 4.757794× 103 + 4.634326× 103 + 5.592640× 103 + 4.836574× 103 + 5.014348× 103 + 3.790289 × 103

Std 2.395951× 102 3.819604× 102 4.371912× 102 9.120662× 102 1.700247× 103 6.287230× 102

F16 Mean 1.848622× 100 − 1.682927 × 100 − 3.968684× 100 + 2.375125× 100 + 2.244456× 100 + 2.225754× 100

Std 1.879309× 10−1 2.462413× 10−1 9.809905× 10−1 5.279497× 10−1 1.364966× 100 8.320054× 10−1

F17 Mean 3.342858× 101 − 3.044152 × 101 − 1.298987× 102 + 3.046909× 101 − 9.441017× 101 + 7.149418× 101

Std 7.271755× 10−1 9.453500× 10−3 7.430159× 101 7.645190× 10−2 1.605471× 101 1.131667× 101

F18 Mean 3.678532× 102 + 2.255822× 102 + 9.230954× 102 + 2.668022× 102 + 1.520744× 102 + 8.645602 × 101

Std 3.185708× 101 2.077005× 101 5.075368× 101 3.107039× 101 4.527983× 101 6.044520× 101

F19 Mean 2.635527× 100 − 6.979700 × 10−1 − 4.030256× 105 + 8.452421× 10−1 − 1.057998× 101 + 4.135579× 100

Std 4.297100× 10−1 2.661896× 10−1 3.467954× 105 3.281864× 10−1 3.985207× 100 1.752942× 100

F20 Mean 1.441240× 101 + 1.425405× 101 + 1.500000× 101 + 1.466189× 101 + 1.451120× 101 + 1.142710 × 101

Std 2.605160× 10−1 5.229196× 10−1 9.678038× 10−11 6.368384× 10−1 9.516934× 10−3 7.389737× 10−1

F21 Mean 2.514810 × 102 − 2.891845× 102 − 2.742664× 103 + 3.661265× 102 + 3.143544× 102 − 3.574177× 102

Std 2.600244× 101 7.660174× 101 4.287399× 10−13 1.117488× 102 4.539264× 101 7.862236× 101

F22 Mean 2.208385× 102 − 1.568746× 102 − 4.160514× 102 − 1.086814 × 102 − 2.290799× 103 + 1.489146× 103

Std 3.851348× 101 4.215301× 101 1.020057× 102 2.055194× 101 9.996683× 102 4.555037× 102

F23 Mean 5.492901× 103 + 5.268257× 103 + 7.665719× 103 + 6.149480× 103 + 5.556585× 103 + 4.022977 × 103

Std 2.729496× 102 4.193448× 102 2.084489× 102 4.333990× 102 1.489409× 103 7.975158× 102

F24 Mean 2.852008× 102 + 2.744805× 102 + 2.867909× 102 + 2.804525× 102 + 2.784434× 102 + 2.517143 × 102

Std 7.092098× 100 2.768032× 100 8.840250× 100 5.685422× 100 8.978342× 100 1.411454× 101

F25 Mean 3.167588× 102 + 2.737370× 102 + 3.037339× 102 + 2.831343× 102 + 2.845589× 102 + 2.758435 × 102

Std 5.437050× 100 4.131749× 100 2.941593× 100 6.008858× 100 1.317743× 101 1.523675× 101

F26 Mean 2.012222 × 102 − 2.017343× 102 − 2.035708× 102 − 2.012044 × 102 − 3.060999× 102 + 2.567051× 102

Std 1.401790× 10−1 4.463412× 10−1 1.315997× 100 3.262038× 10−1 9.151166× 101 7.811489× 101

F27 Mean 4.035857× 102 − 4.637355× 102 − 1.521531× 103 + 4.000881 × 102 − 1.065358× 103 + 9.942069× 102

Std 2.438432× 100 1.879815× 102 1.429126× 102 1.966334× 10−1 1.509388× 102 1.774184× 102

F28 Mean 3.217317× 102 + 3.000450 × 102 = 3.548491× 103 + 3.000000 × 102 = 3.000000× 102 = 3.000000 × 102

Std 9.928230× 101 4.776208× 10−2 3.566458× 102 7.129640× 10−7 3.259904× 10−13 1.906586× 10−13

+/=/− 16/1/11 15/2/11 25/0/3 19/1/8 23/2/3 \

Table 3. Results of SAABC-CS vs. other five ABC algorithm on CEC2013 function with D = 50.

Function ABC ABCNG KFABC SABC-GB MGABC SAABC-CS

F1 Mean 2.955858× 10−12+ 3.148009× 10−8 + 1.018143× 104 + 2.273737× 10−13 + 4.547474 × 10−14 = 4.547474 × 10−14

Std 1.169250× 10−12 9.954543× 10−8 2.871279× 104 0.000000× 100 9.586916× 10−14 1.016846× 10−13

F2 Mean 3.284758× 107 + 4.618962× 107 + 1.708788× 109 + 4.637076× 107 + 1.971770× 106 + 7.914809 × 105

Std 5.558586× 106 5.790349× 106 2.623811× 109 1.114626× 107 7.040444× 105 4.080623× 107

F3 Mean 7.841954× 109 + 1.847470× 1010 + 2.851026× 1010 + 1.762672× 1010 + 8.447470× 108 + 2.542380 × 108

Std 3.259891× 109 6.121788× 109 5.797317× 109 6.695196× 109 7.333293× 108 2.087111× 108

F4 Mean 1.274341× 105 + 1.642763× 105 + 2.234841× 105 + 1.694570× 105 + 8.924475× 104 + 1.724965 × 104

Std 7.008384× 103 1.489793× 104 3.931104× 104 2.075625× 104 1.832230× 104 8.075878× 103

F5 Mean 2.861123× 10−9 + 7.562626× 10−6 + 3.134081× 104 + 2.046363× 10−13 + 1.783583× 101 + 1.136868 × 10−13

Std 1.875903× 10−9 1.770777× 10−5 2.634133× 104 5.084230× 10−14 5.640184× 101 0.000000× 100

F6 Mean 4.277263× 101 − 4.490482× 101 − 2.040206× 103 + 4.249225× 101 − 4.220742 × 101 − 4.458985× 101

Std 3.912023× 100 1.407079× 100 5.172172× 103 1.429593× 100 3.628206× 100 2.554739× 100

Appl. Sci. 2023, 13, 10445 16 of 21

Table 3. Cont.

Function ABC ABCNG KFABC SABC-GB MGABC SAABC-CS

F7 Mean 1.622092× 102 + 1.592080× 102 + 1.414640× 102 + 1.666456× 102 + 1.179465× 102 + 5.708652 × 101

Std 1.449257× 101 1.083587× 101 8.759337× 100 1.962182× 101 2.313107× 101 1.366854× 101

F8 Mean 2.115074× 101 + 2.115255× 101 + 2.132399× 101 + 2.125988× 101 + 2.123293× 101 + 2.114303 × 101

Std 4.048518× 10−2 3.072095× 10−2 4.592058× 10−2 2.544278× 10−2 3.146337× 10−2 3.860337× 10−2

F9 Mean 5.897591× 101 + 5.745982× 101 + 6.670232× 101 + 6.076537× 101 + 5.754785× 101 + 4.684075 × 101

Std 1.893957× 100 1.483945× 100 1.662834× 100 1.559200× 100 7.347343× 100 1.497032× 101

F10 Mean 1.347232× 101 + 4.771359× 101 + 3.118192× 102 + 2.049230× 101 + 3.413696× 101 + 2.517742 × 10−1

Std 2.002235× 100 1.767519× 101 9.390496× 101 3.725336× 100 1.072055× 102 1.011803× 10−1

F11 Mean 4.159881× 10−4 − 1.963591× 10−8 − 2.184322× 102 + 5.684342 × 10−14 − 2.335787× 102 + 1.392530× 102

Std 1.312952× 10−3 6.206800× 10−8 4.393977× 101 0.000000× 100 6.621192× 101 5.118038× 101

F12 Mean 7.178075× 102 + 4.917360× 102 + 1.086795× 100 + 5.622186× 102 + 2.735126× 102 + 1.388959 × 102

Std 6.373474× 101 5.148087× 101 1.126136× 101 5.881967× 101 4.636084× 101 1.758279× 101

F13 Mean 7.814717× 102 + 5.461840× 102 + 1.387675× 103 + 5.990427× 102 + 4.531404× 102 + 3.072911 × 102

Std 6.938212× 101 3.117511× 101 8.629146× 101 6.079101× 101 7.781740× 101 7.755705× 101

F14 Mean 2.575095× 102 − 1.101760 × 101 − 8.542596× 102 − 2.786400× 101 − 5.347860× 103 + 4.776190× 103

Std 1.129973× 102 4.446142× 100 7.478447× 102 1.652054× 101 1.308783× 103 1.761472× 103

F15 Mean 9.827417× 103 + 8.907545× 103 + 1.171550× 104 + 1.086651× 104 + 1.137648× 104 + 8.412513 × 103

Std 3.921616× 102 4.483995× 102 5.934273× 102 1.734875× 103 3.282637× 103 1.422399× 103

F16 Mean 2.701649× 100 − 2.242826 × 100 − 4.081204× 100 − 3.954293× 100 − 3.699498× 100 − 2.867917× 100

Std 9.149871× 10−2 2.512675× 10−1 1.280502× 100 4.807582× 10−1 6.058890× 10−1 1.508652× 10−1

F17 Mean 6.261697× 101 − 5.086540× 101 − 3.152645× 102 + 5.084679 × 101 − 2.824810× 102 + 1.423049× 102

Std 2.765426× 100 3.099526× 10−2 8.177475× 101 1.352002× 10−1 6.248677× 101 2.138828× 101

F18 Mean 9.238280× 102 + 5.295994× 102 + 1.238050× 103 + 6.694845× 102 + 2.891465× 102 + 1.295341 × 102

Std 4.428796× 101 4.794994× 101 9.605859× 100 6.861874× 101 1.143260× 102 3.810039× 101

F19 Mean 6.997984× 101 − 1.608722 × 100 − 8.691579× 104 + 1.969550× 100 − 3.695087× 101 + 1.020953× 101

Std 7.562652× 10−1 2.366303× 10−1 2.742856× 105 5.667733× 10−1 2.164269× 101 3.568900× 100

F20 Mean 2.451305× 101 + 2.443238× 101 + 2.500000× 101 + 2.479311× 101 + 2.484394× 101 + 1.906000 × 101

Std 6.179035× 10−2 1.913468× 10−1 3.626571× 10−8 4.626115× 10−1 4.935189× 10−1 4.442649× 10−1

F21 Mean 3.002346× 102 − 2.331136× 102 − 3.937298× 102+ 2.000024 × 102 − 1.007922× 103 + 7.091540× 100

Std 3.655648× 101 5.858767× 101 8.291218× 102 4.499760× 10−3 1.475861× 102 2.846257× 102

F22 Mean 5.182953× 102 − 1.075276× 102 − 1.553978× 103 − 6.506353 × 101 − 5.641707× 103 + 3.417625× 103

Std 1.260235× 102 5.535060× 101 4.507743× 102 5.047782× 101 1.105454× 103 6.778751× 102

F23 Mean 1.159107× 104 + 1.063746× 104 + 1.287130× 104 + 1.272815× 104 + 1.166782× 100 + 7.758915 × 103

Std 6.086164× 102 7.287601× 102 1.599906× 103 1.319689× 103 2.959131× 103 7.102152× 102

F24 Mean 3.744423× 102 + 3.510602× 102 + 4.166738× 102 + 3.583240× 102 + 3.667745× 102 + 2.967712 × 102

Std 5.975679× 100 5.223262× 100 9.890606× 100 1.308944× 101 1.378969× 101 1.829007× 101

F25 Mean 4.374945× 102 + 3.483497× 100 + 3.759264× 102 + 3.555845× 102 + 3.658872× 100 + 3.445000 × 102

Std 3.011667× 100 4.612998× 100 1.557984× 101 1.369593× 101 1.160330× 101 3.316366× 101

F26 Mean 2.030621 × 102 − 2.046948× 102 − 2.100765× 102 − 2.035836× 102 − 4.238846× 102 + 4.035065× 102

Std 5.837760× 10−1 1.270617× 100 1.407218× 100 6.566464× 10−1 8.086476× 101 2.080650× 101

F27 Mean 8.799567× 102 − 1.648409× 103 + 1.906722× 103 + 7.090895 × 102 − 1.828519× 103 + 1.277921× 103

Std 7.316749× 102 4.377836× 102 6.292964× 101 6.907071× 102 1.516850× 102 2.410391× 102

F28 Mean 4.000096 × 102 − 4.000096 × 102 − 9.274103× 103 + 4.000000 × 102 − 7.603380× 102 − 1.095181× 103

Std 8.593386× 10−3 4.890569× 10−5 2.656043× 103 3.405390× 10−12 1.139489× 103 1.554472× 103

+/=/− 17/0/11 19/0/9 25/0/3 19/0/9 25/1/2 \

Table 4. Results of SAABC-CS vs. the other five ABC algorithms on CEC2013 function with D = 100.

Function ABC ABCNG KFABC SABC-GB MGABC SAABC-CS

F1 Mean 1.973604× 10−11+ 4.128162× 10−7 + 2.451098× 104 + 2.451098× 104 + 1.118425× 10−4 + 2.273737 × 10−13

Std 3.802877× 10−12 7.287129× 10−7 5.990424× 104 1.016846× 10−13 2.530758× 10−4 0.000000× 100

F2 Mean 8.834536× 107 + 1.240612× 108 + 1.198907× 108 + 1.285546× 108 + 5.389145× 106 + 1.785271 × 106

Std 1.184489× 107 1.967212× 107 1.284506× 107 3.465274× 107 1.021979× 106 1.982445× 105

F3 Mean 4.482419× 1010 + 7.905068× 1010 + 3.991188× 1023 + 6.912422× 1010 + 1.350896× 1010 + 1.334383 × 109

Std 9.027770× 109 1.791850× 1010 1.262124× 1024 1.232375× 1010 8.226565× 109 1.222671× 109

F4 Mean 3.094007× 105 + 3.681476× 105 + 2.615840× 105 + 3.890927× 105 + 2.173122× 105 + 3.952361 × 104

Std 1.303058× 104 2.133351× 104 5.347582× 102 1.611143× 104 6.106829× 104 2.153741× 104

F5 Mean 8.254081× 10−7 + 2.557590× 10−5 + 3.772101× 104 + 4.547474× 10−13 + 8.518334× 10−6 + 1.591616 × 10−13

Std 7.529267× 10−7 7.720090× 10−5 5.419016× 104 8.038873× 10−14 2.693720× 10−5 6.226885× 10−14

F6 Mean 2.142622× 102 + 9.698993× 101 + 1.709420× 103 + 1.009548× 102 + 1.488648× 102 + 8.023747 × 101

Std 2.430805× 101 2.907379× 100 6.999790× 102 1.889868× 101 4.056920× 101 5.311755× 101

F7 Mean 3.054039× 103 + 3.234884× 102 + 9.620188× 103 + 2.147341× 103 + 2.733054× 103 + 1.237953 × 102

Std 9.462866× 102 9.118325× 101 3.860683× 103 1.146374× 103 5.572922× 103 2.587804× 101

F8 Mean 2.128398× 101 + 2.128740× 101 + 2.142877× 101 + 2.140472× 101 + 2.135731× 101 + 2.123126 × 101

Std 3.115940× 10−2 3.286301× 10−2 3.175913× 10−2 2.885485× 10−2 2.906741× 10−2 2.846930× 10−2

F9 Mean 1.424419× 102 + 1.382971× 102 + 1.650088× 102 + 1.420014× 102 + 1.438865× 102 + 1.225657 × 102

Std 1.991745× 100 2.798468× 100 4.284012× 100 2.512077× 100 9.806690× 100 2.133002× 101

F10 Mean 2.923123× 101 + 1.539758× 102 + 5.712395× 103 + 6.950258× 101 + 7.182894 × 10−2 − 1.660239× 10−1

Std 6.475596× 100 2.389479× 101 1.551510× 104 1.957730× 101 3.627664× 10−2 8.312484× 10−2

F11 Mean 6.092375× 10−1 − 3.784635× 10−11 − 8.378384× 102 + 1.477929 × 10−13 − 5.465159× 102 + 2.845364× 102

Std 5.116787× 10−1 8.196940× 10−11 1.395362× 103 3.113442× 10−14 1.112934× 102 2.537027× 101

Appl. Sci. 2023, 13, 10445 17 of 21

Table 4. Cont.

Function ABC ABCNG KFABC SABC-GB MGABC SAABC-CS

F12 Mean 2.198673× 103 + 1.517617× 103 + 2.697353× 103 + 1.955326× 103 + 8.101987× 102 + 3.768888 × 102

Std 7.354249× 101 9.996793× 101 2.658300× 102 2.338236× 102 1.770356× 102 4.834688× 101

F13 Mean 2.503947× 103 + 1.733014× 103 + 3.265827× 103 + 2.047888× 103 + 1.215428× 103 + 6.376625 × 102

Std 7.441021× 101 9.697171× 101 1.733385× 102 2.217272× 102 1.815931× 102 1.038178× 102

F14 Mean 1.249470× 103 − 4.918872 × 101 − 3.312805× 103 − 1.564673× 102 − 1.566715× 104 + 1.164011× 104

Std 2.042146× 102 1.145955× 101 7.614969× 102 3.933930× 101 6.336429× 103 1.692848× 103

F15 Mean 2.139087× 104 + 1.804621× 104 + 1.986577× 104 + 2.182511× 104 + 1.969055× 104 + 1.546327 × 104

Std 7.133549× 102 1.644285× 103 9.934635× 102 4.009070× 103 4.438910× 103 1.456028× 103

F16 Mean 3.245700× 100 − 2.433718 × 100 − 5.258963× 100 + 4.341247× 100 + 4.146268× 100 + 3.412060× 100

Std 1.671285× 10−1 1.727265× 10−1 4.145646× 10−1 3.074977× 10−1 9.278684× 10−1 1.300912× 100

F17 Mean 1.455926× 102 − 1.018400 × 102 − 4.054080× 102 − 1.020771 × 102 − 8.785634× 102 + 4.476043× 102

Std 5.280956× 100 1.063732× 10−1 7.338916× 101 5.371392× 10−1 1.398662× 102 4.923496× 101

F18 Mean 3.032877× 103 + 1.667279× 103 + 3.006562× 103 + 2.012308× 103 + 1.132124× 103 + 3.217418 × 102

Std 1.321905× 102 6.506401× 101 2.211562× 103 2.035596× 102 3.637035× 102 7.163749× 101

F19 Mean 1.868629× 101 − 3.529313 × 100 − 9.648661× 102 + 4.940257× 100 − 1.570489× 102 + 3.911692× 101

Std 1.710116× 100 6.629051× 10−1 8.586362× 102 1.085188× 100 6.816761× 101 9.322297× 100

F20 Mean 5.000000× 101 + 5.000000× 101 + 5.000000× 101 + 5.000000× 101 + 5.000000× 101 + 4.922633 × 101

Std 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 0.000000× 100 1.729981× 100

F21 Mean 4.266808× 102 + 4.139761× 102 + 6.277225× 103 + 3.755167 × 102 − 4.00023× 102 = 4.000230× 102

Std 2.009050× 10−2 4.003411× 101 2.459363× 103 6.893975× 101 7.239635× 10−2 8.023434× 10−12

F22 Mean 1.826683× 103 − 2.272431× 102 − 2.441767× 103 − 2.082828 × 102 − 1.642002× 104 + 9.973881× 103

Std 2.498711× 102 4.141507× 101 1.709820× 103 6.767953× 101 3.497406× 103 1.449154× 103

F23 Mean 2.644424× 104 + 2.296186× 104 + 2.573263× 104 + 2.612368× 104 + 2.415738× 104 + 1.705627 × 104

Std 4.200315× 102 1.326126× 103 3.682603× 102 2.487084× 103 4.569038× 103 2.441021× 103

F24 Mean 6.252343× 102 + 5.569459× 102 + 6.226265× 102 + 5.770593× 102 + 5.814677× 102 + 4.186013 × 102

Std 1.190408× 101 9.093040× 100 4.713148× 101 1.216896× 101 1.995748× 101 2.670765× 101

F25 Mean 7.700743× 102 + 5.390881× 102 + 6.198248× 102 + 5.628228× 102 + 5.650778× 102 + 5.586434 × 102

Std 1.579620× 101 1.433180× 101 8.338052× 100 7.234443× 100 2.894703× 101 5.314425× 101

F26 Mean 2.098754 × 102 − 2.146916× 102 − 7.292073× 102 + 2.109556× 102 − 6.618175× 102 + 5.612805× 102

Std 9.910123× 10−1 2.330025× 100 1.252176× 101 1.674934× 100 2.288813× 101 5.874442× 101

F27 Mean 2.891602× 103 − 3.912540× 103 + 4.681923× 103 + 1.216460 × 103 − 3.961627× 103 + 3.188342× 103

Std 1.942001× 103 7.631826× 101 8.980030× 101 1.565963× 103 2.252456× 102 2.514344× 102

F28 Mean 6.594381× 103 + 3.911700× 103 + 1.316997× 104 + 3.765292× 103 + 7.956850× 103 + 2.721174 × 103

Std 9.182439× 102 8.363343× 102 9.754517× 102 1.311856× 102 2.886238× 103 1.197070× 102

+/=/− 20/0/8 20/0/8 25/0/3 19/0/9 26/1/1 \

4.3. Comparison for CEC2013 Functions

In this section, we used the CEC2013 testing suite in experiment 2, to further illus-
trate the effectiveness of our algorithm SAABC-CS in handling complicated functions and
high-dimensional issues. Since the CEC2013 test functions are more complicated than
the 22 fundamental scalar functions, it was challenging to find the global best solution
for CEC2013. We compared our algorithm SAABC-CS with the original ABC [12] and
four additional cutting-edge ABC algorithms (ABCNG [33], KFABC [19], SABC-GB [15],
and MGABC [30]). We measured the outcomes on D = 30, 50, and 100, to examine the
comprehensive performance of these algorithms in several dimensions. For the fairness
of the experiments, the methods were evaluated using the same parameters, SN = 100,
limit = 1000, and MaxFEs = 10,000·D. The final statistical outcomes of the six related algo-
rithms are encapsulated in Tables 2–4 based on 30 independent runs.

For D = 30, the results of the above ABC variations are reported in Table 2. For 21, 17,
25, 20, and 25 of the 28 test functions, our algorithm SAABC-CS outperformed or equaled
the ABC, ABCNG, KFABC, SABC-GB, and MGABC in terms of outcomes. Additionally,
SAABC-CS achieved the best results on 17 functions of F1–F5, F7, F8, F10, F12, F13, F15,
F18, F20, F23-F25, and F28 when it was compared with the other algorithms. The statistical
results of all algorithms on CEC2013 with the dimension D = 50 are shown in Table 3.
SAABC-CS outperformed or equaled the ABC, ABCNG, KFABC, SABC-GB, and MGABC
on 21, 17, 25, 20, and 25 out of 28 functions, respectively. The outcomes of all algorithms
with the criterion D = 100 are displayed in Table 4. On 24, 20, 25, 19, and 25 out of 28
functions, SAABC-CS outperformed or equaled the ABC, ABCNG, KFABC, SABC-GB,
and MGABC, with comparable or superior performance. Moreover, on F1–F9, F12–F13,
F15–F20, F23–F25, and F28, SAABC-CS always achieved the best value out of all algorithms.
As a result, SAABC-CS had the highest overall performance of the six algorithms that
were examined.

Appl. Sci. 2023, 13, 10445 18 of 21

To be more intuitive, we used the Friedman test [34] to rank all algorithms across all
test problems, with the results shown in Table 5 and Figure 7. It is worth noting that the
Friedman test uses the post hoc technique [35–38], and the lower the ranking, the better
the overall performance of the algorithm. From the data, we can see the average rank of
SAABC-CS was always the first for 30, 50, and 100 dimensions. Therefore, SAABC-CS’s
effectiveness was always superior to the others on all dimensions.

Figure 7. Illustration of Average Ranking.

Table 5. Average Ranking.

Function D = 30 D = 50 D = 100

ABC 2.93 3.25 3.64
ABCNG 2.68 2.89 2.75
KFABC 5.20 5.32 5.00

SABC-GB 3.18 3.00 3.03
MGABC 3.50 3.42 3.57

SAABC-CS 2.17 2.07 1.92

We can further demonstrate the efficacy of our approach in finding the optimal for
the complicated functions, based on the comparison findings mentioned above for the
CEC2013 functions.

4.4. SAABC-CS for Practical Engineering Problems

In real-world engineering, parameter estimation of frequency-modulated (FM) sound
waves [39] is frequently investigated. In this section, we performed tests to make com-
parisons between SAABC-CS and other ABC variants. We ran each algorithm 30 times
independently and compared the results of the top outcomes of each algorithm.

4.4.1. Parameter Estimation for Frequency-Modulated (FM) Sound Waves

Frequency-modulated (FM) sound wave synthesis plays an important role in various
modern music systems. To estimate the parameter of a FM synthesizer and to optimize the
results, we solved a six-dimensional optimization problem, where we tried to optimize
the vector X = {a1, ω1, a2, ω2, a3, ω3} given in Equation (19). The goal of this optimization
problem was to generate a sound (19) similar to the target sound (20). This problem highly
complex and multi-modal, having strong epistasis, with a minimum value f (~Xsol) = 0.
The expressions for the estimated sound and the target sound waves are given as

y(t) = a1 · sin (ω1 · t · θ + a2 · sin (ω2 · t · θ + a3 · sin (ω3 · t · θ))) (19)

y0(t) = 1.0 · sin (5.0 · t · θ − 1.5 · sin (4.8 · t · θ + 2.0 · sin (4.9 · t · θ))) (20)

Appl. Sci. 2023, 13, 10445 19 of 21

where θ = (2 · π)/100 and the parameters are defined in the range [−6.4, 6.35]. The fitness
function is the summation of the square errors between the estimated wave (19) and the
target wave (20), as follows:

min f (~X) =
100

∑
t=0

(y(t)− y0(t))2 (21)

4.4.2. Results of SAABC-CS Compared with Other Algorithms

Table 6 is a summary of the final results of our experiments, including the six parame-
ters and the optimal cost. SAABC-CS obtained the minimum cost in solving the parameter
estimation for frequency-modulated (FM) sound waves problem.

Table 6. SAABC-CS vs. other algorithms for parameter estimation of FM sound waves.

Algorithms
The Best Value of Six Parameters

Error Variance
a1 ω1 a2 ω2 a3 ω3

ABC 0.3559 0.0316 1.0678 0.1394 5.0670 4.9233 1.659715× 101

ABCNG 0.5546 0.0627 1.5207 0.1437 4.3253 4.9361 1.460573× 101

KFABC 0.1414 0.2657 0.1414 0.1414 0.1414 0.1414 2.901492× 101

MGABC 0.6894 14.6861 0.7746 9.7434 1.0506 5.1230 1.226273× 101

SABC-GB 0.7306 14.5462 0.6579 4.6106 5.7068 4.8736 1.177162× 101

SAABC-CS 0.3370 4.7477 0.4820 0.2280 1.2430 3.2447 1.024282 × 101

5. Conclusions

In this paper, we proposed a new self-adaptive ABC algorithm with candidate strate-
gies (SAABC-CS) to balance the exploration and exploitation of the evolution. Compared
with the original ABC, SAABC-CS has three modifications, without adding any extra pa-
rameters: (1) five strategies are selected and assembled in a strategy pool; (2) a self-adaptive
mechanism was designed to make the algorithm universal; (3) three neighbor mutations
work together to enhance the scout phase. The aforementioned additions enhance ABC’s
overall performance by allowing it to tackle complicated issues with more features, while
balancing its exploration and development capabilities.

Comprehensive experiments were performed on two groups of functions: 22 basic
benchmark functions and CEC2013 test suites. The experiment results for the 22 basic test
functions showed that SAABC-CS obtained a much better performance than an ABC with
one strategy. Furthermore, the self-adaptive selection mechanism in SAABC-CS was well-
turned to select an appropriate strategy for facing problems of a different nature. For the
complex and difficult CEC2013 benchmark suite, SAABC-CS still achieved promising re-
sults and surpassed four state-of-the-art ABCs. With the increasing dimensions of CEC2013,
the performance of SAABC-CS did not deteriorate. The method also produced positive
results when it was used to tackle real-world engineering challenges, demonstrating that it
can solve real-world optimization problems as well as test functions.

Although extensive experiments were conducted to demonstrate the performance of
SAABC-CS, we hope to theoretically analyze the algorithm, inspired by the literature [40–42].
We also wish to extend the use of SAABC-CS to certain large and expensive problems in
the future.

Author Contributions: Y.H.: Conceptualization, Methodology, Software, Validation, Formal analysis,
Writing—Original Draft. Y.Y.: Conceptualization, Methodology, Writing—Original Draft, Supervision,
Project administration. J.G.: Conceptualization, Methodology, Writing—Original Draft, Supervision,
Project administration. Y.W.: Methodology, Supervision, Project administration. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was part funded by the National Natural Science Foundation of China (No.
61966019), and the Fundamental Research Funds for the Central Universities (No. CCNU20TS026).

Appl. Sci. 2023, 13, 10445 20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this investigation are accessible
upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
2. Houck, C.R.; Joines, J.; Kay, M.G. A genetic algorithm for function optimization: A Matlab implementation. Ncsu-Ie Tr 1995,

95, 1–10.
3. Wang, H.; Zhou, X.; Sun, H.; Yu, X.; Zhao, J.; Zhang, H.; Cui, L. Firefly algorithm with adaptive control parameters. Soft Comput.

2017, 21, 5091–5102. [CrossRef]
4. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
5. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical

optimization. IEEE Trans. Evol. Comput. 2008, 13, 398–417. [CrossRef]
6. Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005

IEEE Congress on Evolutionary Computation, Scotland, UK, 2–5 September 2005; Volume 2, pp. 1785–1791.
7. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and

mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]
8. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
9. Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on

Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Republic of Korea, 27–30 May 2001; Volume 1, pp. 81–86.
10. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.

[CrossRef]
11. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [CrossRef]
12. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report, Technical Report-tr06; Engineering

Faculty, Erciyes University: Kayseri, Turkey, 2005.
13. Bajer, D.; Zorić, B. An effective refined artificial bee colony algorithm for numerical optimisation. Inf. Sci. 2019, 504, 221–275.

[CrossRef]
14. Kumar, D.; Mishra, K. Co-variance guided artificial bee colony. Appl. Soft Comput. 2018, 70, 86–107. [CrossRef]
15. Xue, Y.; Jiang, J.; Zhao, B.; Ma, T. A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft

Comput. 2018, 22, 2935–2952. [CrossRef]
16. Cui, L.; Li, G.; Zhu, Z.; Lin, Q.; Wen, Z.; Lu, N.; Wong, K.C.; Chen, J. A novel artificial bee colony algorithm with an adaptive

population size for numerical function optimization. Inf. Sci. 2017, 414, 53–67. [CrossRef]
17. Wang, H.; Wu, Z.; Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.S. Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci.

2014, 279, 587–603. [CrossRef]
18. Gao, W.; Liu, S.; Huang, L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.

IEEE Trans. Cybern. 2013, 43, 1011–1024. [PubMed]
19. Wang, H.; Wang, W.; Zhou, X.; Zhao, J.; Wang, Y.; Xiao, S.; Xu, M. Artificial bee colony algorithm based on knowledge fusion.

Complex Intell. Syst. 2021, 7, 1139–1152. [CrossRef]
20. Lu, R.; Hu, H.; Xi, M.; Gao, H.; Pun, C.M. An improved artificial bee colony algorithm with fast strategy, and its application.

Comput. Electr. Eng. 2019, 78, 79–88. [CrossRef]
21. Gao, W.; Liu, S. A modified artificial bee colony algorithm. Comput. Oper. Res. 2012, 39, 687–697. [CrossRef]
22. Guo, P.; Cheng, W.; Liang, J. Global artificial bee colony search algorithm for numerical function optimization. In Proceedings of

the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011; Volume 3, pp. 1280–1283.
23. Yu, W.J.; Zhan, Z.H.; Zhang, J. Artificial bee colony algorithm with an adaptive greedy position update strategy. Soft Comput.

2018, 22, 437–451. [CrossRef]
24. Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid artificial bee colony algorithm with differential evolution. Appl. Soft

Comput. 2017, 58, 11–24. [CrossRef]
25. Alqattan, Z.N.; Abdullah, R. A hybrid artificial bee colony algorithm for numerical function optimization. Int. J. Mod. Phys. C

2015, 26, 1550109. [CrossRef]
26. Chen, S.M.; Sarosh, A.; Dong, Y.F. Simulated annealing based artificial bee colony algorithm for global numerical optimization.

Appl. Math. Comput. 2012, 219, 3575–3589. [CrossRef]
27. Gao, W.f.; Huang, L.l.; Liu, S.y.; Chan, F.T.; Dai, C.; Shan, X. Artificial bee colony algorithm with multiple search strategies. Appl.

Math. Comput. 2015, 271, 269–287. [CrossRef]

http://doi.org/10.1007/BF00175354
http://dx.doi.org/10.1007/s00500-016-2104-3
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1016/j.asoc.2010.04.024
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1016/j.ins.2019.07.022
http://dx.doi.org/10.1016/j.asoc.2018.04.050
http://dx.doi.org/10.1007/s00500-017-2547-1
http://dx.doi.org/10.1016/j.ins.2017.05.044
http://dx.doi.org/10.1016/j.ins.2014.04.013
http://www.ncbi.nlm.nih.gov/pubmed/23086528
http://dx.doi.org/10.1007/s40747-020-00171-2
http://dx.doi.org/10.1016/j.compeleceng.2019.06.021
http://dx.doi.org/10.1016/j.cor.2011.06.007
http://dx.doi.org/10.1007/s00500-016-2334-4
http://dx.doi.org/10.1016/j.asoc.2017.04.018
http://dx.doi.org/10.1142/S0129183115501090
http://dx.doi.org/10.1016/j.amc.2012.09.052
http://dx.doi.org/10.1016/j.amc.2015.09.019

Appl. Sci. 2023, 13, 10445 21 of 21

28. Song, X.; Zhao, M.; Xing, S. A multi-strategy fusion artificial bee colony algorithm with small population. Expert Syst. Appl. 2020,
142, 112921. [CrossRef]

29. Chen, X.; Tianfield, H.; Li, K. Self-adaptive differential artificial bee colony algorithm for global optimization problems. Swarm
Evol. Comput. 2019, 45, 70–91. [CrossRef]

30. Zhou, X.; Lu, J.; Huang, J.; Zhong, M.; Wang, M. Enhancing artificial bee colony algorithm with multi-elite guidance. Inf. Sci.
2021, 543, 242–258. [CrossRef]

31. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010,
217, 3166–3173. [CrossRef]

32. Mühlenbein, H.; Schomisch, M.; Born, J. The parallel genetic algorithm as function optimizer. Parallel Comput. 1991, 17, 619–632.
[CrossRef]

33. Xiao, S.; Wang, H.; Wang, W.; Huang, Z.; Zhou, X.; Xu, M. Artificial bee colony algorithm based on adaptive neighborhood search
and Gaussian perturbation. Appl. Soft Comput. 2021, 100, 106955. [CrossRef]

34. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

35. Wang, B.C.; Li, H.X.; Li, J.P.; Wang, Y. Composite differential evolution for constrained evolutionary optimization. IEEE Trans.
Syst. Man, Cybern. Syst. 2018, 49, 1482–1495. [CrossRef]

36. Wang, Y.; Li, J.P.; Xue, X.; Wang, B.C. Utilizing the correlation between constraints and objective function for constrained
evolutionary optimization. IEEE Trans. Evol. Comput. 2019, 24, 29–43. [CrossRef]

37. Wang, Y.; Wang, B.C.; Li, H.X.; Yen, G.G. Incorporating objective function information into the feasibility rule for constrained
evolutionary optimization. IEEE Trans. Cybern. 2015, 46, 2938–2952. [CrossRef]

38. Fan, Q.; Jin, Y.; Wang, W.; Yan, X. A performancE−driven multi-algorithm selection strategy for energy consumption optimization
of sea-rail intermodal transportation. Swarm Evol. Comput. 2019, 44, 1–17. [CrossRef]

39. Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on
Real World Optimization Problems; Jadavpur University, Nanyang Technological University: Kolkata, India, 2010; pp. 341–359.

40. KhalafAnsar, H.M.; Keighobadi, J. Adaptive Inverse Deep Reinforcement Lyapunov learning control for a floating wind turbine.
Sci. Iran. 2023, in press. [CrossRef]

41. Keighobadi, J.; KhalafAnsar, H.M.; Naseradinmousavi, P. Adaptive neural dynamic surface control for uniform energy exploita-
tion of floating wind turbine. Appl. Energy 2022, 316, 119132. [CrossRef]

42. Keighobadi, J.; Nourmohammadi, H.; Rafatania, S. Design and Implementation of GA Filter Algorithm for Baro-inertial Altitude
Error Compensation. In Proceedings of the Conference: ICLTET-2018, Istanbul, Turkey, 21–23 March 2018; pp. 21–23.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2019.112921
http://dx.doi.org/10.1016/j.swevo.2019.01.003
http://dx.doi.org/10.1016/j.ins.2020.07.037
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1016/S0167-8191(05)80052-3
http://dx.doi.org/10.1016/j.asoc.2020.106955
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/TSMC.2018.2807785
http://dx.doi.org/10.1109/TEVC.2019.2904900
http://dx.doi.org/10.1109/TCYB.2015.2493239
http://dx.doi.org/10.1016/j.swevo.2018.11.007
http://dx.doi.org/10.24200/sci.2023.61871.7532
http://dx.doi.org/10.1016/j.apenergy.2022.119132

	Introduction
	Related Work
	ABC Algorithm
	ABC Variants

	The Proposed Algorithm SAABC-CS
	Candidate Strategy Pool
	Self-adaptive Mechanism
	Scout Bee and Modified Neighborhood Search Operator
	Framework of SAABC-CS

	Experiments
	Test Problems
	Effectiveness Analysis of the Proposed Strategy Pool and Self-adaptive Mechanism
	Comparison for CEC2013 Functions
	SAABC-CS for Practical Engineering Problems
	Parameter Estimation for Frequency-Modulated (FM) Sound Waves
	Results of SAABC-CS Compared with Other Algorithms

	Conclusions
	References

